
OPEN

ORIGINAL ARTICLE

NMR-based metabolic profiling in healthy individuals overfed
different types of fat: links to changes in liver fat accumulation
and lean tissue mass
A Elmsjö1, F Rosqvist2,5, MKR Engskog1,5, J Haglöf1,5, J Kullberg3, D Iggman2, L Johansson3, H Ahlström3, T Arvidsson1,4, U Risérus2,5

and C Pettersson1,5

BACKGROUND: Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the
mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA)
and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible
relationships between plasma metabolites and body fat accumulation.
METHODS: In a randomized study (LIPOGAIN study), n= 39 healthy individuals were overfed with muffins containing SFA or PUFA.
Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern
recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate
metabolites with fat accumulation.
RESULTS: We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean
tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified
as important contributors to group classification between SFA and PUFA (Po0.05). Furthermore, the fat depots (total body fat,
visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)40.5) all with two or more metabolites (for example,
branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher
insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies.
CONCLUSION: A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and
PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass
during overeating needs further investigation.

Nutrition & Diabetes (2015) 5, e182; doi:10.1038/nutd.2015.31; published online 19 October 2015

INTRODUCTION
Obesity, especially liver and visceral fat accumulation, has been
proposed as a causative factor in the development of multiple
metabolic disorders, for example, type 2 diabetes.1 According
to recent cross-sectional2–4 and interventional data,5 it has
been suggested that dietary fat composition could have a key
role in ectopic fat deposition, that is, saturated fatty acids (SFA)
could promote hepatic steatosis, whereas polyunsaturated fat
(PUFA) may be preventive. Recently, the randomized LIPOGAIN
study showed that overfeeding diets with PUFA rather than SFA
caused considerably less accumulation of fat in the liver, visceral
region and total body, despite similar weight gain between the
diets.6 Differential effects were observed in adipose tissue
gene expression and fatty acid metabolism, but the mechanisms
were still not clear, despite the fact that there was a significant
association between the plasma and tissue fatty acids fed
in the different diets. However, it was perceived that there
might be an influence on pathways, beyond fatty acid
metabolism, that could be of interest. In this regard, the
influence of fatty acid type on non-lipid metabolites such as

amino acids or intermediate metabolites in energy metabolism
and substrate partitioning would be of great interest to
explore.7–10 Metabolic profiling, through the use of pattern-
recognition techniques (that is, metabolomics), could potentially
identify such relevant metabolites that would not have been
detected otherwise.
Nutrition-based metabolomics studies are complicated owing

to the inter- and intra-variability in metabolic pathways and
digestion.11 It can therefore be challenging to identify correlations
between consumed fat and changes in body composition when
studying moderate differences in diet.
An efficient and simple way to extract non-lipid metabolites

from plasma is to precipitate with cold acetonitrile, a procedure
well established within bioanalytical chemistry. These metabolites
can then be detected with nuclear magnetic resonance (NMR) and
liquid chromatography hyphenated with mass spectrometry.12

Owing to the unique character of 1H NMR spectroscopy, its high
reliability and the simultaneous detection of a broad range of
metabolites, it is a particularly suitable technique for metabolomic
studies.13
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In the research presented here, a non-targeted NMR-based
metabolic profiling approach was used for the identification and
relative quantification of low-molecular weight non-lipid metabo-
lites in plasma samples from the LIPOGAIN study. The primary aim
was to study the possible differences in low-molecular weight
non-lipid metabolites arising as a consequence of a diet high in
SFA compared with high PUFA diet. The secondary aim was to
correlate metabolic profile NMR data with observed magnetic
resonance imaging (MRI) data of fat and lean tissue composition.

MATERIALS AND METHODS
Chemicals
All buffers were prepared with heavy water (D2O, 99.8%) bought from
Amar Chemicals (Döttingen, Switzerland). The buffer components, K2HPO4

(99%) and KH2PO4 (99.5%), were both from Merck (Darmstadt, Germany),
and 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (99.9%) and
acetonitrile (99.9%) were purchased from Sigma Aldrich (St Louis,
MO, USA).

The design of the LIPOGAIN study
The protocol used in the LIPOGAIN study has been described in detail
elsewhere.6 In brief, in a randomized double-blind trial, 39 human subjects
(mean± s.d. age: 27 ± 4, body mass index: 20.7 ± 2.1) were overfed for
7 weeks with muffins high in SFA (palm oil) or n-6 PUFA (sunflower oil).
Muffins were added to the habitual diet and their quantity was adjusted
for the individuals involved to achieve a 3% weight gain. The individuals
were instructed to keep their other dietary and lifestyle habits unchanged.
Blood sampling was performed after an overnight fast (12 h), before and
after 7 weeks of overfeeding. From each individual, 6 ml blood was drawn
into a vacutainer tube containing K2-EDTA (Vacuette K2-EDTA, Mediq
Sweden, Kungsbacka, Sweden). The samples were centrifuged for 10min
at room temperature before the plasma was dispensed into eppendorf
tubes. After this, all samples were stored at − 70 °C until analysis. All 39
individuals completed the intervention. Both groups consumed, on
average, 3.1 ± 0.5 muffins per day and gained equally in weight
(1.6 ± 0.85 vs 1.6 ± 0.96 kg). The participants’ physical activity level
(measured using accelerometers) did not change or differ between the
groups during the intervention. For each individual, the liver fat, visceral
fat, total fat and lean tissue content were measured by MRI at the baseline
and after 7 weeks.6

Ethics
The study was conducted in accordance with the Declaration of Helsinki.
All subjects gave written informed consent prior to inclusion, and the study
was approved by the Regional Ethical Review Board of Uppsala, Sweden.

Sample preparation
All blood plasma samples were prepared in a blinded and randomized
order. Plasma was thawed at room temperature and homogenized by
vortexing. Aliquots of 200 μl plasma were mixed with 600 μl of cold
acetonitrile. The samples were then vortexed for 30 s and left at room
temperature for 10min; this was followed by centrifugation for 10min
(6720 g), whereupon 650 μl of the supernatant was evaporated at 36 °C
under a stream of nitrogen. The samples were then reconstituted in
600 μl of 154 mM phosphate-buffered D2O (pD 6.8) containing 34 μM 2,
2-dimethyl-2-silapentane-5-sulfonate sodium salt (as a chemical shift
reference), and stored at − 80 °C until NMR analysis was performed.

NMR analysis
NMR measurements were carried out at 298˚K on a Bruker Avance
600MHz (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a
cryoprobe. For each sample, the 1D NOESYPR1D standard pulse sequence
(–RD-90°-t1-90°-tm-90°-ACQ) was used. Each pulse had a 90˚ pulse length;
the total number of free induction decays recorded was 256, and these
were collected into 32 K data points and zero filled to 64 K data points.
The spectral width was set to 7183.91 Hz, giving an acquisition time of
4.56 s. The delay (t1) and the mixing time (tm) were set to 6 μs and 180ms,
respectively, and the relaxation delay (RD) was 3 s, resulting in a total
acquisition time of 33min for each sample.

Data pre-processing
Each spectrum was multiplied by an exponential weighting function
(0.15 Hz), Fourier transformed, phased, aligned to the 2,2-dimethyl-2-
silapentane-5-sulfonate sodium salt signal, baseline corrected and divided
into narrow bins (0.01 p.p.m.) using the ACD/Labs NMR tool (Version 12.0).
Bins containing signals from water, 2,2-dimethyl-2-silapentane-5-sulfonate
sodium salt and EDTA were excluded before each of the remaining bins
was normalized to the total intensity. Two datasets were created, one used
for studying the metabolic change comprised of the difference in each bin
over the 7-week-long period, that is, the post-treatment bins had the
intensity of the baseline bins subtracted from them for each individual. The
second dataset was used for testing the data quality and the experimental
setup and contained both the baseline and the post treatment bins.

Statistical analysis
The datasets were pareto scaled before pattern recognition techniques
were applied using SIMCA 13.0 (Umetrics, Umeå, Sweden). Principal
component analysis (PCA) was used to give an overview of the data,
enabling outliers to be identified, as well as trends and groupings; a
second purpose was to control the quality of the design and the
experimental setup. Orthogonal partial least square discriminant analysis
(OPLS-DA) was used to identify the variables contributing to group
classification. Interpretation of the OPLS models was carried out by using
s-plots together with VIP plots (variable importance for the projection
plots).14

The spectral peaks from metabolites identified as potential contributors
to group classification were manually integrated and normalized to each
spectrum’s total intensity. For each metabolite, the post-intervention
samples had the respective baseline samples subtracted from them.
Students’ t-tests (Microsoft Office Excel 2007) were used to determine
whether there were any statistical differences between the two diets.
Branched amino acids (BCAA) and the aromatic amino acids (AAA) were
integrated as two integrals spanning δ 0.90–1.05 and 6.75–7.85 p.p.m.,
respectively.

Metabolite identification
Assignments of NMR peaks were performed according to the Metabo-
lomics Standards Initiative15 by comparing with literature,16 the Human
Metabolome Database (V 2.5)17 and using 2D TOCSY experiments.18

Uncertain identities were confirmed by spiking plasma with reference
substance and were performed for metabolites that were either
contributing to a group classification or correlated with clinical outcomes.
For all metabolites identified, more than one signal was used for
identification with the exception of those metabolites that only display
as singlets. The metabolites identified are putatively annotated com-
pounds as according to the Metabolomics Standards Initiative
nomenclature.15

Correlation of body fat accumulation and metabolic profiling data
As previously described, MRI assessments were conducted before and after
the intervention.6 The following assessments were significantly (Po0.05)
different for the two groups: total body fat, liver fat, visceral adipose tissue
and lean tissue, while a similar weight gain was observed.
Each of the above-mentioned MRI assessments was correlated with the

normalized metabolites using OPLS models. The MRI assessments were
used as the y-variable and the NMR-data as the x-variables. Interpretation
and comparison between the models were made using shared and unique
structure plots (SUS-plots), where the correlation of the scores from two
separate OPLS models are compared.14 If two OPLS models show similar
relationships between the x-variables and the single y-variable, the
x-variables will form a straight line from the lower left corner to the
upper right one, indicating shared structures, while x-variables along
the y axis or the x axis will be seen as unique structures. Metabolites with a
correlation coefficient (P(corr)) higher than 0.5 and a variable influence on
projection (VIP) higher than 2.5 were considered to be correlating
metabolites.14 Correlating metabolites were manually integrated and
normalized to each spectrum’s total intensity. The normalized integral from
each metabolite were subjected to linear regression analysis (Microsoft
Office Excel 2007) together with the MRI assessments.
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RESULTS
The metabolic profiling presented in this work aims to examine
the differences between the SFA and PUFA group, the differences
in metabolic profile within each group (week 0 and 7) as well as
the correlation of metabolites to MRI data. A one-dimensional 1H-
NMR spectrum and its annotation from an individual in the PUFA
group is presented in Figure 1 and Supplementary Table S1. Visual
inspection of all NMR spectra revealed no obvious class-specific
differences in the metabolic composition, however, spectra from
one test subject (both baseline and post treatment) showed some
abnormal peaks that could not be explained by the clinical
information. These spectra, together with one post-treatment
spectrum with broad and intense lipid signals were excluded,
resulting in 70 remaining spectra from 35 individuals.
To minimize the risk of confounding, PCA was used to identify

the patterns related to age, baseline body mass index, gender and
sample preparation date or acquisition date. No such patterns
were observed, indicating that the data and the experimental
setup were of adequate quality. The PCA model also demon-
strated a gathered cluster for all the spectra with no outliers
indicating correlating spectra.
As expected, high inter-individual variation of glucose and

lactate could be observed, and exclusion of glucose and lactate
was carried out to identify other variables important for group
(diet) discrimination. As expected, this lead to a decrease in model
prediction power as manifested by the lowered Q2 value
(Figure 2).

Inter-group differences
OPLS-DA was used to locate metabolites that were important for
group classification between the two diets. Examination of the
corresponding s-line plot identified the metabolites contributing
to group classification as 3-hydroxybutyrate, creatine/creatinine,
acetoacetate, acetate, alanine, the AAAs (tryptophan, tyrosine and
phenylalanine) and the BCAAs (valine, isoleucine and leucine).

Owing to a large inter-individual variability in the data, which
could be expected in a moderate diet intervention, low R2- and
Q2-values of the OPLS-DA model was observed. Therefore, to
further confirm the differences between the two dietary groups,
the NMR signal of each relevant metabolite, including lactate, was
manually integrated, normalized to the total intensity and
subjected to student’s t-tests. The results of the t-tests indicated
that lactate and acetate were significantly different (Po0.05) and
also that 3-hydroxybutyrate differed between the PUFA and SFA
diet (P-value = 0.097). In summary, PUFA was associated with
higher levels of lactate and lower levels of acetate and 3-
hydroxybutyrate compared with SFA.

Intra-group changes
The metabolite changes within each dietary group are illustrated
in Figure 3. For the PUFA group, the following metabolites tended
to increase: lactate (P= 0.088), alanine (P= 0.075) and the AAAs
(tryptophan, tyrosine and phenylalanine; P= 0.095); while acetate
and 3-hydroxybutyrate (Po0.05 for both) decreased significantly.
For SFA, the BCAAs (valine, leucine and isoleucine; P= 0.059)
tended to increase and lactate decreased (P= 0.089) from week 0
to week 7.

Correlation of body fat accumulation and metabolic profiling data
The effects of the two diets on body fat distribution and body
composition have been published previously.6 For the 35
individuals, the effects can be summarized as follows: Similar
weight gain was measured in both groups during overfeeding, but
PUFA caused a lower deposition of liver fat (P= 0.077), visceral fat
(P= 0.073) and total body fat ( P= 0.046) as compared with SFA. In
contrast, lean tissue (P= 0.044) was increased to a greater extent
after overfeeding PUFA vs SFA. The effects of the two diets on
body fat distribution and body composition are summarized in
Table 1.

Figure 1. Typical NMR spectrum from a subject in the PUFA group. Good selectivity can be observed for a number of metabolites
(for example, BCAAs,4,5,6 3-hydroxybutyrate7 and lactate8) owing to the reduced protein and lipid signals.27–30 For complete assignment
see Table S1.

Plasma metabolites links to body fat accumulation
A Elmsjö et al

3

Nutrition & Diabetes (2015) 1 – 7



In the current study, four OPLS models were generated to study
how each of these body compartments correlated with the NMR
data, the models were evaluated using SUS plots. A SUS-plot
based on the OPLS models of total body fat and liver fat is shown
in Figure 4. The increase in total body fat and liver fat seemed to
correlate with higher plasma levels of BCAAs, 3-hydroxybutyrate
and 3-methyl-2-oxovalerate, and decreased levels of alanine.
However, it could be argued that the BCAAs are unique structures
for body fat because a much weaker correlation was observed for
liver fat (Figure 4). Decreased lactate levels were also correlated
with increased body fat.
Owing to the low predictability of the OPLS models (Figure 4),

each metabolite was subjected to linear regression analysis.
Metabolites having a P-value lower than 0.1 are presented in
Table 2. The fat depots (liver fat, total body fat and visceral adipose
tissue) showed similar relationships to lactate and alanine while

there were some differences in correlations for the BCAAs, acetate
and ketone bodies. Lean tissue exhibited a reverse relationship to
valine, leucine and lactate compared with the fat depots.

DISCUSSION
A key finding in the LIPOGAIN trial was suppressed liver and
visceral fat accumulation during weight gain by PUFA in
comparison with that with SFA. By using an NMR-based metabolic
profiling approach, we were able to identify a few non-lipid
metabolites that differentiated between the diets; whether these
findings might provide insights in the potential mechanisms
behind the fatty-acid-specific effects on body fat deposition,
however, requires further investigation. Differences in the plasma
profiles between PUFA and SFA overfeeding were evident for
some amino acids, ketone bodies and lactate, but overall, the
differences were small and mostly not statistically significant.
PUFA was associated with higher levels of lactate and lower levels
of acetate and 3-hydroxybutyrate compared with SFA. Within the
SFA group, a trend towards elevated levels of BCAAs and AAAs
was observed. The fat depots (liver fat, total body fat and visceral
adipose tissue) showed inverse relationships with lactate and
alanine while there were some differences among fat depots
concerning the positive correlations (BCAAs, acetate and
ketone bodies). Lean tissue showed a direct relationship to lactate
and alanine and an inverse reverse relationship to valine and
leucine.
For the whole population, 3-hydroxybutyrate decreased, which

confirms our previous results obtained by a kinetic enzymatic
method.6 As this was a hypercaloric intervention, ketones would
be expected to decrease. Interestingly, though, 3-hydroxybutyrate
decreased numerically twice as much in the PUFA group
(although only with 90% confidence). This was somewhat
surprising, because, in general, PUFAs are known to be oxidized
more easily than SFAs.19 However, this finding does not
necessarily give an accurate reflection of the differential oxidation
of individual fatty acids, which is often measured in acute feeding
studies. Whether the different effect of PUFA and SFA on body
composition might translate into differences in insulin sensitivity is
not yet clear because we have not measured insulin sensitivity
directly, and this therefore needs further investigation. In our
previous report, surrogate measures of unspecific insulin sensitiv-
ity (homeostasis model assessment-estimated insulin resistance)

Figure 2. PCA plots of NMR data. (a) PCA model of all bins normalized to total NMR intensity with empty triangles representing SFA diet
and inverted filled triangles representing PUFA diet (R2X= 0.704, Q2X= 0.450). (b) PCA model with glucose and lactate bins removed
followed by data re-normalization where empty triangles represent SFA diet and inverted filled triangles represent PUFA diet (R2X= 0.612,
Q2X= 0.225).

Figure 3. Relative change in key metabolites. Metabolites identified
as contributing to discrimination between the PUFA (gray bars) and
SFA diets (white bars) were manually integrated and subjected to
students’ t-tests. The bars represent the relative change in
metabolite concentration over the study period, that is, a bar below
1 indicates a concentration decrease, while a bar above 1 indicate an
increased metabolite concentration. The error bars represent s.e.m.,
while * indicates a significant change (Po0.05).
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did not differ significantly between diets.6 Nevertheless, there are
several signs from the current metabolic profiling data which
indicate that the insulin sensitivity of adipose tissue and liver did
actually increase in the PUFA group in comparison with the SFA
group. First, higher insulin sensitivity in the liver in the PUFA group
might explain the stronger suppression of ketogenesis. Second,
the significant decrease in acetate in the PUFA group might be
attributable to the lower levels of non-essential fatty acids,7

implying a higher insulin sensitivity in adipose tissue, allowing for
a stronger suppression of lipolysis. Third, the significant increase in
lactate in the PUFA group might imply a higher reliance on
carbohydrate oxidation (metabolic flexibility), potentially support-
ing a higher insulin sensitivity. Such an effect is, however, not
clearly supported by crude measures of fasting glucose metabo-
lism as previously reported, and thus needs confirmation.6 Fourth,
some genes regulated by insulin (for example, IGF1) showed
increased expression in adipose tissue in the PUFA group.6 Fifth, a

trend towards elevated levels of branched and AAAs in the SFA
group may be relevant, because elevated levels have been
observed in obese and diabetic individuals compared with lean
and non-diabetic individuals.8–10,20,21 Insulin is a major regulator
of circulating BCAAs and dose-dependently lowers plasma BCAAs
by stimulating their degradation in the liver.22 The mechanism is
dependent on insulin signaling in the brain (hypothalamus), and
short-term overfeeding was shown to impair the ability of insulin
to lower plasma BCAAs.22 Elevated plasma BCAA levels have
therefore been suggested to represent a marker of hypothalamic
insulin resistance. Possibly, the increased plasma levels of BCAAs
in the SFA group in the present study may reflect hypothalamic
insulin resistance, a speculation that does require further studies.
However, in the current study, changes in none of these
metabolites were significantly associated with changes in home-
ostasis model assessment-estimated insulin resistance, implying
that any potential effects on insulin resistance is subtle and may
not be captured by unspecific measures such as homeostasis
model assessment-estimated insulin resistance. Importantly, the
achieved weight gain in the current study was small (1.6 kg) and
the population remained lean after overfeeding and hence no
major deteriorations in insulin sensitivity could be expected.
Although not statistically significant, the apparent higher lactate
levels during PUFA vs SFA treatment is of interest because recent
data suggest that lactate could mediate a thermogenic effect

Table 1. Liver fat and body composition before and after 7 weeks of PUFA or SFA overeating

PUFA (n= 15) baseline Mean absolute change SFA (n= 20) baseline Mean absolute change P value (t-test)

Body weight, kg 67.4± 2.2 1.2± 0.3 64.9± 1.59 1.5± 0.3 0.560
BMI, kgm− 2 21.7± 0.6 0.40± 0.09 19.9± 0.3 0.45± 0.07 0.702
Liver fat, % (MRI) 0.91 ± 0.1 0.03± 0.08 1.17± 0.2 0.5± 0.08 0.077
Lean tissue, L (MRI) 42.5± 2.4 0.80± 0.2 42.0± 1.5 0.32± 0.2 0.044
VAT, L (MRI) 1.20± 0.2 0.090± 0.06 0.80± 0.09 0.21± 0.04 0.073
Total body fat, L (MRI) 17.5± 1.8 0.72± 1.2 13.6± 1.1 1.43± 0.85 0.046

Abbreviations: BMI, body mass index; MRI, magnetic resonance imaging; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid; VAT, visceral adipose
tissue. The presented data are means± the standard error of the mean. P-values are generated from unpaired two sided t-tests. Thirty-five individuals were
included compared with 37 in the original study.6 The PUFA group included 10 males and 5 females while the the SFA group included 14 males and 6 females.

Figure 4. SUS plot for the comparison of the correlation of
liver fat and total body fat with metabolic NMR data. Each symbol
(including the dots) represents a spectral bin from the NMR data.
This plot indicates a similar relationship for the metabolites
3-methyl-2-oxovalerate, (m, triangles), 3-hydroxybutyrate (♦, diamonds)
and alanine (’, squares), while the BCAAs (., inverted triangles)
have a higher correlation with the total body fat than with liver fat.

Table 2. Metabolites that correlate with the accumulation of fat
depots and lean tissue according to the linear regression models

MRI assessment Positive correlations Negative correlation

Metabolite r2 P Metabolite r2 P

Lean tissue Lactate 0.1 0.07 Leucine 0.16 0.02
Valine 0.16 0.02

Visceral adipose
tissue

Leucine 0.16 0.02 Alanine 0.12 0.04

Valine 0.16 0.02 Lactatea 0.06 0.14

Liver fat 3-methyl-2-oxovalerate 0.09 0.09 Alanine 0.08 0.09

Total body fat 3-hydroxybutyratea 0.04 0.25 Alanine 0.18 0.01
3-methyl-2-oxovalerate 0.16 0.02 Lactatea 0.06 0.15
Acetate 0.11 0.06
Leucine 0.14 0.03

Abbreviations: MRI, magnetic resonance imaging. Inclusion criteria for
correlating metabolites; higher P(corr) than 0.5 and a higher variable
importance plot (VIP) value than 2 in the OPLS models, together with a P-
value lower than 0.1. aIncluded owing to the high importance when group
discrimination was considered.
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through enhanced mitochondrial activity and UCP-1 expression in
adipose tissue.23 Such a potential mechanism of a PUFA-induced
mitochondrial fat combustion also accord with the inverse
association between lactate and accumulation of visceral adipose
tissue and total body fat in both groups combined. A potential
role of PUFA-induced increase of lactate levels in reducing fat
accumulation during overeating, however, requires further
investigation.
Moreover, a correlation between circulating BCAAs and the fat

depots was expected because higher BCAA levels has been
observed in obese and diabetic individuals compared with lean
and non-diabetic individuals.8–10,20,21 However, in the present
study, we also found that the BCAAs leucine and valine were
directly associated with the accumulation of visceral adipose
tissue, and inversely associated with the accumulation of lean
tissue during overfeeding. Also, a transformation product of
isoleucine, 3-methyl-2-oxovalerate, showed weak positive associa-
tions with liver fat and total body fat in the current study. This
metabolite has previously been associated with type 2 diabetes24

and insulin resistance.25

As the muffins contained two different types of fat, it was likely
that a direct metabolic profiling study, including lipids, would miss
the dietary effects on non-lipid metabolites. Furthermore, lipids
and proteins may cause phase and/or baseline distortion, as well
as interfering with the quantification of many non-lipid metabo-
lites such as BCAAs. A non-lipid approach using precipitation with
acetonitrile reduced the amount of lipids in the sample, thereby
increasing the selectivity and enabling the semi-quantification of
metabolites otherwise overlapped with the abundant peaks from
the lipids and proteins (Figure 1). Another more established way
to achieve a similar result would have been to use the Carr-Purcell-
Meiboom-Gill pulse sequence.26 However, it is known that
precipitation is a more efficient way to reduce the number of
peaks from lipids and proteins.27–29 Another advantage with the
preparation method presented is that it makes it possible to
control the pH and ion strength, thus increasing the
reproducibility.
Attaining adequate data quality is vital for achieving appro-

priate biological interpretations of metabolic data. In this study,
each spectrum was visually inspected, where peak shape and
abnormal peaks were of prior concern. Secondly, the PCA model
was used to control the design of the study, the experimental
setup, spectra quality and by looking for confounders (that is,
gender, age, baseline body mass index, preparation date and
acquisition date). As the model displayed no such patterns, the
quality, taking into account both the design and the experimental
conditions, was considered to be satisfactory. PCA and OPLS-DA
models were used to identify metabolites that differed between
the diets. In nutritional metabolomic studies, it is expected to have
a very high inter-individual variability making it challenging to
create reliable multivariate models. Therefore, as a validation of
the models, each metabolite found as a contributor to the group
classification was tested by using unpaired t-test. This approach
therefore minimized the risk of interpreting over-fitted models.
In conclusion, by utilizing a non-lipid metabolic profiling

approach, we enabled the identification and semi-quantification
of important non-lipid metabolites and improved the quality of
the spectra. Differences or trends in the plasma profiles between
SFA and PUFA overfeeding were evident for amino acids, ketone
bodies and lactate. Ketones and BCAA were associated with
increased visceral, liver and total fat mass, whereas alanine and
lactate showed an inverse relationship. Conversely, lean tissue
correlated with higher levels of lactate but lower BCAA levels.
Further investigations are warranted to clarify how these
metabolite changes might contribute to changes in body
composition and fat accumulation, and possibly also sub-clinical
insulin resistance during overfeeding.
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