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The MHD Newtonian hybrid 
nanofluid flow and mass transfer 
analysis due to super‑linear 
stretching sheet embedded 
in porous medium
U. S. Mahabaleshwar1, T. Anusha1 & M. Hatami2*

The steady magnetohydrodynamics (MHD) incompressible hybrid nanofluid flow and mass transfer 
due to porous stretching surface with quadratic velocity is investigated in the presence of mass 
transpiration and chemical reaction. The basic laminar boundary layer equations for momentum 
and mass transfer, which are non‑linear partial differential equations, are converted into non‑linear 
ordinary differential equations by means of similarity transformation. The mass equation in the 
presence of chemical reaction is a differential equation with variable coefficients, which is transformed 
to a confluent hypergeometric differential equation. The mass transfer is analyzed for two different 
boundary conditions of concentration field that are prescribed surface concentration (PSC) and 
prescribed mass flux (PMF). The asymptotic solution of concentration filed for large Schmidt number 
is analyzed using Wentzel‑Kramer‑Brillouin (WKB) method. The parameters influence the flow are 
suction/injection, superlinear stretching parameter, porosity, magnetic parameter, hybrid nanofluid 
terms, Brinkman ratio and the effect of these are analysed using graphs.

List of symbols
a  Constant, –
b  Constant, –
B0  Applied magnetic field,  wm−2

C  Concentration, mol  m−3

C∞  Ambient concentration, mol  m−3

Di (i = 1 to 3)  Effective property ratio, –
Da−1  Inverse Darcy number, –
DB  Molecular diffusivity,  m2  s−1

f  Dimensionless stream function, –
G  Dimensionless concentration field in PMF case mol  m−3

K  Porous permeability,  Hm−1

kC  Chemical reaction parameter, –
M  Magnetic field parameter, w S  kg−1

Sc  Schmidt number, –
u and v  Velocity components,  ms−1

V∗
C < 0/ > 0  Suction/injection parameter, –

x, y  Cartesian coordinates, m

Greek symbols
η  Similarity variable, –
ψ  Stream function, –
μ  Dynamic viscosity, kg  m−1  s−1
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ν  Kinematic viscosity,  m2  s−1

ρ  Density, kg  m−3

ϑ  Chemical reaction parameter, –
σ  Electrical conductivity,  Sm−1

σ ∗  Stefan–Boltzmann constant,  Wm−2  K−4

�  Brinkman ratio, –
φ  Dimensionless concentration, mol  m−3

ϕ1 & ϕ2  Solid particle volume fraction of the aluminum oxide and copper, respectively, –
�  Dimensionless concentration field in PSC case mol  m−3

Subscript
hnf  Hybrid nanofluid
s  Solid particle involved in hybrid nanofluid
f  Base fluid
eff  Effective

Abbreviations
B.Cs  Boundary conditions
HNF  Hybrid nanofluid
MHD  Magnetohydrodynamic
Al2O3  Aluminum oxide (alumina)
Cu  Copper
H2O  Pure water

The behavior of the boundary layer due to continuous stretching sheet problem has a significant role in the 
industrial field and the cooling of porous sheet by polymer extrusion through stagnant liquid and in the char-
acteristics of fluid motion over stretching sheet due to viscous flow is an important problem in the polymer 
industry. The analysis of concentration field with chemical reaction problem has got importance in most of the 
physical problems. The inclusion of the hybrid nanofluid for the fluid flow gives us the more efficient in increase 
of rate of heat transfer, that is rate of heating/cooling.

Vajravelu1 studied on the flow and heat transfer behavior due to impermeable stretching sheet embedded in 
saturated porous media with PST and PHF case of temperature and heat generation/absorption. Siddheshwar 
and  Mahabaleshwar2 studied the flow and heat transfer due to nonlinear stretching sheet in PST and PHF case of 
wall temperature and asymptotic limit for small and large Prandtl number is studied using WKB approximation.

There are many works related to quadratically stretching sheet viz, Kumaran and  Ramanaiah3 investigate on 
the viscous flow due to stretching sheet with quadratic velocity and with the linear mass flux of the sheet. Further 
they got the closed form solution with the effect of linear mass flux. Abel et al.4 evaluated the solution for heat 
transfer of the viscoelastic fluid flow due to isothermal stretching surface considering the magnetic field effect 
and heat generation. Further they obtain the asymptotic limits for small and large value of Prandtl number and 
the work revealed that in the case of small Prandtl number the viscoelasticity impact and the magnetic field will 
decrease the temperature field. Further Kelly et al.5 also studied the heat and mass transfer asymptotic limit for 
small and large Schmidt number. Similarly  Kelson6 studied viscous flow with quadratic stretching sheet and 
Kumaran et al.7 also studied the same with linearly permeable surface, magnetic field effects and mass transpira-
tion and obtained that the phenomena of shear thinning will reduced the shear stress of wall.

Turkyilmazoglu8 works on the consequences of Dufour and Soret on the MHD flow and the heat transfer of 
viscoelastic fluid through the vertical stretching surface embedded in the porous medium and found the unique/
multiple solution and existence/nonexistence of solution by the influence of considering parameters. Recently 
the same effect for mixed convective flow with radiation is studied by Mahabaleshwar et al.9 and  Patil10 studied 
the couple stress fluid flow for first order chemical reaction. Aly et al.11 also examine the boundary layer MHD 
flow due to stretching surface embedded in porous medium with the effect of second order slip using ChPDM 
technique results that magnetic field, porosity, slip parameters reduces the thickness of nano boundary layer. 
 Wu12 study the boundary layer gas flow over linearly stretching/shrinking sheet and theoretically prove that the 
induced velocity slip by the effect of mass transfer will significantly change the velocity of the gas flow, further 
there is considerable variation in the temperature field and heat flux because of the convection phenomena.

Nagaraju et al.13 use the ADM and Pade approximation method to get the solution to the nonlinear differen-
tial equation with unsteady boundary layer flow and porous media.  Turkyilmazoglu14 made the mathematical 
approach by deriving the formulas to show how Buongiorno nanofluid model will reduce/enhance the heat and 
mass transfer and are well agree with the previous works. Many works done on the mass transfer with chemical 
reaction such as, Andersson et al.15 studied it over stretching sheet and obtain that the thickness of concentration 
boundary layer will reduce and mass transfer rate will enhance with the destructive chemical reaction. Further the 
similar problem solved by Siddheshwar et al.16 for analytical solution due to stretching sheet problem. Anders-
son and  Valnes17 examined the flow and heat transfer of ferrofluid due to stretching sheet in consideration of 
magnetic dipole results in that the fluid motion will decelerate and heat transfer rate will reduces by the effect 
of magnetic field.

Mahabaleshwar et al.18 studied the impact of radiation and mass transpiration on the MHD unsteady flow and 
heat transfer due to linear stretching sheet by applying two kinds of boundary conditions for temperature i.e., 
PTDCST and PTDWHF and obtain dual solution in both stretching and shrinking boundary.  Cortell19 studied 
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it with steady MHD over permeable stretching sheet with quadratic velocity. Further  Andersson20 got the exact 
analytical solution for the momentum conservation problem which is valid for all values of Reynolds number. The 
flow and heat transfer over shrinking sheet also considered as significant problem in the industrial field. Fan and 
 Zhong21 studied the boundary layer flow and heat transfer due to shrinking surface concerned by the arbitrary 
velocity distribution. In 1986 Siddappa and  Abel22 investigates the flow of Walters’ liquid B over stretching sheet 
considering the effect of suction and Nayakar et al.23 investigates on the same work for nonlinear stretching/
shrinking sheet and with MHD. Mahabaleshwar et al.24 also studied on the same for MHD flow with first order 
slip and mass transfer and also some researchers studied different physical  parameters25–35.

In 1992 Vajravelu and  Rollins36,37 analyze the flow and heat transfer of electrically conducting fluid due to 
stretching sheet and flow of second order fluid respectively, with PST and PHF cases of wall temperature and 
obtained asymptotic limits for large Prandtl number. Further Vajravelu and  Cannon38 studied it due to the 
porous medium and establish the existence and uniqueness of the solution. Mahabaleshwar et al.39 made the 
contribution on the inclined MHD flow, mass transfer and heat transfer with radiation effect. Mahabaleshwar 
et al.40 made the article on the MHD flow with carbon nanotubes and effect of mass transpiration and radiation 
on it. Anusha et al.41 investigates the unsteady inclined MHD flow for Casson fluid with hybrid nanoparticles.

In this paper, we consider the effect of MHD and concentration with first order chemical reaction, mass 
transpiration of incompressible hybrid nanofluid flow due to porous stretching surface with quadratic velocity. 
The mass transfer is analyzed for two different boundary conditions of concentration field that are prescribed 
surface concentration (PSC) and prescribed mass flux (PMF). The asymptotic solution of concentration filed for 
large Schmidt number is analyzed using Wentzel–Kramer–Brillouin (WKB) method.

Mathematical formulation
Consider the steady 2-D incompressible hybrid nanofluid flow due to the stretching sheet with quadratic veloc-
ity embedded in the porous media with effective viscosity as shown in the Fig. 1. The flow is along x- direction 
and y- direction is perpendicular to it along which the magnetic field with strength B0 is applied. The velocity of 
stretching/shrinking sheet is proportional to the square of the distance of a point from the origin O.

Momentum problem. The governing continuity and Navier- Stoke equations for the present flow are given 
as (see Kumaran and Ramanaiah 1996, Neil 2011. Siddheshwar and Mahabaleshwar 2018),

subject to the boundary conditions,

(1)
∂u

∂x
+

∂v

∂y
= 0,

(2)u
∂u

∂x
+ v

∂u

∂y
= νeff

∂2u

∂y2
−

σhnf B
2
0

ρhnf
u−

µhnf

ρhnf K
u,

Figure 1.  Schematic diagram representing the flow problem.
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with defined stream function as,

here a, b,� are constants. Equation (3b) implies that as y → ∞ the liquid has no lateral motion.

In Eqs. (1)-(3), the transformed governing equations are obtained as follows:

where M = σhnf B
2
0

aρhnf
 , Da−1 = νf

aK are magnetic parameter and inverse Darcy number. The B.Cs (3a and 3b) become,

using Eqs. (4), (5),

where subscript Y denotes the derivative w.r.to Y.
Substitution of Eqs. (8), (9) in Eq. (7) and results in the following nonlinear ordinary differential equations:

and

Here

Equation (11) can also obtained by differentiating Eq. (10) with respect to Y and from the B.Cs (8a & b) 
satisfied by f can be obtained as,

(3a)u = ax + bx2 , v = vc +� x, at y = 0,

(3b)u → 0 , as y → ∞,

(4)ψ =
√

aνf xf (η)−
c

2
x2fη(η), where η =

√

a

νf
y

(5a)U =
u

√
aνf

, V =
v

√
aνf

, X = x

√

a

νf
, Y = y

√

a

νf
,

(5b)b∗ =
b

a

√

νf

a
, �∗ =

�

2a
, V∗

C =
vc

√
aνf

, ψ∗ =
ψ

νf
,

(6)
∂U

∂X
+

∂V

∂Y
= 0,

(7)U
∂U

∂X
+ V

∂U

∂Y
= �

∂2U

∂Y2
−

D3

D1
MU −

D2

D1
Da−1U ,

(8a)U = X + b∗X2 , V = V∗
C + 2�∗X, at Y = 0,

(8b)U → 0, as Y → ∞

(9a)ψ∗ = Xf (Y)−�∗X2fY (Y), X = ξ = x

√

a

νf
, Y = η =

√

a

νf
y,

(9b)U = XfY −�∗X2fYY , V = −f + 2�∗XfY ,

(10a)�fYYY − f 2Y + ffYY −
1

D1

(

D3M + D2Da
−1

)

fY = 0,

(10b)�fYYYY − fY fYY + ffYYY −
1

D1

(

D3M + D2Da
−1

)

fYY = 0,

(10c)fY fYYY − f 2YY = 0.

D1 =
ρhnf

ρf
= (1− ϕ2)

(

1− ϕ1 + ϕ1
ρs1

ρf

)

+ ϕ2

(

ρs2

ρf

)

,

D2 =
µhnf

µf
=

1

(1− ϕ1)
2.5(1− ϕ2)

2.5
,

(10d)D3 =
σhnf

σf
=

σs2 + 2σbf + 2ϕ2
(

σs2 − σf
)

σs2 + 2σbf − ϕ2
(

σs2 − σf
) , where σbf = σf

σs1 + 2σf + 2ϕ1
(

σs1 − σf
)

σs1 + 2σf − ϕ1
(

σs1 − σf
) .
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The solution of Eq. (10a) is in the form as below,

where

On using these in Eq. (10a) gives,

It gives the relations,

and

The flow pattern for ψ∗ = C gives the,

Mass transfer analysis. 

On using dimensionless transformation (5).
Here, C is the concentration field, DB is molecular diffusivity, KC is chemical reaction parameter and C∞ is 

the ambient concentration. Define, C = C∞ + (Cw − C∞)φ(η).
By using the (5) and Eq. (16) will become,

Here Sc = νf
DB

 is Schmidt number and ϑ = kC
a  is chemical reaction parameter.

Prescribed surface concentration (PSC). For PST, the defined B.Cs are,

Use the function transformation as, φ(η) = βXr�(Y) , Eq. (17) will become,

On equating coefficients of X0 andX in Eq. (19) gives the relations,

By Eq. (20b) we get,

Using (12a and 12b) in (20a)

(11)f (0) = −V∗
C , fY (0) = 1, fYY (0) = −

b∗

�∗ , fY (∞) = 0, fYY (∞) = 0.

(12a)f (Y) = A+ Be−αY ,

(12b)A = −V∗
C +

1

α
, B = −

1

α
and α =

b∗

�∗ ,

(13)�α2 + V∗
Cα −

1

D1

(

D3M + D2Da
−1

)

− 1 = 0,

(14a)V∗
C = −�α +

1

αD1

(

D3M + D2Da
−1

)

+
1

α
,

(14b)α = −
V∗
C

2�
±

1

2�

√

(

V∗
C

)2 + 4�+
4�

D1

(

D3M + D2Da−1
)

.

(15)Y =
1

α
log

[

X
(

1
α
+�∗X

)

X
α
− X V∗

C − C

]

.

(16)u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+ kC(C − C∞),

(17)U
∂φ

∂X
+ V

∂φ

∂Y
=

1

Sc

∂2φ

∂Y2
+ ϑ φ = 0,

(18)φ(0) = 1 and φ(∞) = 0,

(19)
1

Sc
�YY +

(

f − 2�∗XfY
)

�Y +
(

ϑ +�∗XfYY − fY
)

� = 0,

(20a)�YY + Scf�Y − Sc
(

rfY − ϑ
)

� = 0,

(20b)fYY�−
2

r
fY�Y = 0.

(21)�(Y) = exp

[

−αr
Y

2

]

,

(22)�YY + Sc
(
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)

�Y − Sc
(

r e−αY − ϑ
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� = 0,
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On using the transformation ε = − Sc
α2
e−αY Eq. (22) will transform to the form,

With corresponding transformed B.Cs as,

Then the solution of Eq. (23) in terms of ε is,

And in terms of Y it will become,

Here χ1 = Sc A
α

, χ2 = 1
α

√
Sc2A2 − 4Scϑ  and M[a, b; z] denotes the confluent hyper geometric polynomial and 

Sherwood number, the dimensionless mass transfer rate is,

The local mass flux can be expressed as,

Prescribed surface mass flux (PMF). The corresponding B.Cs for PMF case are,

Use the function transformation as, φ(η) = βXrG(Y) , Eq. (17) will become,

On equating coefficients of X0 andX in Eq. (30) gives the relations,

By Eq. (31b) we get,

The solution of Eq. (31a) will become,

where m1 = χ1+χ2
2 .

Wentzel‑Kramer‑Brillouin (WKB) method of asymptotic solution
Asymptotic solution for large Schmidt number. WKB approximation is used to find out the matched 
asymptotic expansion (MAE) (as in  Ref38) in the case of large Schmidt number for both PSC and PMF cases. 
And this is not possible to find MAE in case of small Schmidt number. In this case we can find analytic solution 
in PSC and PMF cases.

PSC. In PSC case the boundary layer equation with B.C is as follows,

(23)ε �εε +
(

1−
ASc

α
− ε

)

�ε + Sc

(

r +
Scϑ

α2ε

)

� = 0,

(24)�

(

−
Sc

α2

)

= 1 and �(0) = 0,

(25)�(ε) =
(

−
α2

Sc
ε

)

χ1+χ2
2 F

[

χ1+χ2
2 − r, 1+ χ2, ε

]

F
[

χ1+χ2
2 − r, 1+ χ2,− Sc

α2

] ,

(26)�(Y) = exp

[

−αY

(

χ1 + χ2

2

)]F
[

χ1+χ2
2 − r, 1+ χ2,− Sc

α2
e−αY

]

F
[

χ1+χ2
2 − r, 1+ χ2,− Sc

α2

] ,

(27)−�Y (0) = α

(

χ1 + χ2

2

)

−
Sc

α

(

χ1+χ2
2 − r

1+ χ2

)

F
[

χ1+χ2
2 − r + 1, 2+ χ2,− Sc

α2

]

F
[

χ1+χ2
2 − r, 1+ χ2,− Sc

α2

] ,

(28)Qw = −XrφY (0),

(29)φ(0) = −1 and φ(∞) = 0,

(30)
1

Sc
GYY +

(

f − 2�∗XfY
)

GY +
(

ϑ +�∗XfYY − fY
)

G = 0,

(31a)GYY + Sc f GY − Sc
(

r fY − ϑ
)

G = 0,

(31b)fYYG −
2

r
fYGY = 0.

(32)G(Y) =
(

2

αr

)

exp

[

−αr
Y

2
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,

(31)G(Y) =

(

e−αY
)m1F

[

m1 − r, 1+ χ2,− Sc
α2
e−αY

]

αm1F
[
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α

(

m1−r
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Take the substitution Sc−1 = � which is very small because of large Schmidt number, Eq. (32a) becomes,

Here � present in the highest order derivative which indicates the boundary layer behavior at Y = 0 , from 
Eq. (12a)

here A = −V∗
C + 1

α
and B = − 1

α
 , where A > 0 andB < 0.

If A > |B| then f (Y)  = 0 for any Y ∈ [0,∞) . But when A < |B| then f (Y) = 0 for

The behavior of solution of Eq. (33) is changes because of the point Y = Y∗ . For the case A = |B| the point 
Y∗ = 0 . By using WKB method, the uniform expansion is found for the cases A > |B| andA < |B|.

Using (36) in (33) we get the most useful form,

For small � , a small uniform approximation as the limit in � is obtained by assuming the solution of Eq. (37) 
in the form,

Using assumed solution (38) in (37) gives the relation,

In the above relation the terms with O(1) andO(�) are,

The solution of Eq. (40a) is,

For the particular case ϑ = 0 , the relation obtained from eqs. (40b) and (41),

Use eqs. (41) and (42) in Eq. (38) gives,

Therefore from (36), the solution for �(Y) is,

(32a)�YY + Scf�Y − Sc
(

rfY − ϑ
)

� = 0,

(32b)�(0) = 1 and �(∞) = 0,

(33)��YY + f�Y −
(

rfY − ϑ
)

� = 0,

(34)f (Y) = A+ Be−αY ,

(35)Y = Y∗ =
1

α
Ln

[∣

∣

∣

∣

B

A

∣

∣

∣

∣

]

(36)Let �(Y) = exp



−
1

2�

Y
�

0

f (z)dz



�(Y),

(37)�2�YY −
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1

4
f 2 +�

(
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1

2
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]
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(38)�(Y) = exp
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1

�

∑

�nQn(Y)

]

,

(39)
(

Q
′
0

)2
+ 2�Q

′
0Q

′
1 +�Q

′′
0 − ϑ �−

1

4
f 2 −�

(

r +
1

2

)

f
′
− O

(

�2
)
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(40a)
(

Q′
0

)2 =
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4
f 2,

(40b)2Q′
0Q

′
1 + Q′′
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(

r +
1

2
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(41)Q0(Y) = −
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2

Y
∫

0

f (z)dz,

(42)Q1 = −(r + 1)Ln
[

f (z)
]

,
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�
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�−(r+1)
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Y
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Using eqs. (32) and (34) in (44) will give the solution as,

PMF. In PMF case the boundary layer equation with B.C is as follows,

The solution in this case becomes,

where � = 1
Sc is small number, A = −V∗

C + 1
α
and B = − 1

α
.

Results and discussion
The hybrid nanofluid flow through the superlinear stretching sheet embedded in porous media in the presence 
of MHD and the chemical reaction effect on the concentration field is investigated in the present flow. Impact of 
suction/ injection and the concentration distribution is studied in the case of PSC and PMF. And the concentra-
tion distribution for the large Schmidt number is analysed for both PSC and PMF case using WKB approxima-
tions. The stretching sheet can be realized in practice only with great care and meticulous effort, super-linear 
stretching sheet is a more practical problem. As a consequence exciting of the fluid as we go downstream along 
the sheet is to be expected. This is brought out quite explicitly in the current issue. The liquid is basically meant 
to cool the stretching sheet whose property as a final product depends greatly on the rate at which it is cooled. 
The problem is a prototype for many other practical problems also, akin to the polymer extrusion process, like.

• Drawing, annealing and tinning of copper wires,
• Continuous stretching, rolling and manufacturing of plastic film and artificial fibers,
• Extrusion of a material and heat-treated materials that travel between feed and wind-up rollers or on conveyor 

belts.

The delicate nature of the problem dictates the fact that the magnitude of the stretching rate has to be small. 
This also ensures that the stretching material released between the two solid blocks into the liquid continues to 
be a plane surface rather than a curved one. Mathematical manageability is therefore at its best in the problem.

Figure 2a and b are the plots for the streamline ψ(X,Y) = 1 for stretching sheet by varying respectively 
the values of superlinear parameter �∗ and suction/injection parameter V∗

C . Figure 2a is plot for impermeable 
case and Fig. 3a is for suction case, which revealed that as the value of �∗ increase, i.e., increasing in the rate 
of super-linear stretching results in enhancement of the liquid lift along downstream. The effect of increasing 
values of C on the streamline ψ(X,Y) = C for the nonlinear stretching case is shown in Fig. 2c for impermeable 
boundary and Fig. 3b for suction boundary. Streamlines lifted up because of taking nonlinear stretching and 
are converging at the long distance along downstream. The liquid lift for base fluid is higher than that of hybrid 
nanofluid. These plots demonstrate that extent of liquid along the vertical sheet increases with increase in axial 
distance. This is because of the reason that the reaction of the liquid does not match to the stretching when there 
is nonlinear stretching.

Figure 4a and b displays the plot of �(Y) and G(Y) verses Y for various values of r in injection case V∗
C > 0 

that is, for mass distribution in PSC and PMF case respectively for various values of mass flux parameter. The 
consequences of r on the concentration in PSC and PMF case are similar. The concentration distribution will be 
more as the value of r raises. The concentration distribution does not vary for base fluid and hybrid nanofluid in 
PSC case and slight difference in PMF case. As Y → 0 the concentration distribution will be same for any value 
of r and equal to 1 in PSC case and is different for different values of r in PMF case then it will become zero at 
some point of Y in both cases.

Figure 5a and b demonstrate the difference of the concentration distribution in PSC and PMF cases for 
injection and suction respectively, which shows that the concentration distribution is high for PSC case than 
for PMF case for both suction and injection. In Fig. 6a and b there is a difference of concentration distribution 
between suction and injection cases for PSC and PMF respectively. The suction temperature is less compared to 
the injection temperature both in PSC and PMF cases. In Fig. 7 there is examination of the difference between 
the temperature distribution of Kummer’s function and WKB asymptotic solution for large Schmidt number 
in case of PSC for suction velocity. The asymptotic solution cools more compared to the non asymptotic solu-
tion, i.e., rate of heat transfer is more for asymptotic solution. Figure 8 depicts the stream line ψ(X,Y) = C for 
injection case by varying values of C. Figure 8a is drawn for linear stretching and Fig. 8b drawn for nonlinear 
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Figure 2.  The streamline plot ψ(X,Y) = C for varying (a) superlinear parameter (�∗) with 
M = C = � = 1 , K = 2 , (b) suction/injection parameter 

(

V∗
C

)

 with M = C = � = 1 , K = 2 and (c) values of 
C with M = � = K = 1 . Blue solid lines are for the base fluid and red dotted lines denotes the hybrid nanofluid 
Cu− Al2O3/water.
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stretching boundary. We can clearly seen that the increasing value of C, will blow up the streamlines, and this 
will be more for base fluid than for HNF. This is due to the input of external mass flux. The flow is studied with 
the help of streamline patterns and also the axial and transverse velocity distributions.

Conclusion
The analysis of the present work is done by finding the exact analytical solution for velocity and non asymptotic 
solution for temperature distribution in PSC and PMF cases. Further find the asymptotic solution for large 
Schmidt number by WKB approximation for PSC and PMF cases. Regarding the present work we can give the 
conclusion as follows,

• Increasing in the rate of super-linear stretching results in enhancement of the liquid lift along downstream

Figure 3.  The streamline plot ψ(X,Y) = C for suction boundary by varying (a) superlinear parameter (�∗) 
with M = C = � = 1 , K = 2 , and (b) values of C with M = � = K = 1 . Blue solid lines are for the base fluid 
and red dotted lines denotes the hybrid nanofluid Cu− Al2O3/water.
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• Streamlines lifted up because of taking nonlinear stretching and are converging at the long distance along 
downstream

• The liquid lift for base fluid is higher than that of hybrid nanofluid.
• The concentration distribution is high for PSC case than for PMF case in both suction and injection cases.
• The suction temperature is less compared to the injection temperature both in PSC and PMF cases.
• The temperature distribution of asymptotic solution is less compared to the non asymptotic solution.

Figure 4.  The concentration distribution plot for injection 
(

V∗
C = 1

)

 boundary with different values of r 
keeping the parameters as M = C = � = Sc = K = 1 , J = −3 , �∗ = 0.1 in (a) PSC case and in (b) PMF 
case. Blue solid lines are for the base fluid and red dotted lines denotes the hybrid nanofluid Cu− Al2O3/water.
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In the future, we plan to do a similar investigation on a non-Newtonian fluid with heat transfer problems as 
well. Besides, we feel that adding the effect of velocity mass transpiration and various physical parameters can 
uncover another interesting phenomenon.

Figure 5.  The concentration distribution plot shows the difference between curves of PSC and PMF keeping 
the parameters as M = C = � = Sc = K = r = 1 , ϑ = −3 , �∗ = 0.1 in (a) for injection 

(

V∗
C = 1

)

 boundary 
and in (b) for suction 

(

V∗
C = −1

)

 boundary. Blue solid lines are for the base fluid and red dotted lines denotes 
the hybrid nanofluid Cu− Al2O3/water.
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Figure 6.  The concentration distribution plot for different V∗
C keeping the parameters as 

M = C = � = Sc = K = 1 , ϑ = −3 , r = −2 , �∗ = 0.1 in (a) PSC case and in (b) PMF case. Blue solid lines 
are for the base fluid and red dotted lines denotes the hybrid nanofluid Cu− Al2O3/water.
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Figure 7.  The concentration distribution plot shows the difference between curves of Kummer’s 
solution and WKB solution in PSC case and suction 

(

V∗
C = −1

)

 boundary keeping the parameters as 
M = C = � = Sc = K = r = 1 , ϑ = −3 , �∗ = 0.1 . Blue solid lines are for the base fluid and red dotted lines 
denotes the hybrid nanofluid Cu− Al2O3/water.
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