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Introduction

Current treatment of the ichthyoses remains symptomatic, and 
largely directed towards reducing the scaling component of these 
disorders. Yet, such therapy of the ichthyoses is often irrational, 
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Molecular geneticists tend to conceptualize disease 
pathogenesis from the mutated gene outward, an approach 
that does not take into account the impact of barrier 
requirements in determining disease phenotype. An ‘outside-
to-inside’ perspective has provided quite different explanations 
for the ichthyoses, including several of the disorders of distal 
cholesterol metabolism. elucidation of responsible pathogenic 
mechanisms also is pointing to appropriate, pathogenesis 
(pathway)-based therapeutic strategies. in the case of the lipid 
metabolic disorders, it takes full advantage of new molecular, 
genetic and cellular pathogenesis information to correct or 
bypass the metabolic abnormality. This approach fully exploits 
the unique accessibility of the skin to a topical approach. 
Moreover, since it will utilize topical lipids and lipid-soluble, and 
often generic, lipid-soluble drugs, these treatments should be 
readily transported across the stratum corneum. if successful, 
this approach could initiate an entirely new departure for the 
therapy of the ichthyoses. Finally, because these agents are 
relatively safe and inexpensive, this form of treatment has the 
potential to be widely-deployed, even in the developing world.
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because removal of excess scale can interfere with homeostatic 
responses that allow patients to survive in a harsh, terrestrial 
environment. Moreover, the favored alternative, corrective gene 
therapy, though seductive in concept, remains a distant dream, 
impeded by: (1) difficulties in transcutaneous drug delivery; (2) 
enormous costs of the required ‘designer gene’ approach; (3) dis-
comfort of intracutaneous injections; and (4) unknown, long-
term risks of transfection with viral vectors.

All ichthyoses, including inherited syndromic disorders of dis-
tal cholesterol metabolism, display a permeability barrier abnor-
mality, with the severity of the clinical phenotype paralleling the 
prominence of the barrier abnormality (reviewed in ref. 1–3). 
In our research, we have assumed that the cutaneous phenotype 
represents a best attempt by a metabolically-compromised epider-
mis to generate a competent permeability barrier in the desiccat-
ing, terrestrial environment (op. cit.). While “normal” epidermis 
mounts a vigorous, metabolic response in response to a compro-
mised barrier that rapidly restores function,4-6 “ichthyotic” epi-
dermis only partially succeeds in normalizing function.1-3 As a 
result, the clinical phenotype reflects the negative consequences 
of the genetic mutation for epidermal function, coupled with the 
epidermis’ impaired, homeostatic response. Thus, unraveling the 
cellular and biochemical mechanisms that account for the bar-
rier abnormality provides an explanation for the pathogenesis 
of the cutaneous phenotypes (reviewed in ref. 2, 3 and 7), and 
it could point to potentially-novel, pathway-based therapies. In 
disorders due to impaired cholesterol synthesis, evidence to date 
suggests that the clinical phenotype in most cases reflects either 
accumulation of toxic metabolites and/or deficiency of pathway 
end-product.8 Moreover, in all of the lipid-metabolic disorders, 
whether due to metabolite accumulation, pathway product 
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lamellar membranes (reviewed in ref. 20). Additional, down-
stream pathogenic mechanisms whereby sterol metabolites could 
contribute to disease pathogenesis include: (1) formation of oxy-
sterol metabolites that either downregulate cholesterol synthesis 
or activate the liver X receptor;21 (2) altered hedgehog pathway 
signaling (HOX normally is tethered onto cell membranes via 
a cholesterol moiety);22,23 and/or (3) deficient peroxisomal func-
tion, as we have described in both CHH, CHILD patients and in 
the ‘bare patches’ mouse model,24-28 which displays Nsdhl muta-
tions that mimic CHILD syndrome29,30 (further information 
about our work on the pathogenesis of CHILD syndrome, CHH 
and XLI is provided below); and (4) sterol metabolite-accelerated 
degradation of HMGCoA reductase.31

While ichthyosis is not clinically apparent in Smith-Lemli-
Opitz syndrome (SLOS) (OMIM #270400) [7-dehydrocholes-
terol reductase (DHCR7) deficiency], both photosensitivity and 
a propensity to develop eczema are common32 (Drs. Rosalind 
Elias and R. Steiner, personal communication). DHCR7 defi-
ciency impairs both desmosterol and 7-dehydrocholesterol 
metabolism,20,21,33 resulting in elevated 7-DHC and 8-DHC 
blood levels, with proportionate, phenotype-dependent reduc-
tions in serum cholesterol,9-13,24,32,34,35 alterations that are mim-
icked in Dhcr7-/- and +/- mice,36 and in mice with a knock-in of 
the human T93M mutation.37 SLOS is fairly common (predicted 
incidence of ≈1:10,000),8 with over 120 different DHCR7 muta-
tions identified to date.32

Although the PI is unaware of lathosterolosis cases in the 
US, several patients have been described in Europe, and all have 
prominent ichthyosis. Moreover, a mouse model of lathostero-
losis (Sc5d-/- and +/-) is available,15 which should allow assess-
ment of pathogenic mechanisms in this disorder (see below). 
Furthermore, a US kindred38 and several additional patients in 
Europe14 have been described with desmosterolosis, a disorder 
that displays prominent congenital anomalies, but minimal evi-
dence of skin abnormalities. Finally, a prominent skin phenotype 
has been described in two patients with SC4MOL deficiency, 
who present with a severe ichthyosiform dermatosis and psoria-
siform features.16

Conradi-Hünermann-Happle Syndrome (CHH) or X-linked 
dominant chondrodysplasia punctata type 2 (CDPX2) (OMIM 
#302960) exhibits linear bands of scaling or follicular spikes in a 
morphogenic pattern (i.e., along the lines of Blaschko), and gen-
eralized erythroderma, most prominently in neonates. Involved 
skin sites conform to regions in which the mutant X-chromosome 
predominates.39,40 The cutaneous features of CHH and CHILD 

deficiency, or both, lamellar/non-lamellar (L/NL) phase separa-
tion within the lamellar bilayers accounts, at least in part, for 
the barrier abnormality (examples of pathogenic mechanisms for 
disorders of distal cholesterol metabolism are shown in Table 1).

We typically assess four different, functional end-points; 
i.e., TEWL, pH, hydration and stratum corneum (SC) integ-
rity, which separately or together can impact permeability bar-
rier function. For example, a less cohesive SC, which often is 
due to an elevated pH of SC, increases proteolytic degradation 
of corneodesmosomes, which results in a poor quality SC. A 
high pH also activates serine proteases, which degrade lipid pro-
cessing enzymes. Finally, the pH-driven increase also activates 
pro-inflammatory cytokines, such as IL-1α and IL-1β, further 
aggravating barrier function while provoking inflammation. 
By measuring multiple functional, structural and biochemi-
cal parameters and their structural/biochemical basis, we have 
been able to assemble a pathogenic composite for each disease. 
Together, this approach has identified key pathophysiologic 
abnormalities (e.g., metabolite accumulation and/or product 
depletion) in these disorders, which in turn could point to the 
most-promising, potential, pathogenic-based therapeutic inter-
ventions (see below).

Pathogenesis of Multisystem, Cholesterol 
Biosynthetic Disorders

Nine enzymatic steps are required to generate cholesterol from 
lanosterol, with the further generation of cholesterol sulfate from 
cholesterol comprising a tenth step (Fig. 1). While syndromic 
disorders, with a variety of developmental malformations, have 
been reported in seven of these diseases,9-13 an abnormal cutane-
ous phenotype has been described in only six, i.e., lathosterolosis, 
desmosterolosis, Congenital Hemidysplasia with Ichthyosiform 
Erythroderma and Limb Defects (CHILD) syndrome, Conradi-
Hünermann-Happle syndrome (CHH) or X-linked chondrodys-
plasia punctata type 2 (CDPX2), SC4MOL deficiency14-16 and 
X-linked ichthyosis (XLI).17 The pathogenesis of the ichthyosi-
form dermatosis (and likely the extracutaneous abnormalities) 
in all of the inborn errors of distal cholesterol metabolism can 
be variously attributed to either: deficiency of cholesterol in cell 
membranes and/or toxic effects of accumulated sterol precursors 
with resulting functional alterations.18,19 Sterol precursors can 
only partially substitute for cholesterol in the formation of SC 
lamellar membranes, and cholesterol is one of the three key SC 
lipids (along with ceramides and free fatty acids) required to form 

Table 1. Pathogenic mechanisms and potentially diagnostic features in disorders of distal cholesterol metabolism

Disorders
Keratohyalin/

Keratins

Lamellar body 
formation/
Contents

Lamellar 
body 

 exocytosis

Post-secretary 
lipid processing

Lamellar 
bilayers

Cornified 
envelopes

Corneodes- 
mosomes

Corneocyte 
lipid envelope

Cholesterol and Isoprenoid Metabolism

 CHH/    
CHiLD7,29 Normal/Normal

Abnormal 
contents

Impaired Delayed L/Non-L-PS Normal Normal Normal

   XLi17 Normal/Normal Normal Normal Normal L/Non-L-PS Normal Persist Normal

*Bolded and italicized features are particularly helpful in differential diagnosis.
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and CHH is not surprising (reviewed in ref. 9). Availability of 
mouse models of CHH and CHILD syndrome8 should allow for 
an assessment of the mechanistic basis for the cutaneous pheno-
type in CHH and CHILD syndrome, and for preclinical evalua-
tion of potential therapies for these patients.

Both the density of lamellar bodies (LB) and LB secretion 
appear normal in CHH, but organelle contents are abnormal, 
displaying vesicular inclusions. Moreover, newly-secreted mate-
rial fails to disburse at the stratum granulosum-SC interface.7 
Furthermore, these electron-lucent vesicles persist as discrete 
spheres after secretion at the stratum granulosum-SC interface. 
Importantly, maturation of lamellar bilayers is delayed, and bilayer 
membranes with normal morphology are displaced by extensive 
areas of lamellar/non-lamellar phase separation (Table 1).29 Yet, 
the morphology of clinically-affected skin sites in CHILD syn-
drome is even more dramatically abnormal than that in CHH. 
Although LB form normally, they display almost no internal 
lamellae, and they fuse into intracellular multivesicular bodies, 

syndrome can improve after infancy,40 due to diminished via-
bility of keratinocytes bearing the mutant X chromosome.29  
The cutaneous phenotype in CHILD syndrome (OMIM 
#308050), however, differs in its distribution from CHH; i.e., it 
is strictly unilateral, including both skeletal defects and internal 
organ involvement. Skin lesions are circumscribed plaques, sur-
mounted by prominent wax-like scales, which typically involve 
flectures.23

CHH is caused by mutations in EBP (emopamil-binding 
protein) that encodes 3β-hydroxysterol-Δ8, Δ7-isomerase, which 
catalyzes the conversion of 8(9)-cholestenol to lathostero1,34,41,42 
resulting in diagnostic elevations in serum 8-dehydrocholesterol 
and 8(9) cholesterol.43 Mutations in NSDHL, which encodes a 
member of the enzyme complex that removes the C-4 methyl 
group from lanosterol, underlie CHILD syndrome. However, 
CHILD syndrome can also be caused by mutations in EBP9,43 
(Fig. 1). Given the close proximity of the sites of metabolic block-
ade, the presence of some phenotypic overlap between CHILD 

Figure 1. enzymatic stages in distal cholesterol metabolites and their associated clinical disorders. Syndromic disorders occur with mutations in 7 of 
the 9 post-lanosterol steps in late cholesterol synthesis (indicated by bold/italics). A prominent cutaneous phenotype (ichthyosis) occurs in 6 of these 
diseases (indicated by bold/italics & underline).
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barrier abnormality.36 More pertinent to SLOS patients, who 
display residual enzyme function, our still-unpublished prelimi-
nary studies in Dhcr7+/- mice (with S. Patel) demonstrate epider-
mal structural abnormalities in both lamellar body contents and 
lamellar bilayer organization, predictive of a barrier abnormality 
in SLOS patients with comparable reductions in enzyme activity. 
These mice also display serum 7DHC and cholesterol levels that 
are comparable to patients with moderate SLOS due to partial 
loss-of-function mutations.36 One relatively-common mutation 
in SLOS (T93M) has been recapitulated in a transgenic ‘knock-
in’ mouse model.37,55 While their skin phenotype has not yet been 
assessed, this model should also be useful to assess both patho-
genic mechanisms and preclinical therapeutic studies.

Mouse models of CHH, CHILD, desmosterolosis and 
lathosterolosis. We also have recently begun to assess a potential 
animal model of desmosterolosis. Like Dhcr7-/- mice, Dhcr24-/- 
mice are neonatal lethal, apparently due to a failure of epidermal 
development in utero, but possibly also due to a barrier defect.56,57 
In contrast, Dhcr24+/- mice survive, and like Dhcr7+/- mice, they 
show structural evidence of a skin barrier abnormality. While the 
Bpa, Stri and Tattered strains closely mimic varying severities 
of CHH and CHILD syndromes, one of these animal models 
is not a pure analogue of human disease; i.e., the Sc5d-/- mouse, 
but partial loss-of-function in the Sc5d+/- could reflect compa-
rable reductions in enzyme function in lathosterolosis. Thus, this 
model could also be useful to assess pathogenic mechanisms and 
potential therapies for lathosterolosis.

Therapeutic Implications

Current therapy of the ichthyoses is largely aimed at scale 
removal; i.e., it is purely symptomatic. Not only is this form of 
therapy relatively ineffective, it often can be counterproductive; 
e.g., by removing ‘excess’ stratum corneum (SC), symptomatic 
therapy can do more harm than good (=‘therapeutic paradox’) 
as seen with: (1) retinoids in the treatment of Netherton syn-
drome (NS),58 and sometimes in epidermolytic ichthyosis (EI);59 
(2) excessive absorption of salicylates, lactic acid or immunosup-
pressive molecules in NS;58 and (3) worsening of the permeability 
barrier after alpha-hydroxyacid applications, accentuating fluid 
and electrolyte abnormalities in HI, NS, EI and other disor-
ders.58 While localized gene therapy has shown promise in focal 
conditions, such as pachyonychia congenital,60 generalized skin 
involvement in most of the ichthyoses makes topical gene therapy 
impractical. Moreover, this approach can be limited by pain from 
injections,60 unknown risks for viral vector-induced neoplasia, 
and the high cost of ‘designer gene’ replacement, which together 
render gene therapy largely impractical for this diverse group of 
disorders, and certainly unattainable for patients in the develop-
ing world.

Very recently, we proposed a novel, pathogenesis-based 
approach to the treatment of ichthyosis in disorders of distal 
cholesterol metabolism;54 i.e., provision of pathway product 
plus blockade of metabolite production, exploiting this new 
understanding of disease pathogenesis (Fig. 2). If metabolite 
accumulation appears to account for the cutaneous phenotype, 

which then are largely (but incompletely) secreted.7 Nevertheless, 
the SC displays a huge expansion of the extracellular matrix, 
which is filled with interspersed lamellar and non-lamellar mate-
rial.7 Together, these features predict a severe barrier abnormality 
in both CHILD and CHH.

Recessive X-linked ichthyosis (XLI). The pathogenesis of XLI 
is better known than for any of the other ichthyoses. As a result 
of steroid sulfatase (SSase) deficiency in XLI, cholesterol sulfate 
(CSO

4
) accumulates in the outer epidermis,44-46 in erythrocyte 

cell membranes,45,47 as well as in both the LDL (β-lipoprotein) 
and pre-LDL fractions of plasma.45 But CSO

4
 levels in epidermis 

are an order of magnitude higher than are levels in blood,45,47 
likely explaining the prominence of epidermal vs. other organ 
involvement in XLI.48 Normally, CSO

4
 levels decline to about 

1% of lipid mass in the outer SC, through ongoing hydrolysis 
during SC transit.49,50 In contrast, the SC in XLI typically con-
tains 10–12% cholesterol sulfate (by dry weight).48 Hydrolysis of 
CSO

4
 generates some of the cholesterol required for the barrier, 

while conversely, CSO
4
 itself is a potent inhibitor of HMGCoA 

reductase, further reducing cholesterol levels in XLI.48 Although 
SSase is secreted from lamellar bodies (like other lipid hydrolases 
that process barrier lipid precursors into their own hydrophobic 
products), CSO

4
 is delivered to the SC interstices by its extreme 

amphiphilicity, which allows it to diffuse readily across cell mem-
branes;51 i.e., in the absence of a lipid milieu within corneocytes, 
cholesterol sulfate likely partitions preferentially into the highly 
hydrophobic, extracellular domains of the stratum corneum. 
Accumulation of CSO

4
, coupled with cholesterol depletion, pro-

vokes lamellar/non-lamellar phase separation,17 accounting for 
the barrier abnormality in XLI.52

Recent Studies in Relevant Animal Models

Insig-2 (Epi-insig) DKO mice. The Brown and Goldstein group 
recently published relevant work on another animal model with 
aberrant cholesterol synthesis; i.e., epidermal-localized Insig-1 
mice with an additional germ-line deletion of Insig-2 (Epi-Insig) 
DKO mice.53 This model mimics the syndromic human disor-
der, Ichthyosis Follicularis, Atrichia and Photophobia (IFAP) 
syndrome (OMIM #308205). Deletion of these intracellu-
lar proteins allows migration of SREBP from the endoplasmic 
reticulum to the Golgi apparatus followed by translocation to the 
nucleus, where these SREBPs excessively stimulate several genes 
involved in cholesterol synthesis. As a result, both sterol metabo-
lites and cholesterol accumulate in the skin. Pertinently, these 
mice respond to treatment with topical simvastatin, which simul-
taneously normalizes both metabolite production and cholesterol 
levels in epidermis.53 This recent work, coupled with preliminary 
evidence of efficacy with topical lovastatin plus cholesterol in 
CHILD syndrome,54 provides evidence that metabolite accumu-
lation in the epidermis can be toxic; and conversely, that block-
ade of metabolite production (and normalization of cholesterol 
levels) could be beneficial for these disorders.

Mouse models of SLOS. While SLOS patients display a 
minimal skin phenotype, Dhcr7-/- mice display prominent ich-
thyosis, with neonatal lethality due to a putative permeability 
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a barrier abnormality with ichthyosiform changes in normal 
mouse skin).61,62

In very preliminary studies, we have treated two patients with 
one of the rare disorders of distal cholesterol metabolism (CHILD 
syndrome) [Drs. Amy Paller (Northwestern University) and 
Marina Rodriquez-Martin (Canary Islands Univ Hospital)—
point mutation in G83Dp Gly83 Asp in NSHDL, and non-
sense mutation (c.317C>A; p.S106x) in NSHDL, respectively]. 
Notably, these patients failed to improve with topical cholesterol 
alone, but both responded to dual treatment with cholesterol 
plus lovastatin.54 Both excessive scale and epidermal hyperplasia 
diminished greatly, and one patient displayed improved mobility 
of underlying extremities by 6–8 weeks of treatment. In prin-
cipal, this approach bridges the two poles of symptomatic vs. 
curative (i.e., gene) therapy. It also displays the following inher-
ent advantages: (1) it is disease-targeted and mechanism-based 
specificity; (2) it is inherent safe; (3) it is relatively low-cost; and 
(4) most-importantly, it exploits the accessibility of skin to assess 
efficacy, as well as providing the opportunity to assess the mecha-
nisms responsible for positive outcomes.

Yet, topical pathogenesis-based therapy is not curative, and 
even if successful, it would need to be utilized for the duration 
of the patient’s lifetime. Moreover, despite knowledge of dis-
ease pathogenesis, it is possible that such mechanism-targeted 

it would seem reasonable to deploy a proximal enzyme inhibi-
tor [e.g., of HMGCoA reductase (lovastatin)] to reduce levels 
of potentially-toxic metabolites. In addition, provision of the 
pathway product (cholesterol) to avoid epidermal dysfunc-
tion due to cholesterol deficiency could also be beneficial by 
further downregulating (negative feed-back) of HMGCoA 
reductase activity. Then, this new information about disease 
pathogenesis has the potential to be deployed rapidly into 
topical therapy for patients with rare inherited disorders of 
distal cholesterol metabolism (Table 2). Another not-so-rare, 
inherited disorder of distal cholesterol metabolism, X-linked 
ichthyosis (XLI), occurs in 1:2,000–6,000 males. Our studies 
over several years already have shown that disease pathogen-
esis in XLI also reflects both metabolite (CSO

4
) accumulation 

and end-product (cholesterol) deficiency (see also above).17,46,48 
Pertinently, topical cholesterol alone in our experience is not 
effective in XLI, but the ichthyosis in XLI could be treat-
able with either a topical statin or a sulfotransferase inhibi-
tor (plus cholesterol). It must be emphasized that blockade of 
metabolite production alone, though it could be temporarily 
useful, cannot be utilized as monotherapy for the cutaneous 
phenotype in these disorders, because the end-product of this 
pathway (i.e., cholesterol) is required to prevent development 
of a permeability barrier abnormality (topical statins provoke 

Figure 2. Pathogenesis-based therapy for  disorders of distal cholesterol metabolites: Bases for improvement in clinical studies.

Table 2. Pathogenesis and pathway-based therapy of inherited disorders of distal cholesterol metabolism

Metabolic 
 category

Inheritance pattern 
(Incidence)

Affected protein (gene) Normal function
Amenable to 

Pathogenesis-based 
treatment

Proposed therapy

CHH (CDPX2)
x-linked dominant 

(rare)

delta(8)-delta(7) sterol isom-
erase emopamil-binding 

protein (EBP)

Distal cholesterol 
synthesis

Very Likely (but can 
be self-resolving)

HMGCoA reductase 
inhibitor + cholesterol

CHiLD syndrome
x-linked dominant 

(very rare)
NAD(P)H steroid dehydroge-

nase-like protein (NSDHL)
Same Yes (Shown)

Same (cholesterol 
alone ineffective)

SLOS
recessive (fairly 

common)
7-dehydroreductase (DHCR7) Same Very Likely Same

SC4MOL recessive (very rare)
Sterol-C4-methyl oxidase 

(SC4MOL)
Same Very Likely Same

Lathosterolosis (No 
known US cases)

recessive (very rare)
Lathosterol-5-desaturase 

(Sc5d)
Same Very likely Same

Desmosterolosis recessive (very rare)
24-dehydroreductase 

(DHCR24)
Same Very likely Same

X-linked ichthyosis
X-linked recessive 

(fairly common)
Steroid sulfatase (STS)

Desulfation of 
cholesterol sulfate

Very Likely
HMGCoA reductase 

or SULT2B inhibitor + 
cholesterol
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first-pass metabolism, offering the tantalizing prospect that top-
ical therapy could improve the extracutaneous manifestations 
in one or more of these disorders. It is highly likely that the 
cutaneous phenotype reflects pathogenic mechanisms that also 
are on-going in extracutaneous tissues, successful pathogenesis-
based therapy for the ichthyoses could point to comparable 
approach(es) to treat/prevent the extracutaneous manifestations 
of these disorders.
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