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Background: Abnormal intracellular glucose/fatty acid metabolism of T cells has
tremendous effects on their immuno-modulatory function, which is related to the
pathogenesis of autoimmune diseases. However, the association between the status of
intracellular metabolism of T cells and type 1 diabetes is unclear. This study aimed to
investigate the uptake of glucose and fatty acids in T cells and its relationship with disease
progression in type 1 diabetes.

Methods: A total of 86 individuals with type 1 diabetes were recruited to detect the
uptake of glucose and fatty acids in T cells. 2-NBDG uptake and expression of glucose
transporter 1 (GLUT1); or BODIPY uptake and expression of carnitine palmitoyltransferase
1A(CPT1A) were used to assess the status of glucose or fatty acid uptake in T cells.
Patients with type 1 diabetes were followed up every 3-6 months for 36 months, the
progression of beta-cell function was assessed using generalized estimating equations,
and survival analysis was performed to determine the status of beta-cell function
preservation (defined as 2-hour postprandial C-peptide >200 pmol/L).

Results: Patients with type 1 diabetes demonstrated enhanced intracellular glucose
uptake of T cells as indicated by higher 2NBDG uptake and GLUT1 expression, while no
significant differences in fatty acid uptake were observed. The increased T cells glucose
uptake is associated with lower C-peptide and higher hemoglobin A1c levels. Notably,
patients with low T cell glucose uptake at onset maintained high levels of C-peptide within
36 months of the disease course [fasting C-petite and 2-hour postprandial C-peptide are
60.6 (95%CI: 21.1-99.8) pmol/L and 146.3 (95%CI: 14.1-278.5) pmol/L higher
respectively], And they also have a higher proportion of beta-cell function preservation
during this follow-up period (P<0.001).

Conclusions: Intracellular glucose uptake of T cells is abnormally enhanced in type 1
diabetes and is associated with beta-cell function and its progression.
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INTRODUCTION

Autoreactive T cells have a pivotal pathogenic role in the autoimmune
process of beta-cell destruction in type 1 diabetes (T1D),making them
ideal targets for immunotherapy strategies aiming to prevent or delay
the disease (1, 2). However, clinical evidence witnessed refractory
results to standard immunomodulatory and immunosuppressive
strategies (3–5). In this sense, the identification and characterization
of novel target pathways to control the T cell response to beta cells is
still a strong demand (6).

There is a growing appreciation that the function and
response of T cells are tightly linked to their bio-energetic
metabolism (7). Resting T cells import small amounts of
glucose to maintain basal energy and biosynthesis. However,
immediately upon activation, T cells strongly upregulate the
anabolic process of glycolysis even in the presence of oxygen
(Warburg effect) (8, 9). Moreover, it should be noted that the
function and metabolism of T cells are bidirectional. On the one
hand, T cells with different functions have different intracellular
energy metabolism (10); On the other hand, abnormal
metabolism of T cells also affects their function (11, 12). In
recent years, accumulating evidence demonstrated that abnormal
metabolism of T cells is involved in the pathological mechanism
of various diseases by regulating immune function (13–15),
especially in some autoimmune diseases such as systemic lupus
erythematosus and rheumatoid arthritis (16, 17). Further, a few
limited animal studies indicated that metabolic inhibition is an
effective strategy to weaken the T cell effect in preclinical models
of autoimmunity (18–20). Especially, the use of glucose uptake
pathway inhibitors can alleviate effectively insulitis in NOD mice
(21–23). However, the role of T cell metabolism in T1D patients
remains unclear. The possibility of intracellular metabolism of T
cells as innovative targets for T1D intervention would be
strengthened if the status of intracellular glucose uptake in T
cells is well researched. So, we aimed to investigate the
intracellular metabolism of T cells and its association with
beta-cell function in clinical settings.
SUBJECTS AND METHODS

Subjects and Study Design
A total of 86 patients were recruited from a T1D cohort at the
Second Xiangya Hospital , Central South University
(ClinicalTrials.gov ID: NCT03610984). Inclusive criteria
include 1) diagnosis of diabetes according to the 1999 world
health organization (WHO) criteria (24); 2) newly diagnosed
with the disease duration within 12 months; 3) positive for at
least one of the three islet autoantibodies (glutamic acid
decarboxylase antibody [GADA], protein tyrosine phosphatase
autoantibody [IA-2A], zinc transporter 8 autoantibody [ZnT8A];
4) clinically insulin-dependent. Participants who had severe
liver/renal impairment, severe heart failure requiring
treatment, a history of malignant tumor, acute or chronic
infection, or receiving glucocorticoid therapy, pregnancy, and
breastfeeding were excluded.
Frontiers in Immunology | www.frontiersin.org 2
At the time of initial enrollment, demographic information
and clinical indicators including gender, age at onset, height,
weight, body mass index (BMI), and diabetes autoantibodies, the
occurrence of diabetic ketosis/ketoacidosis (DK/DKA) at onset,
daily insulin dose, hemoglobin A1c (HbA1c), fasting C-peptide
(FCP), 2-hour postprandial C-peptide (2h-CP) by mixed-meal
tolerance test (MMTT) were collected and measured for analysis.
A standard 543.6 kcal MMTT was performed, with 44.4% of
calories coming from carbohydrates, 47.7% from fat, and 7.9%
from protein. Long-acting insulin and basal rates (for insulin
pump users) were used normally on the day before or on the
morning of the study, but their morning dose of short-acting
insulin or rapid-acting insulin was withheld as previously
reported (25). The MMTT was conducted at least two weeks
after the correction of ketoacidosis. After 8 hours of fasting,
serum C-peptide levels were tested at 0 and 120 min after a
mixed meal. The C-peptide area under curve (AUC-CP) was
calculated by the trapezoidal method. Beta-cell function
preservation was defined as 2h-CP >200 pmol/L (25).

Participants with T1D were followed up every 3-6 months for
a total of 36 months, HbA1c and FCP, 2h-CP by MMTT were
measured at each visit. The termination of follow-up was
determined when the C-peptide level was <16.5 pmol/L (n=8)
or 36 months after onset (n=61). Of all the participants, the mean
follow-up time was 28.0 ± 8.8 months, with 8 patients lost to
follow-up and 9 patients cut off due to the end of this study.

Normal control (NC) was recruited through a recruitment
advertisement at local medical centers. All controls underwent
oral glucose tolerance test (OGTT) screening and three islet
autoantibodies (GADA, IA-2A, and ZnT8A) testing. Those with
normal results were eligible. Also, their medical history excludes
those with a positive family history of diabetes, infection,
autoimmune disease, severe liver or kidney damage, or steroid
hormone therapy. We used the method of group matching, and
controls were matched for gender and age with T1D patients.

This study was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South University, and all
subjects provided written informed consent.

Assays for HbA1c, C-Peptide, and
Islet Autoantibodies
HbA1c was detected by automatic liquid chromatography
(VARIANT II hemoglobin test system Bio-Rad Laboratories,
Hercules, CA).

C-peptide levels were measured by a chemiluminescence
method using the Advia Centaur System kit (Siemens, Munich,
Germany). The inter- and intra-assay variation coefficients were
3.7% to 4.1% and 1.0% to 3.3%, respectively, as previously
reported (26).

GADA, IA-2A, and ZnT8A were measured by radioimmune
assay (RIA) as previously reported (27–29). The positive
boundary values of antibodies were: GADA≥0.05 titer, IA-
2A≥0.02 titer, ZnT8A≥0.011 titers. The sensitivities were 78%,
74%, and 70%, respectively. The specificity was 96.7%, 96.7%,
and 98.9%, respectively. In accordance with the Islet
Autoantibody Standardization Program (IASP 2012). The
suspicious positive samples were confirmed by secondary testing.
May 2022 | Volume 13 | Article 897047
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Flow Cytometry
5x105 – 1x106 cells were harvested and stained for surface and
intracellular markers for flow cytometric analysis as described (30).
All antibodies were purchased from BD Biosciences or Biolegend.
Briefly, living cells were labeled with Fixable Viability Stain 620 dye
and then incubated with Fc block for 10 minutes. Surface staining
was performed at 4°C using CD4-APC-Cy7, CD8-PE, glucose
transporter 1 (GLUT1)-Alexa Fluor 647 in FACS buffer (1% BSA
in PBS) for 20 min. Some cells were fixed and permeabilized (BD
Biosciences, 554714) for intracellular staining, and mitochondrial
intima Carnitine palmitoyltransferase 1A (CPT1A)- Alexa Fluor
647 of these cells were labeled.

To measure glucose uptake or fatty acid uptake, cells were
incubated in glucose-free RPMI 1640 medium containing 100
mmol/L 2NBDG (2-[N-(7-nitrobenz-2-oxa-1, 3-diaxOL-4-yl)
Amino]-2-deoxyglucose, Thermo Fisher) or in PBS with 20
mmol/L FA-free BSA (A8806; Sigma-Aldrich) containing 2
mmol/L BODIPY FL C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-
3a,4a-Diaza-s-Indacene-3-HexadecanoicAcid, Thermo Fisher)
for 30 minutes at 37°C in a cell incubator. 2NBDG and
BODIPY uptake was quenched by adding 4× volume of ice-
cold PBS with 2% FBS, and flow cytometry analysis was
performed after surface and intracellular staining.

For all flow cytometry studies, fluorescence was measured
using a BD FACSCanto II flow cytometer and data were
analyzed with FlowJo 10.0 software. The single fluorescence
sample was used to calibrate the instrument regularly.
Lymphocytes were circled by the forward/lateral scattering
Angle (FSC-A/SSC-A), Adhesion cells were removed by FSC-A/
FSC-H. The gating strategy is shown in Supplement Figure 1. The
percentages of 2NDBG+, BODIPY+, GLUT1+, and CPT1A+ cells
were marked to assess glucose and fatty acid uptake levels as
described in previous publications (31–33).
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
SPSS 26.0 and GraphPad Prism 9 were used for analysis. Data are
expressed when normally distributed as means ± SD and when
abnormally distributed as median (25th, 75th percentiles).
Comparison of means using the T test or Mann-Whitney U test.
The enumerative data is expressed as a constituent ratio or rate.
Frequency differences were compared using the c2 test. Spearman or
Pearson analysis was used for correlation analysis and Linear
regression analysis was applied to the glucose uptake vs clinical
characteristics when used as a continuous variable. The analysis of
covariance (ANCOVA) was used to adjust for the course of disease.
Generalized Estimating Equations (GEE) was used to analyze
repeated measurement data during follow-up (25). GEE was
employed to compare the C-peptide and HbA1c levels in patients
with high and low T cells glucose uptake. Survival analysis of
preserved beta-cell function (2h-CP>200 pmol/L) was performed
using the Kaplan-Meier method. P < 0.05 was considered significant.
RESULTS

Basic Characteristics of Subjects
A total of 86 patients (48 males and 38 females) with T1D were
recruited. Their median age of onset was 14.4 (11.1, 20.6) years, and
the disease course was 3.4 (1.1, 6.4) months. The clinical
characteristics of T1D and NC (n=45) individuals were shown in
Table 1. No significant differences in gender proportion, age, and
BMI were found between the two groups.

Intracellular T Cell Glucose and Fatty Acid
Uptake in T1D
The fatty acid uptake of CD4+ and CD8+ T cells was not
significantly different between the T1D and NC individuals,
TABLE 1 | The clinical characteristics of T1D patients and NC individuals.

NC (n = 45) T1D (n = 86) P value

Male (%) 55.6 55.8 0.977
Age (years) 23.0 (11.0, 25.5) 14.4 (11.1, 20.6) 0.090
Height (cm) 154.2 ± 11.7 155.1 ± 17.3 0.832
Weight (kg) 47.1 ± 17.8 45.8 ± 14.8 0.704
BMI (kg/m2) 19.2 ± 4.7 18.4 ± 3.0 0.478
Course of disease (months) / 3.4 (1.1, 6.4)
DK/DKA (%) / 89.3
FCP (pmol/L) / 162.9 (112.8, 230.3)
2h-CP (pmol/L) / 434.9 (246.7, 725.9)
HbA1c (%) / 8.5 ± 2.8
HbA1c (mmol/mol) 69.4 ± 7.1
GADA titer / 0.37 (0.09, 1.04)
IA-2A titer / 0.45 (0.00, 1.56)
ZnT8A titer / 0.07 (0.00, 0.20)
Number of positive autoantibodies (%)
1 / 20.7
2 / 41.4
3 / 36.8
Daily dose of insulin (U/kg) / 0.49 ± 0.28
May 2022 | Volume 13 | Article
Kolmogorov-Smirnov testedthenormaldistributionofmeasurementdata,whichwasexpressedasmeans±SD,andtheabnormaldistributionwasexpressedasthemedian (25th,75thpercentiles).The
t test, Mann-Whitney U test, and c2 test were be used. T1D, type 1diabetes; NC, normal control; BMI, Body mass index; DK/DKA, ketosis/ketoacidosis; FCP, Fasting C-peptide; 2h-CP, 2 hours
postprandial C-peptide; HbA1c, hemoglobin A1c; GADA, Glutamic acid decarboxylase antibody; IA-2A, protein tyrosine phosphatase antibody; ZnT8A, Zinc transporter 8 antibody.
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as indicated by similar levels of BODIPY and CPT1A
(Supplement Figure 2). Whereas, the upregulated of 2NBDG
and GLUT1 in T cells suggested an enhanced intracellular
glucose uptake in T1D patients, compared to the NC
group (Figure 1).
Association of T Cells Glucose Uptake
With Clinical Features in T1D
Further, the association of T cell glucose uptake (measured by
2NBDG uptake and GLUT1 expression) with clinical features in
T1D was investigated. Subgroup analysis demonstrated that the
patients with better beta-cell function (FCP>150.0 pmol/L or
2h-CP >450.0 pmol/L) and better glycemic control (HbA1c≤
Frontiers in Immunology | www.frontiersin.org 4
7.0%/53.0 mmol/mol) had lower glucose uptake of T cells
(Figure 2). Subsequently, the correlation analysis confirmed
that the glucose uptake of T cells was negatively correlated with
FCP and 2h-CP, and positively correlated with HbA1c, as the
correlation of these clinical indications with 2NBDG+ and
GLUT1+ in CD4+/CD8+ T cells was consistent (Table 2).
Similar results were found in regression analysis (Figure 3).
There was no difference in T cell glucose uptake in the subgroup
with other clinical indicators such as the age of onset,
gender, BMI, the status of islet autoantibodies, etc.
(Supplement Table 1). The correlation analysis of T cell fatty
acid uptake (%BODIPY and CPT1A of T cells) with clinical
characteristics in T1D was not statistically different as well
(Supplement Table 2).
A B

C D

FIGURE 1 | Glucose uptake and GLUT1 expression of CD4+/CD8+ T cells in patients with T1D. T1D patients demonstrated enhanced intracellular glucose uptake.
(A, C) The proportion of 2NBDG+ and GLUT1+ cells in CD4+ cells. (B, D) The proportion of 2NBDG+ and GLUT1+ cells in CD8+ cells. The bar and error bar =
mean and SD. T1D, type 1diabetes; NC, normal control; GLUT1, glucose transporter 1.
May 2022 | Volume 13 | Article 897047
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The Status of Glucose Uptake in T Cells
Is Associated With Beta-Cell Function
and Its Progression
In all T1D population, the median of %2NBDG of CD4+/CD8+

T cells and %GLUT1 of CD4+/CD8+ T cells were 5.81%, 5.82%,
4.88% and 3.72%, respectively. When the above 4 indicators of
an individual were all higher than the median value, they were
defined as the high glucose uptake group (n=37), and when
they were all lower than the median value, they were defined as
the low glucose uptake group (n=37). The other 12 cases were
excluded from further analysis because their percentage of
2NBDG+ and GLUT1+ in CD4+/CD8+ T cells did not fulfill the
above criteria (Table 3). The comparison of clinical features
between the two groups showed that patients with higher T cell
glucose uptake had a shorter diabetes course (1.4 months vs 5.9
Frontiers in Immunology | www.frontiersin.org 5
months, P<0.001), lower FCP (121.8 pmol/L vs 211.3 pmol/L,
P<0.001) and 2h-CP (271.8 pmol/L vs 702.4 pmol/L, P<0.001),
and expected higher HbA1c levels (9.8% vs 6.6%, or 83.6
mmol/mol vs 48.6mmol/mol, P<0.001). Moreover, there
were still significant differences in FCP, 2h-CP, and HbA1c
between the two groups after the course of disease was
corrected (Table 4).

Further results on the dynamic changes in beta-cell function
and HbA1c levels between the two groups were analyzed with
follow-up data. It is noteworthy that the advantage of preserved
beta-cell function and trajectory of glycemic control in patients
with low T cells glucose uptake was maintained during the 36-
month follow-up period (Figure 4). Compared with the high
glucose uptake group, FCP, 2h-CP, and AUC-CP of the low
glucose uptake group were 60.5 (95%CI: 21.1-99.8) pmol/L,
A

C

B

FIGURE 2 | The status of glucose uptake in T cells is related to clinical features of T1D. Patients with FCP>150.0 pmol/L (A) 2h-CP >450.0 pmol/L (B) and HbA1c ≤

7.0%/53.0 mmol/mol (C) had lower glucose uptake in T cells. The bar and error bar = mean and SD. FCP, Fasting C-peptide; 2h-CP, 2 hours postprandial C-peptide;
HbA1c, hemoglobin A1c; 2NBDG, 2-deoxyglucose; GLUT1, glucose transporter 1. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 2 | Correlation analysis between T cell glucose uptake and clinical indicators in T1D.

T cell 2NBDG uptake T cell GLUT1 expression

CD4+2NBDG+ (%) CD8+2NBDG+ (%) CD4+GLUT1+ (%) CD8+GLUT1+ (%)

r P value r P value r P value r P value

FCP -0.316 0.003 -0.356 0.001 -0.266 0.015 -0.274 0.012
2h-CP -0.278 0.010 -0.388 0.000 -0.233 0.035 -0.358 0.001
HbA1c 0.269 0.013 0.445 0.000 0.274 0.013 0.198 0.073
May 2022 |
 Volume 13 | Articl
Spearman or Pearson analysis was used. FCP, Fasting C-peptide; 2h-CP, 2 hours postprandial C-peptide; HbA1c, hemoglobin A1c; 2NBDG, (2-[N-(7-nitrobenz-2-oxa-1, 3-diaxOL-4-yl)
Amino]-2-deoxyglucose; GLUT1, glucose transporter 1.
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146.3 (95%CI: 14.1-278.5) pmol/L, and 206.4 (95%CI: 39.9-
372.8) pmol/L higher, respectively, while HbA1c was 0.9 (95%
CI: 0.09-1.74) % lower. In addition, this advantage of better beta-
cell function in the low glucose uptake group persisted after
Frontiers in Immunology | www.frontiersin.org 6
adjustment for the course of the disease, C-peptide at onset, and
HbA1c (Table 5). Furthermore, The survival analysis showed
that the proportion of beta-cell preservation (defined as 2h-
CP>200 pmol/L) in patients with low glucose uptake was also
A C E

B D F

FIGURE 3 | Regression analysis of T cell glucose uptake with clinical characteristics. Linear regression analysis of T-cell glucose uptake vs FCP (A, B), 2h-CP (C, D)
and HbA1c (E, F). The black line and dots represent CD4+ T cells, the gray line and dots represent CD8+ T cells. FCP, Fasting C-peptide; 2h-CP, 2 hours
postprandial C-peptide; HbA1c, hemoglobin A1c; 2NBDG, 2-deoxyglucose; GLUT1, glucose transporter 1.
TABLE 3 | Clinical characteristics in T1D patients with different status of glucose uptake in T cells.

Patients with low glucose uptake in T cells (n = 37) Patients with high glucose uptake in T cells (n = 37) P value

Age (years) 14.5 (11.5, 20.4) 13.4 (9.7, 20.7) 0.427
Male (%) 54.1 56.8 0.815
Course (months) 5.9 (3.6, 8.5) 1.4 (0.6, 3.2) <0.001
DK/DKA-onset (%) 94.3 86.5 0.264
Hight (cm)

158.1 ± 16.4
151.1 ± 18.3 0.085

Weight (kg)
48.5 ± 15.4

42.5 ± 14.6 0.091

BMI (kg/m2)
18.8 ± 3.2

18.1 ± 3.1 0.298

FCP (pmol/L) 211.3 (159.1, 324.0) 121.8 (72.3, 163.8) <0.001
2h-CP (pmol/L) 702.4 (454.2, 883.1) 271.8 (167.5, 425.7) <0.001
HbA1c (%) 6.6 (5.8, 7.6) 9.8 (7.9, 12.4) <0.001
HbA1c (mmol/mol) 48.6 (39.9, 59.6) 83.6 (62.8, 112.0)
Insulin dose (U/kg/day) 0.5 (0.3, 0.6) 0.5 (0.3, 0.7) 0.360
GADA titer 0.43 (0.15, 1.12) 0.23 (0.03, 0.92) 0.062
IA-2A titer 0.57 (0.01, 1.76) 0.71 (0.00, 1.67) 0.944
ZnT8A titer 0.10 (0.01, 0.19) 0.07 (0.00, 0.25) 0.800
Number of positive autoantibodies (%)

1 13.5 27.0

2 40.5 45. 9 0.165
3 45.9 27.0
May 2022 | Volume 13 | Article
Data are expressed when normally distributed as means ± SD and when abnormally distributed as median (25th, 75th percentiles). The t test, Mann-Whitney U test, and c2 test were be
used. T1D, type 1diabetes; BMI, Body mass index; DK/DKA, ketosis/ketoacidosis; FCP, Fasting C-peptide; 2h-CP, 2 hours postprandial C-peptide; HbA1c, hemoglobin A1c; GADA,
Glutamic acid decarboxylase antibody; IA-2A, protein tyrosine phosphatase antibody; ZnT8A, Zin transporter 8 antibody.
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significantly higher than that in the high glucose uptake
subgroup within 36 months after onset (Figure 5).
DISCUSSION

In this study, we showed that intracellular glucose uptake of
CD4+/CD8+ T cells is abnormally enhanced in T1D and the
status of glucose uptake in T cells is associated with beta-cell
function and progression. To the best of our knowledge, this is
the first study focusing on the association of T cell glucose uptake
with clinical indicators and disease progression in T1D,
providing new insights into the mechanism and intervention
targets in the field of immunometabolism. It is well recognized
that metabolism and the immunological state are inextricably
Frontiers in Immunology | www.frontiersin.org 7
linked (34). With the arising studies focusing on the intrinsic
metabolic pathways of immune cells themselves such as
glycolysis and Krebs cycle (35–37), immunometabolism has
emerged as a major mechanism central to immune regulation.
In this way, the metabolic signaling of immune cells drives cell
fate. Considering the effect of the microenvironment on cell
metabolism, immune cells can adopt programs specific for the
tissues where they infiltrate and reside, highlighting
opportunities of immunometabolism findings for clinical
translation (38, 39).

However, puzzlingly, in the field of T1D where T cells are the
primary mechanism, whether intra-T cellular metabolism is
involved in the pathological process of T1D remains unclear.
Through our T1D cohort study, we found the glucose uptake in
T cells was significantly increased in T1D, which was mainly
TABLE 4 | Clinical characteristics in T1D after adjustment for disease course.

Low glucose uptake High glucose uptake P value

Mean ± Std. Error 95% CI Mean ± Std. Error 95% CI

FCP (pmol/L) 225.4 ± 19.3 186.9-263.9 147.5 ± 19.3 109.0-185.9 0.010
2h-CP (pmol/L) 613.5 ± 46.6 520.6-706.4 378.0 ± 46.6 285.1-470.9 0.002
HbA1c (%) 7.5 ± 0.4 6.7-8.4 9.8 ± 0.4 8.9-10.6 0.001
May 2022 | Volume 13 | Article
The ANCOVA analysis was used. Covariates appearing in the model are evaluated at the following values: course of disease= 4.43 months. FCP, Fasting C-peptide; 2h-CP, 2 hours
postprandial C-peptide; HbA1c, hemoglobin A1; CI, Confidence Interval.
A B

C D

FIGURE 4 | Progression of beta-cell function and trajectory of glycemic control in T1D during the follow-up. Generalized estimated equation (GEE) analysis was
used to compare the dynamic tendency of FCP (A), 2h-CP (B), AUC-CP (C) and HbA1c (D) levels between the two groups of patients during a 36-month follow-up
period. The blue line = patients with low T cells glucose uptake, red line = patients with high T cells glucose uptake. The error bar means SD. The statistical
difference between the curves of the two groups was represented by P value. The low glucose group was on average b higher than that of high glucose group over
a 36-month period. FCP, Fasting C-peptide; 2h-CP, 2 hours postprandial C-peptide; AUC-CP, Area under curve of C-peptide; HbA1c, hemoglobin A1c.
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reflected as increased expression of GLUT1, a key transporter in
the glucose metabolism pathway, and uptake of 2NBDG. Also,
our results showed the abnormality of T cell glucose uptake was
significantly correlated with islet function progression and
glycemic control trajectory. Although no previous data has
been reported about the association of intra-T cellular
metabolism with beta-cell function progression, a few cross-
sectional studies reported the status of T cell metabolism in T1D
patients. Our results are similar to Kong BS’ research in 2021
which found that patients with T1D had enhanced CD4+ T cell
glycolysis and decreased oxidative phosphorylation (40).
Likewise, in NOD mice, increased 2NBDG uptake was also
detected in NRP-V7-reactive T cells (a sort of diabetes
pathogenic T cell) (21). A study by Vignali D found that
GLUT1 was overexpressed in specific stem memory T cells by
investigating the metabolic signature of naïve precursors
stimulated with GAD65. And the similar metabolic signature
was also found in influenza-specific T cells, indicating that this
metabolic profile is not confined to autoreactive T cells (23).
However, in this study, the 2NBDG uptake and mitochondrial
mass and activity were similar among circulating CD8+ T cell
subsets and no significant changes were found in T1D, indicating
that the metabolic dysregulation of T1D not directly impact the
basal metabolism of resting circulating T cell (23), which is not
consistent with our results. It should be noted that the cells
examined in the above studies were different. Upregulation of
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glucose metabolism was detected in pathogenic T cell
populations with a specific antigen (NRP-V7 specific, GAD65,
or influenza), but it is not uniformly in the circulating cells,
which most will be of naïve phenotype, just as glucose
metabolism is upregulated in CD4+ T cells (in the Kong BS
study) but not in a subset of CD8+ T cells with different
phenotypes (in the Vignali D study). We detected increased T
cell glucose uptake in circulating CD4+ and CD8+ T cells from
individuals with a large sample size with regular follow-up data,
which might provide some solid information. Most importantly,
our finding that abnormal glucose uptake of T cells is
significantly correlated with beta-cell function and its
progression. It offers potential markers for evaluating disease
prognosis and suggests that the presence of a population of T
cells characterized by elevated glucose metabolism enhances the
immune attack on beta cells in T1D.

The causes of increased glucose uptake in T cells in T1D are
unclear. Our primary consideration is hyperglycemia in the
peripheral circulation of diabetes. However, there is little evidence
of the relationship between hyperglycemia and the energy
metabolism of immune cells. A study in a mouse model of
autoimmune colitis with high glucose uptake found that
hyperglycemia did not affect intracellular CD4+ T cell metabolism
(41). However, it has also been reported that hyperglycemia can
lead to increased glycolysis in activated T cells, resulting in
increased IFN-g production and non-antigen specific
inflammation (42). Recent studies found T cell glucose
metabolism decreased in patients with type 2 diabetes (33, 43)
which may provide strong evidence that hyperglycemia is not the
cause of changes in T cell glucose metabolism. In our study, the
differential glucose uptake persists in beta-cell function progression
after correction for glycation. Thus, the role of hyperglycemia may
be limited. On the other hand, we consider that the enhanced
glucose metabolism in T cells may be caused by susceptibility
mediated by signaling pathways, oxidative stress, or
immunomodulatory molecules. Enhanced T cell glucose
metabolism has also been found in other autoimmune diseases
including Systemic lupus erythematosus, Rheumatoid Arthritis, and
Multiple Sclerosis (44–46). The metabolic abnormalities of T cells
may be related to the production of autoantibodies to metabolic
enzymes or the activation of the phosphoinositide 3-kinase (PI3K)-
Akt and mammalian target of rapamycin (mTOR) pathway, which
mediates susceptibility to immunometabolism abnormality in
FIGURE 5 | Survival curves of beta-cell preservation in T1D patients with
different intracellular T cell glucose uptake status. The blue line = patients with
low T cells glucose uptake, red line = patients with high T cells glucose
uptake. 2h-CP>200 pmol/L as defined as beta-cells preservation. Log-rank
survival analysis is used. 2h-CP, 2 hours postprandial C-peptide.
TABLE 5 | Progression of beta-cell function in patients with different status of glucose uptake in T cells.

FCP (pmol/L) 2h-CP (pmol/L) AUC-CP (pmol/L)

b (95%CI) P b (95%CI) P b (95%CI) P

Model 1
Low glucose uptake 60.5 (21.1-99.8) 0.001 146.3 (14.1-278.5) 0.010 206.4 (39.9-372.8) 0.001
High glucose uptake Ref Ref Ref
Model 2
Low glucose uptake 53.8 (20.2-93.4) 0.008 138.1 (10.2-299.1) 0.034 191.4 (29.1-353.7) 0.021
High glucose uptake Ref Ref Ref
Ma
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FCP, Fasting C-peptide; 2h-CP, 2 hours postprandial C-peptide; AUC-CP, Area under curve of C-peptide; Ref, reference.
Model 1: unadjusted.
Model 2: adjusted for course of disease, C-peptide at onset, and hemoglobin A1c.
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autoimmune diseases including T1D (16, 18). Oxidative stress and
mitochondrial dysfunction have also been shown to play an
important role in abnormal T cell metabolism in autoimmune
diseases (47). In addition, the immunemolecule programmed death
1 (PD-1) is a key regulator of T cell metabolic reprogramming,
which has been found to be involved in the pathogenesis of T1D
(30, 48, 49) and a study found that knocking out PD-1 on Treg cells
in NOD mice significantly reduced the incidence of NOD mice by
regulating intracellular metabolism (50).

Enhanced T cell metabolism was also detected in NOD mice
and when prediabetic NOD mice were treated with 2-
deoxyglucose to block aerobic glycolysis, islet antigen-specific T
cell frequency and islet infiltrating lymphocytes decreased, beta-
cell degranulation was improved (21). Similarly, in the adoptive
transfer model of T1D, a competitive inhibitor of the glycolytic
rate-limiting enzyme of CD4+ T cells reduced T cell responses to b
cell antigen in vitro, thus reducing the immunopathological
parameters associated with disease onset as 57% of animals
remaining euglycemic at the end of the study period (22). Other
studies also found that there are some potential immunotherapy
drugs for T1D by inhibiting the T cell glucose metabolism pathway
(51–53). These evidences, to some extent, suggest that T cell
metabolism is an initiating factor in the pathogenesis of T1D.
However, since the association between T cell metabolism and
disease progression in T1D patients is poorly defined, our study
provides human pathophysiological evidence for T cell glucose
metabolism as a potential target.

Although the relationship between tissue infiltration and
circulating immune cells is not fully understood, some
evidence supports the hypothesis that effector cells migrate to
the pancreas and that this autoimmune process persists in
disease (54–56). The results of enhanced glucose metabolism in
circulating T cells in T1D are consistent with the pathogenicity of
T1D primarily caused by Th1 and Th17 and cytotoxic CD8+ T
cells (54), as these cells require extensive glycolysis for energy
during activation and differentiation. Furthermore, we found
that changes in T cell glucose metabolism were correlated with
beta-cell function progression within 36 months follow-up,
suggesting that similar intracellular metabolic changes may
also exist in T cells in islet infiltration. Anyway, further
research will have to sort this out more completely.

Our study has some limitations, the most important of which
is the failure to utilize the seahorse XF equipment to detection of
intracellular glycolysis and aerobic phosphorylation pathways
directly due to the limited number of cells. And the follow-up
data on T cell metabolism is lacking to explore its mechanism
during disease progression. Further, the intracellular glucose
uptake is detected in bulk CD4+ and CD8+ T cells rather than
pathogenic T cells with specific antigenic targets such as glucose-
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6-phosphatase catalytic subunit-related protein (IGRP) or GAD
that can be detected by MHC tetramer technology as in other
studies (21, 23), which is also one of our limitatons.

Overall, the association between intra-T cellular glucose
uptake and progression of beta-cell function in T1D provides a
promising possibility of T cell metabolism as biomarkers and
potential targets. While there are trials focusing on immune
intervention in T1D, the translation to specific T cell metabolism
might provide a new and effective therapeutic strategy for T1D.
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