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Abstract

Background: Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain.
Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform.
However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these
cells at risk for malignant transformation.

Methodology/Principal Findings: Using serum-free medium supplemented with epidermal growth factor (EGF) and basic
fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb
(OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal
differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice.
The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with
mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS
of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology
and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture
developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses
showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and
that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity.

Conclusions/Significance: Using culturing techniques described in current literature, NS/PCs arise from the OB of adult
patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation.
Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the
clinical setting.
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Introduction

Due to their ability to self-renew and to differentiate towards the

neuronal phenoype, human adult neural stem cells (NSCs) provide

an attractive tool for transplantation-based therapy of neurode-

generative diseases that avoids the ethical issues raised by the use

of human embryos. However, proliferation and self-renewal

properties make NSCs sensitive targets for malignant transforma-

tion [1]. Some evidence suggests that adult mouse NSCs are quite

resistant to transform even in high-passage cultures under mitogen

stimulation [2]. In contrast, neural precursors from the adult rat

subventricular zone (SVZ) have recently been shown to transform

into tumorigenic cell lines after expansion in vitro [3]. Moreover,

several arguments advise caution before grafting NSCs in patients

that include, a) evidence that glioblastoma may arise de novo from

the oncogenic transformation of NSCs [1,4], b) common

molecular determinants regulating neurogenesis and tumorigenesis

[5–7], and c) generation of glioma-like lesions following growth

factor stimulation of the adult SVZ [8].

The forebrain SVZ and the dentate girus of the hippocampus

are two areas of persistent neurogenesis in the adult brain. These

regions contain dividing cell populations that have been

recognized as NSCs and transit amplifying progenitors (TAPs).

The former are relatively quiescent cells with the capacity of self-
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renewal. TAPs proliferate more rapidly and differentiate into

migratory neuroblasts and oligodendrocyte precursors. In rodents,

TAPs move along the rostral migratory stream to the olfactory

bulb (OB). In humans, a lateral ventricular extension of the

migratory stream to the OB has recently been demonstrated and

NS/progenitor cells (NS/PCs) have successfully been isolated from

the OB, which therefore represents an accessible source of neural

precursors [9–11]. Using xenograft models, we found that human

adult OB-derived NS/PCs are capable of initiating tumor

formation. Although an oncogenic potential has previously been

described in rodent NSCs [3,12–13] and in human adult

mesenchymal stem cells [14], the present work provides the first

demonstration that human adult NS/PCs arising from normal

brain may be tumorigenic in vivo.

Results and Discussion

Tumorigenic human adult NS/PCs arising from an OB
adjacent to meningioma

The OB was harvested from five adult patients who had

undergone surgery for extracerebral benign lesions (Table S1).

Unilateral division of the OB, which is often necessary for surgical

exposure, is well tolerated by the patients because the olfactory

function is preserved. Immunohistochemistry showed that the

human adult OB contains a few hundreds of putative NS/PCs

(Fig. 1). Dissociated OB specimens were cultured in serum-free

medium supplemented with the mitogens EGF and bFGF. Under

these conditions, the OB cells generated primary neurospheres with

latencies that ranged from 6 to 8 weeks (Table S2). An exception

was Case OB3 where primary neurosphere formation was observed

as early as 3 weeks of culturing. Primary neurospheres were

dissociated into single cells and plated one cell per mini-well (Fig. 1).

Clonal cell cultures were established by dissociation of secondary

neurospheres and passaged up to P30 in mitogens. The ability to

form spheres after serial passaging, the number and diameter of

spheres produced during each passage, and the cloning efficiency

were similar among different cultures (Table S2). Upon removal of

mitogens and serum exposure, the NS/PC cultures obtained from

four of the OB specimens arrested their growth and gave rise to

adherent cells that expressed neuronal, astrocytic, and oligoden-

drocytic markers (Figs. 2A–2B). In contrast, OB3 NS/PC cultures

lost both growth factor dependence and potential to differentiate as

neurons between P4 and P6. Notably, the OB3 patient harbored a

meningioma adjacent to the OB. Losing growth factor dependence

and capacity to differentiate by NSCs may indicate transformation.

On soft agar assay, an in vitro correlate of transformation, the OB3

NS/PCs developed colonies (Fig. S2). Then, we assessed

tumorigenicity in vivo using hetero- and orthotopic xenografts in

immunodeficient mice. Two to 3 weeks after grafting, NS/PCs from

all OB3 cultures developed subcutaneous tumors with a 88.6

percent take (Fig. 2C and Table 1). Histologically, these tumors

showed glioblastoma features, like perinecrotic pseudo-palisading

and vascular proliferation. Tumorigenicity of OB3 NS/PCs was

demonstrated both at early (P6) and at late passages (P30).

Subcutaneous injection of OB1, OB2, OB4, and OB5 NS/PCs

resulted in amorphous tissue grafts with embedded scarce cells

showing heterogenous morphology and occasional GFAP staining

without neoplastic features (not shown). Intracerebral injection of

OB3 NS/PCs also produced tumors which developed at 63.1

percent of injection sites by 4 to 6 weeks after grafting (Fig. 2D and
Table 1). Histologically, these tumors featured anaplastic astrocy-

toma with predilection for growing into the ventricles. Intracerebral

injection of OB1, OB2, OB4, and OB5-derived NS/PCs did not

result in tumor formation (Table 1).

In principle, taking NS/PCs from patients with pre-existing

tumors nearby the organ where the cells are obtained is

inappropriate. For example, human adult non-tumorigenic NSCs

surrounding low-grade glioma tissue transform in vitro into highly

tumorigenic cancer stem cells [15]. In patient OB3, errant

meningioma cells infiltrating the OB or adhering to its surface

might have overwhelmed the NS/PCs in culture. This hypothesis,

however, seems unlikely because of the following, 1) the phenotype

of meningioma cells (EMA+/GFAP2/NG22/O42) differed

both from that of OB3 NS/PCs (EMA2/GFAP+/NG2+/O4+)

and from OB3-derived tumor xenografts (EMA2/GFAP+/

NG22/O42); 2) sphere generation in serum-free cultures occurs

in glioblastoma, anaplastic astrocytoma, medulloblastoma, and

ependymoma but not in meningioma, and 3) meningioma-derived

NS/PCs are expected to develop xenografts with the histological

appearance of meningioma or sarcoma not of glioblastoma. In

brain pathology, concurrent adjacent meningioma and astrocytic

tumors have been described raising the hypothesis that meningi-

oma-released agents may work as growth factors for the glial cells

of surrounding brain tissue [16]. Thus, the NS/PCs resident in the

OB adjacent to meningioma may undergo chronic pressure for

growth becoming highly sensitive to mitogens in vitro.

Transformation of human adult NS/PCs following
propagation in mitogens and serum

Transplantation technologies of adult human NS/PCs imply

strategies where minimal donor material is highly expanded in vitro

to the adequate cell number before implantation. In general,

NSCs can be expanded either as floating neurospheres in serum-

free medium supplemented with mitogens or as adherent

monolayers in medium containing both mitogens and serum

[17]. Neuronal and oligodendroglial differentiation of adherently

growing NSCs can be enhanced by growth factor withdrawal and

exposure to triiodothyronine (T3) and ascorbic acid [18]. Then,

we propagated GFP-positive OB1, OB2, OB4, and OB5 NS/PCs

between P7 and P10 either under mitogens or under mitogens and

5% serum (Fig. 1). In mitogens and serum, the NS/PCs became

adherent, continued to proliferate, and either maintained an

undifferentiated phenotype or differentiated, mainly as astrocytes

(Fig. 3A). When such adherent serum-stimulated (SS) NS/PCs

were returned to serum-free medium with mitogens, they formed

floating neurospheres within one week maintaining their clonal

efficiency. Upon removal of mitogens and exposure to 1% serum

supplemented with T3 and retinoic acid, the SS-NS/PCs slowered

down their growth and further differentiated towards the

neuronal, astrocytic, and oligodendrocytic lineages (Fig. 3B).

Aberrant coexpression of neuronal and glial markers by the SS-

NS/PCs was not seen.

To examine the behavior of NS/PCs in the CNS environment,

we engrafted GFP-positive NS/PCs, which had been expanded

either as neurospheres or as adherent monolayers, onto the spinal

cord of ciclosporine treated rats or onto the striatum of SCID

mice. Surprisingly, 85.7 percent of the rats engrafted onto the

spinal cord with the clonal SS-OB2a NS/PCs showed progressive

palsy of their hindlimbs by 2 to 4 weeks after grafting. These

animals developed highly infiltrating intramedullary tumors that

histologically were reminiscent of neuroesthesioblastoma, a

malignant neoplasm of the OB that is supposed to arise from an

ancestral neuroblast (Fig. 3C and Table 1). The tumor

xenografts expressed markers for neuronal, astrocyte, and

oligodendrocyte cells. Intracerebral grafting of the SS-OB2a

NS/PCs also resulted in tumor formation with 76.9 percent take

(Fig. 3D and Table 1). Importantly, the clonally-derived OB2a

NS/PCs which had been expanded as neurospheres homed in the
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host parenchyma showing ramified morphology and neuronal

marker expression without generating any tumor (Figs. 3C–3D).

Similar findings were seen in animals engrafted with OB1, OB4,

and OB5 NS/PCs irrespective the technique used for their

propagation in vitro. Thus, the oncogenic transformation of human

adult NSCs may occur whether a combination of expansion/

selection stimuli, like mitogens and serum, are simultaneously

applied to these cells in vitro. Consistently, mouse embryonic NS

Figure 1. Summary of experimental design. The OB was obtained from adult patients who underwent neurosurgical operations. On
immunohistochemical analysis, the human OB was found to contain about 700 to 1000 cells expressing the NS markers nestin and CD133. The nestin-
expressing cells colocalize glial fibrillary acid protein (GFAP). These cells are located either within the inner plexiform layer close to the lateral olfactory
tract where they show an astrocyte-like morphology, or in the external plexiform layer where they mainly appear as small rounded or unipolar cells. In
the external plexiform layer, a few proliferating cells (n, 200–300) are detected by Ki67 labeling. Dissociated OB specimens were cultured in serum-
free medium supplemented with the mitogens EGF and bFGF. Primary neurospheres were dissociated into single cells and plated one cell per mini-
well. Clonal cell cultures were established by dissociation of secondary neurospheres. Clonal cultures from each OB were passaged up to P30 in
mitogens. NS/PC cultures which lost growth factor dependence and multipotentiality were assessed for tumorigenicity in vivo. At P6, the NS/PCs that
maintained growth factor dependence and multipotentiality were transduced to express GFP. The GFP-positive NS/PCs were expanded either as
neurospheres in serum-free medium supplemented with mitogens or as adherent monolayers in medium containing mitogens and serum and then
engrafted onto the striatum or spinal cord of immunocompromised rodents.
doi:10.1371/journal.pone.0004434.g001
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Figure 2. Characterization and grafting of OB-derived NS/PCs cultured as neurospheres. A, Growth curves of NS/PCs (P6) cultured in
serum-free medium supplemented with mitogens (left) and in medium containing 1% serum without mitogens (center). The OB3 cells continue to
proliferate in spite of mitogen removal and serum stimulation. Absorbance test for NS/PC viability (right). B, Immunophenotyping of OB-derived NS/

Tumorigenic Neural Stem Cells
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cells that have simultaneously been serum-differentiated and

expanded with FGF, develop tumors in vivo [1].

Cytological and molecular characteristics of tumorigenic
NS/PCs

Somatic stem cells are thought to possess proficient mechanisms

that allow replicative potential and chromosomal stability.

However, chromosomal rearrangements have been detected in

long-term expanded adult murine NSCs which apparently do not

result in a malignant phenotype [2]. We performed kariotype

analysis on NS/PCs at regular time points and found chromo-

somal rearrangements with repeated passages under mitogen

stimulation (Figs. 4A and S1). Chromosomal changes were found

both in tumorigenic and in non-tumorigenic NS/PCs suggesting

that these cells need additional requirements to achieve tumori-

genicity in vivo. It has been reported that the tumor-like growth

properties of the stem cells associate with changes either in

oncosuppressors or in oncogenes [2,5–6,15]. Then, we set up a

custom real-time RT-PCR array to analyze the expression of 92

mRNAs related with cell proliferation and cancer in tumorigenic

relative to non tumorigenic NS/PCs both under proliferating

culture conditions and under serum-induced differentiation

(Fig. 4B). Relative to the non tumorigenic OB1a and SS-OB1a

NS/PCs, tumorigenic OB3a and SS-OB2a NS/PCs showed

upregulation of genes related to cell proliferation and inhibiting

apoptosis, though solely hTERT and NOTCH1 were overex-

pressed independently from mitogen stimulation. Tumorigenic

OB3a and SS-OB2a NS/PCs did express the hTERT protein,

which was undetectable in non tumorigenic NS/PCs, consistent

with that reported in normal NS cells (Fig. 4C) [19]. Immuno-

fluorescence with anti-NOTCH1 antibody on tumorigenic OB3a

and SS-OB2a NS/PCs demonstrated either increased cytoplasmic

staining or abnormal nuclear staining (Fig. 4D). Following

NOTCH1 blockade with the c-secretase inhibitor X (GSI),

OB3a and SS-OB2a NS/PCs lost their ability to form soft-agar

colonies suggesting a functional role of NOTCH1 in tumorige-

nicity of these cells (Figs. 4C and S2). Although the xenografts

grown after injection of OB3a and SS-OB2a NS/PCs were

histologically reminiscent of different tumors, in both of them

molecular analyses pointed to hTERT and NOTCH1 as critical

pathways. Telomerase is highly expressed in the majority of

human cancers including glioblastoma, where it is believed to

contribute to tumor progression because telomerase-dependent

telomere maintenance provides cells with an extended proliferative

potential [20]. Glioblastoma stem cells, which express telomerase

under proliferating serum-free conditions, transiently lose telome-

rase activity in serum-containing media; however, these cells

regain telomerase at passages coincident with their exponential

growth phase [21]. NOTCH is known to promote the prolifer-

ation of nonneoplastic NSCs and to inhibit their differentiation; it

is also highly activated in embryonal brain tumors, such as

medulloblastoma, where it is required both for maintaining the

stem cell fraction in vitro and for tumor formation in vivo [22]. Up-

regulation of hTERT and NOTCH1 in both tumorigenic OB3a

and SS-OB2a NS/PCs suggests that a common mechanism may

underly the malignant transformation of these cells, and that the

histological differences between the OB3a-derived glioblastoma

and the SS-OB2a-derived neuroesthesioblastoma may reflect

different stages at which the NS/PCs have undergone neoplastic

transformation in culture. In the OB3a-derived glioblastoma, the

tumorigenic hit may have occurred in an astrocytic-committed

precursor cell, whilst in the SS-OB2a-derived neuroesthesioblas-

toma the cell of origin may be a less differentiated NS/PC that has

retained its multipotentiality.

Gene therapy trials using human hematopoietic stem cells after

retroviral transduction have demonstrated a risk of insertional

mutagenesis and oncogenic transformation [23]. However, we do

not believe that that the tumorigenic transformation of the OB-

derived NS/PCs may be a consequence of the use of the lentiviral

vector that integrated the GFP gene into the genome of these cells.

The following arguments do not favour this hypothesis, 1) the OB3

cells, which in vivo gave origin to glioblastoma-like tumors, were

not transduced with lentivirus to express GFP; 2) both the OB2

cells and the SS-OB2 cells were transduced with lentivirus,

however, only the latter cells developed tumor in vivo, whilst the

GFP-positive OB2 cells did not; and 3) the lentivirally transduced

OB1, OB4, and OB5 NS/PCs were not tumorigenic in vivo.

To conclude, human adult NS/PCs cultured under mitogen

stimulation are prone to develop chromosomal rearrangements. In

vivo tumorigenicity is heralded by, 1) short latency in primary

neurosphere formation, 2) persistent growth after removal of

mitogens, 3) loss of serum-induced neuronal differentiation, and 4)

up-regulation of hTERT and NOTCH1. The tumorigenic

transformation of human adult NS/PCs isolated from an OB

adjacent to meningioma raises the possibility that unusual levels of

growth factors in the in situ condition, i.e. prior to ex vivo culture,

may prime tumorigenicity. This indicates that the tumorigenic

potential of the OB3 NS/PCs may be a specific feature of this cell

line and not generalizable. In the case of SS-OB2 NS/PCs,

however, specific culture conditions seem critical to transforma-

tion. Mitogens used simultaneously with factors favouring cell

specification may disrupt the regulatory mechanisms that control

self-renewal of NSCs and differentiation of TAPs. Therefore,

culturing techniques where both proliferation and differentiation

of NS/PCs are simultaneously enhanced should be evaluated

further in future and discouraged if confirmed as linked to in vivo

tumorigenicity.

Materials and Methods

Isolation, Culturing, and Immunophenotyping of NS/PCs
The OB was harvested from adult patients undergoing

craniotomy at the Institute of Neurosurgery, Catholic University,

Rome (Table S1). Informed consent was obtained according to

protocols approved by the Ethical Commettee of the Catholic

University. Immediately after removal, the OBs were dissociated

in Papain 0,1% (Sigma-Aldrich, St. Louis, MO) for 30 minutes at

PCs (P6) cultured in serum-free medium supplemented with mitogens (left) and in medium containing 1% serum without mitogens (right). Double-
positive cells for nestin and GFAP were counted positive for each antigen and also for both antigens (nestin/GFAP). The OB3a cells do not
differentiate towards the neuronal lineage in response to serum stimulation. C, Subcutaneous xenografs of OB3a cells in nude athymic mice. a,
Subcutaneous nodules two weeks after grafting (arrows in a). Histological features of glioblastoma (b, H&E). Expression of astrocytic cell marker GFAP
(c) and negative staining for the neuronal cell marker neurofilament (d). D, Intracerebral tumor xenografts of OB3a cells in SCID mice. Pattern of brain
invasion by OB3a cells one week after grafting into the striatum (a, H&E). Low (b) and high (c and d) magnifications of intraventricular anaplastic
astrocytoma-like tumor by two weeks after grafting (b and c, H&E d, anti-HNA immunoreaction). A, Scale bar 250 mm; b, Scale bar 80 mm; c, Scale bar
50 mm; d, Scale bar 30 mm.
doi:10.1371/journal.pone.0004434.g002
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37uC. Dissociated cells were cultured in the presence of human

recombinant EGF (20 ng/ml; PeproTech, Rocky Hill, NJ), human

recombinant bFGF (10 ng/ml; PeproTech), and LIF (20 ng/ml;

Immunological Sciences, Rome, Italy) in DMEM/F12 (1:1)

serum-free medium (Invitrogen, Carlsband, CA) containing L-

glutamine 2 mM, glucose 0.6%, putrescine 9.6 ug/ml, progester-

one 0.025 mg/ml, sodium selenite 5.2 ng/ml, insulin 0.025 mg/

ml, apo-transferrin sodium salt 0.1 mg/ml, sodium bicarbonate

3 mM, Hepes 5 mM, BSA 4 mg/ml, heparin 4 ug/ml [24].

Primary neurospheres were dissociated with Accutase (Invitrogen)

for 4 minutes at 37uC, serially diluted, and plated one cell per

mini-well onto 96-well plates. Mini-wells containg one single cell

were marked after microscopic confirmation and assessed for

secondary neurosphere generation after one week. Secondary

neurospheres were subsequently dissociated, plated at the density

of 103 cells/cm2 in serum-free medium containing EGF and

bFGF, and passaged up to P30. All experiments were done on at

least two clonal cultures from each OB. Between P7 and P10,

parallel cultures were established in which cells were grown as

adherent monolayers in medium containing EGF and bFGF

supplemented with 5% fetal calf serum (Hyclone, Logan, UT). For

cell growth experiments, dissociated cells were plated on Matrigel

at the density of 103 cells/cm2 either in serum-free medium

containing EGF and bFGF or in medium where mitogens were

replaced with 1% serum or in medium containing mitogens and

5% serum (Hyclone). Cells were counted with hemacytometer

every 48 hours. Cell viability was determined colorimetrically by

MTS-assay (Supplementary Methods S1). Differentiation assays

were performed by 14 days after plating on Matrigel coated glass

coverslips in the absence of EGF and bFGF and in the presence of

1% fetal calf serum (Hyclone) supplemented with 39-59-cyclic

adenosine monophosphate (cAMP) 50 mM, all- trans retinoic acid

5 mM (Sigma Aldrich), and triiodothyronine (T3) 30 nM (Sigma

Aldrich). Immunostaining of NS/PCs was performed as described

[15]. We used antibodies against nestin (Chemicon, Temecula,

CA), CD133 (CD133/2; Miltenyi, Bergisch, Germany), GFAP

(Dako, Glostrup, Denmark), b tubulin III (Chemicon), neurofila-

ment RT-97 (Developmental Studies Hybridoma Bank, Iowa

City, IA), MAP2 (Chemicon), NG2 (Chemicon), O4 (Chemicon),

hTERT (Novocastra Laboratories), and NOTCH1 (Chemicon).

Generation of Fluorescent NS/PCs
Enhanced green fluorescent protein (GFP) gene transfer in the

NS/PCs was performed at P6 using a variant of third generation

lentiviral vectors as described [25].

Table 1. Tumor Formation after Grafting of Human Adult OB-
derived NS/PCs in Immunosuppressed Rodents.

Grafted Cells Xenografts (Tumors/Injection points)

Subcutaneous Intracerebral Intramedullary

OB1a P6 0/4

OB1a P8 GFP+ 0/3

OB1a P9 0/2

OB1b P9 0/2

OB1b P9 GFP+ 0/4 0/3

OB1a P10 0/2

OB1a P10 GFP+ 0/3

OB1b P10 GFP+ 0/4

OB1a P18 0/4

SS-OB1a P7 0/4

SS-OB1a P9 GFP+ 0/2 0/2 0/3

SS-OB1b P9 GFP+ 0/2 0/4

OB2a P7 0/4

OB2a P7 GFP+ 0/3

OB2b P7 GFP+ 0/2

OB2b P9 0/4

OB2a P8 GFP+ 0/4 0/4

OB2b P8 GFP+ 0/2 0/5

OB2a P12 0/4

OB2a P10 GFP+ 0/4

OB2b P18 0/4

OB2b P10 GFP+ 0/2

SS-OB2a P7 4/4

SS-OB2a P8 GFP+ 3/5 6/7

SS-OB2b P8 0/4

SS-OB2a P8 GFP+ 4/4

SS-OB2a P10 3/4

SS-OB2a P10 GFP+ 4/4 3/4 12/14

SS-OB2b P10 GFP+ 0/4

OB3a P6 4/4 2/3

OB3b P6 9/10 3/4

OB3a P12 4/4

OB3b P12 2/2

OB3c P12 4/5 3/4

OB3b P18 3/4 2/4

OB3d P18 3/4

OB3a P30 2/2 2/4

OB4a P6 0/4

OB4a P7 GFP+ 0/3

OB4b P6 0/4

OB4a P12 0/4

OB4b P12 0/4

OB4a P10 GFP+ 0/4 0/2

SS-OB4a P8 0/4

SS-OB4b P8 GFP+ 0/4 0/3

SS-OB4a P12 0/4

OB5a P6 0/6

OB5b P6 0/4

Grafted Cells Xenografts (Tumors/Injection points)

Subcutaneous Intracerebral Intramedullary

OB5b P9 0/4

OB5a P8 GFP+ 0/4

OB5b P8 GFP+ 0/3

OB5a P18 0/4

SS-OB5a P8 0/4

SS-OB5a P10 GFP+ 0/4

NS/PCs, neural stem/progenitor cells; OB, olfactory bulb; P, passage in vitro;
GFP, green fluorescent protein; SS, serum stimulated.
doi:10.1371/journal.pone.0004434.t001

Table 1. cont.
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Grafting of NS/PCs in Immunodeficient Rodents
Studies involving animals were approved by the Ethical

Committee of the Catholic University School of Medicine, Rome.

The NS/PCs were grafted either subcutaneously in nude athymic

mice, or into the brain of severe combined immunodeficient

(SCID) mice, or onto the spinal cord of ciclosporine treated rats

(Supplementary Methods S1). For implantation, the NS/PC

cultures were splitted 24–48 hours prior to transplant and injected

as single cell suspensions. After two to 6-week survival, the animals

were sacrificed with an overdose of barbiturate. Either the

subcutaneous graft or brain or spinal cord was removed and

processed for histology as described [25].

Immunohistochemistry
Immunohistochemistry was performed on deparaffinized sec-

tions using the avidin-biotin-peroxidase complex methods as

Figure 3. Characterization and grafting of serum-stimulated NS/PCs grown as adherent cultures. A, Growth curves (left) and
immunophenotype (right) of NS/PCs (P6) cultured in medium containing mitogens and 5% serum (serum-stimulated, SS-NS/PCs). B, Growth curves
(left), absorbance test (right), and immunophenotype (right) of SS-NS/PCs cultured in 1% serum. C, Grafting of SS-NS/PCs onto the spinal cord of
ciclosporine treated rats. Intramedullary tumor developed four weeks after grafting of SS-OB2a cells (left). Low (a) and high (b) magnification sections
show a neuroesthesioblastoma-like tumor (T) (H&E) expressing both neurofilament (c) and GFAP (d). Tumor cells labeled with GFP (e; green) stain with
the oligodendrocyte cell marker NG2 (red). Homing and differentiation of SS-NS/PCs after grafting onto the spinal cord (left). GFP-labeled SS-OB1a
cells showing neuronal cytology (a). GFP-labeled SS-OB4a cells expressing the neuronal marker neurofilament (GFP green, neurofilament red, merged
signal yellow) (b and c). D, Intracerebral grafts of SS-NS/PCs in SCID mice. Brain tumor developed by two weeks after grafting of GFP-labeled SS-OB2a
cells (a–c; a–b, H&E c, fluorescence microscopy). Grafted SS-OB1a cells do not form tumor by eight weeks after implantation (d–f; d–e, H&E f,
fluorescence microscopy). Left. a, Scale bar 300 mm; b–e, Scale bar 50 mm. Center. a–c, Scale bar 30 mm. Right. a and d, Scale bar 250 mm; b–c and e–f,
Scale bar 70 mm.
doi:10.1371/journal.pone.0004434.g003

Figure 4. Cellular features and molecular profiling of tumorigenic OB-derived NS/PCs. A, Metaphase spread and manually aligned
karyotype of OB3a NS/PCs (P6) showing remarkable chromosomal rearrangements. B, Expression array analysis performed with RNA extracted from
NS/PCs (P7–P8). Gene expression in tumorigenic OB3a and SS-OB2a cells is presented relative to the non tumorigenic OB1a and SS-OB1a cells,
respectively, both under proliferating culture conditions and under serum-induced differentiation. Upregulated genes (2 folds, red), downregulated
genes (2 folds, green), unchanged genes (gray). C, Expression of hTERT protein in OB-derived NS/PCs. Western blot analysis of HUVEC (lane 1), OB1a
(lane 2), OB2a (lane 3), SS-OB2a (lane 4), OB3a (lane 5), and TB10 human glioblastoma (lane 6) cells. Immunohistochemical analysis of hTERT
expression in the human adult OB and OB-derived NS/PCs. The hTERT protein is absent in the adult OB (a) as well as in the non-tumorigenic OB1a (b),
OB2a (c), and SS-OB1a (e) cells. hTERT is strongly expressed in the nuclei of both tumorigenic OB3a (d) and SS-OB2a (f) NS/PCs. Scale bar 40 mm. D,
Immunofluorescence analysis of NOTCH1 expression (left) in OB1a (a), OB3a (b), OB2a (c), and SS-OB2a (d) NS/PCs. NOTCH1 signaling is required for
the formation of colonies in soft agar (right). Exposure to c-secretase inhibior X (GSI) after seeding in soft agar significantly reduced clonigenic
potential of tumorigenic OB3a and SS-OB2a NS/PCs (P,0.0001, Student t-test).
doi:10.1371/journal.pone.0004434.g004
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described [25]. The following primary antibodies were used, anti-

GFAP (Ylem, Avezzano, Italy), anti-neurofilament (Ylem), anti-

NG2 (Chemicon), anti-CD133/1 (Miltenyi), anti-nestin (Santa

Cruz Biotecnology), anti-human nuclei antigen, (HNA; Chemi-

con), anti-epithelial membrane antigen (EMA; Ylem), anti-Ki67

(Dakocytomation), anti-hTERT (Novocastra Laboratories). En-

dogenous biotin was saturated by biotin blocking kit (Vector). For

antigen retrieval, paraffin sections were microwave-treated in

0.01 M citric acid buffer at pH 6.0 for 10 min. For hTERT

antigen retrieval, paraffin section were microwave-treated in

EDTA buffer at pH 8.0 for 10 min.

Chromosome analysis
NS/PC cultures at P3–P8 were incubated in medium

containing 10 ng/ml colcemid for 18 hours. The cultures were

then lifted and centrifuged. Pellets were osmotically shocked with

0.075 M KCl and fixed with 3:1 methanol:glacial acetic acid.

Standard cytogenetic G bands were performed and a mean of 20

methaphases per cell lines were analyzed.

Macroarray Analysis
We used a 7900HT instrument equipped with SDS2.2 software to

perform a custom real-time RT-PCR array (Microfluidic Card,

Applied Biosystems, CA). Briefly, cells were plated on Matrigel pre-

coated 100 mm dishes and processed as described above. Preparation

of total RNA and cDNA was performed using Ribo Pure kit

(Ambion, Austin, TX) and high capacity cDNA Reverse Transcrip-

tase kit (Applied Biosystems), respectively. For data analysis, the

mathematical process for deriving relative quantification values was

used as described by the manufacturer’s guide (Applied Biosystems).

Western Blot
Cell pellets were lysated in a modified RIPA buffer (Tris-HCl

10 mM pH 7.5, NaCl 10 mM, NP-40 0.2%, EGTA 1 mM, EDTA

1 mM, DTT 1 mM and protease inhibitor cocktail; Sigma-Aldrich)

on ice for 5–10 min. Nuclear extracts were resuspended in Urea

buffer (10 M Urea, Tris-HCl 50 mM pH 7.5, DTT 25 mM)

sonicated and normalized using Bradford Assay (Promega Corp).

Protein extracts were analyzed by polyacrylamide gel electropho-

resis and Western blot. Proteins were probed with rabbit polyclonal

anti-TERT (1:1000; Santa Cruz Biotecnology) and monoclonal

anti-b-actin (1:5000; Sigma-Aldrich). As control, HUVEC cells at

passages 4 to 5 (Bio-Wittaker, Walkersville, MD) and TB10

glioblastoma cells were used.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0004434.s001 (0.02 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0004434.s002 (0.02 MB

DOC)

Methods S1 Supplementary Materials and Methods

Found at: doi:10.1371/journal.pone.0004434.s003 (0.04 MB

DOC)

Figure S1 Methaphase spreads and manually aligned karyotypes

on NS/PCs. Both the OB2a NS/PCs, which do not develop

tumor in vivo, and the SS-OB2a NS/PCs, which are tumorigenic

in vivo, show remarkable chromosomal changes at P8–P10,

consisting mainly in deletions. Normal karyotype of OB4a NS/

PCs at P4.

Found at: doi:10.1371/journal.pone.0004434.s004 (9.73 MB TIF)

Figure S2 Soft agar assay (see Supplementary Methods). The

OB2a, SS-OB2a, and OB3a NS/PCs were seeded with a mixture

of Top Agar (0,5%)-proliferation medium on top of the base layer.

The plates were then incubated at 37u in humidified incubator for

3–4 weeks and colonies were counted. Every week fresh medium

mixed with Top-agar was added together with 5 mmol/L c-

secretase inhibitor X (GSI; L-685.458) or DMSO as control.

Three plates for each NSC/PC culture were used.

Found at: doi:10.1371/journal.pone.0004434.s005 (9.58 MB TIF)
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