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Dendritic Cell Subsets in Asthma: 
impaired Tolerance or exaggerated 
inflammation?
Heleen Vroman, Rudi W. Hendriks and Mirjam Kool*

Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands

Asthma is a prevalent chronic heterogeneous inflammatory disease of the airways, 
leading to reversible airway obstruction, in which various inflammatory responses can be 
observed. Mild to moderate asthma patients often present with a Th2-mediated eosino-
philic inflammation whereas in severe asthma patients, a Th17-associated neutrophilic or 
combined Th2 and Th17-mediated eosinophilic/neutrophilic inflammation is observed. 
The differentiation of these effector Th2 and Th17-cells is induced by allergen-exposed 
dendritic cells (DCs) that migrate toward the lung draining lymph node. The DC lin-
eage comprises conventional DCs (cDCs) and plasmacytoid DCs (pDCs), of which the 
cDC lineage consists of type 1 cDCs (cDC1s) and cDC2s. During inflammation, also 
monocytes can differentiate into so-called monocyte-derived DCs (moDCs). These 
DC subsets differ both in ontogeny, localization, and in their functional properties. New 
identification tools and the availability of transgenic mice targeting specific DC subsets 
enable the investigation of how these different DC subsets contribute to or suppress 
asthma pathogenesis. In this review, we will discuss mechanisms used by different DC 
subsets to elicit or hamper the pathogenesis of both Th2-mediated eosinophilic asthma 
and more severe Th17-mediated neutrophilic inflammation.
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Allergen-activated dendritic cells (DCs) are essential not only for the induction of T helper (Th)-cell 
differentiation from naïve T-cells in the mediastinal lymph node (MLN) but also to drive pulmo-
nary inflammation during continuous allergen exposure (1). Lung DCs are a heterogeneous cell 
population that contains two types of conventional DCs (cDCs), e.g., cDCs type 1 (cDC1s) cDC2s. 
Next to cDCs, the lungs also contain plasmacytoid DCs (pDCs) and under inflammatory condi-
tions, monocyte-derived DCs (moDCs) (2–4). DCs can become activated by allergen exposure 
and by cytokines secreted by the airway epithelium (5, 6). Activation of DCs requires induction of 

Abbreviations: AHR, airway hyperresponsiveness; BAL, bronchoalveolar lavage; BATF3, basic leucine zipper ATF-like tran-
scription factor 3; BM, bone marrow; C, complement; CCL, chemokine ligand; CCR, chemokine receptor; cDC, conventional 
dendritic cell; CDP, common DC progenitor; cMoP, common monocyte progenitors; CSF-1, colony-stimulating factor 1; DC, 
dendritic cell; ID-2, DNA-binding protein inhibitor 2; Der p1, Dermatophagoides pteronyssinus antigen P1; DTR, diphtheria 
toxin; Flt3L, FMS-like tyrosine kinase 3 ligand; GM-CSF, granulocyte macrophage colony-stimulating factor; HDM, house dust 
mite; HLA-DR, human leukocyte antigen-D; HSC, hematopoietic stem cell; ICOSL, inducible T-cell costimulator ligand; ID2, 
inhibitor of DNA binding 2; IFN-α, interferon alpha; IL, interleukin; IRF, interferon regulatory factor; MDP, macrophage DC 
progenitor; MLN, mediastinal lymph node; mDCs, myeloid DCs; moDC, monocyte-derived DC; OVA, ovalbumin; OX-40L, 
OX-40 ligand; PAR-2, protease-activated receptor 2; pDC, plasmacytoid dendritic cell; PD-L1, programmed death-ligand 1; 
PPARγ, peroxisome proliferator-activated receptor gamma; PU.1, hematopoietic transcription factor PU.1; RA, retinoic acid; 
RALDH, retinal dehydrogenase; RBPJ, recombination signal-binding protein 1 for J-Kappa; RELB, v-rel avian reticuloendothe-
liosis viral oncogene homolog B; STAT3, signal transducer and activator of transcription 3; Th, t helper; TLR, toll like receptor; 
TNFAIP3, tumor necrosis factor alpha interacting protein 3; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.
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FiguRe 1 | Murine dendritic cell (DC) ontogeny. Common DC precursors (CDP) and common monocytic progenitors (cMoP) develop from myeloid-derived 
precursors (MDP). CDPs differentiate into plasmacytoid DCs (pDCs) under the control of E2-2, PU.1, interferon regulatory factor (IRF)8 and Ikaros, or pre-
conventional DCs (cDCs) under the control of IRF8. Pre-cDCs give rise to pre-cDC1 and pre-cDC2, which finally differentiate into cDC1s and cDC2s. cMoPs give 
rise to monocytes that can further differentiate into monocyte-derived DCs (moDCs).
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the pro-inflammatory transcription factor NF-κB, which can be 
negatively regulated by various proteins including the deubiqui-
tinating enzyme tumor necrosis factor alpha interacting protein 
3/A20 (7).

DC OnTOgenY

Dendritic cells originate from hematopoietic stem cells (HSCs) 
in the bone marrow (BM). These HSCs differentiate into the 

macrophage DC progenitors (MDPs) (8), which give rise to 
common monocyte progenitors (cMoPs) and common DC 
progenitors (CDPs) (Figure  1). Whether CDPs also develop 
without the intermediate MDP stage is currently unknown. CDPs 
give rise to pre-cDCs and pDCs (9). BM pre-cDCs contain pre-
cDC1s and pre-cDC2s that are committed to cDC1 and cDC2 
development. This indicates that the decision to become cDC1s 
or cDC2s already occurs in the BM and not in the periphery  
(10, 11). MoDCs develop from cMoPs (12, 13) (Figure 1).
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LOCATiOn OF PuLMOnARY DC SuBSeTS

Because pulmonary DC numbers are low and until recently mul-
tiple markers were needed to specify DC subsets, the number of 
studies that investigated the location of pulmonary DC subsets 
during steady state is limited. It is known that cDC1s are located 
in close proximity of the airway epithelium, whereby their expres-
sion of CD103 (alpha integrin) and beta7 integrin (Figure 2A) 
enables interaction with E-cadherin expressed by epithelial cells. 
Compared to other DC subsets, cDC1s highly express tight 
junction proteins, which facilitate the sampling of antigen by 
extending their dendrites into the airway lumen. cDC1s are also 
found in the proximity of vascular endothelial cells (14). Most 
studies that investigated cDC2 localization used CD11b (14–16); 
however, CD11b is not exclusively expressed by cDC2s and is also 
highly expressed by moDCs (1). A recent study could distinguish 
moDCs and cDCs by crossing MacBlue mice (Csf1r-ECFPtg/+) to 
Itgax-YFP or Cx3cr1gfp/+ mice, in which cDCs express YFP, using 
Itgax-YFP mice and monocytes/macrophages express GFP, using 
Cx3cr1gfp/+ mice. This study indicated that cDCs are located near 
the large airways, whereas monocytes and alveolar macrophages 
are localized in the alveolar space (17). Using MacBlue mice, 
in situ traveling of monocytes and monocyte-derived cells in the 
lungs was investigated, revealing that monocyte-derived cells are 
located at the interface of blood vessels and the airways (17, 18). 
During steady state, the majority of pulmonary pDCs are located 
in the alveolar interstitium (14, 19); however, pDCs are also 
found in pulmonary infiltrates in an ovalbumin (OVA)-mediated 
asthma model (19).

Currently, investigating the localization of DC subsets can 
be performed with fewer markers, since Guilliams et al. showed 
that expressions of interferon regulatory factor (IRF)4 and IRF8 
are exclusive for cDC2s and cDC1s, respectively, across different 
organs and species (3). Combining these markers with a universal 
DC marker such as CD11c should visualize cDC subsets and ease 
localization studies.

MuRine COnvenTiOnAL TYPe 1 DCs

Development of cDC1
cDC1 development is highly dependent on the transcription 
factor IRF8, as IRF8 drives DC precursor generation (11) and 
development of pre-cDCs in the BM, and promotes survival of 
terminally differentiated cDC1s (20). Basic leucine zipper ATF-
like transcription factor 3 (BATF3) is implicated in cDC develop-
ment (21), whereas inhibitor of DNA binding 2 drives terminal 
differentiation of cDC1s (22) (Figure  1). Ontogeny of cDC1s 
is regulated by cytokines, as FMS-like tyrosine kinase 3 ligand 
(Flt3L)-deficient mice completely lack cDC1s in the lungs (1, 23).

Function of cDC1s in Asthma
cDC1s are well appreciated for their superior cross-presentation 
of antigens to CD8+ T-cells, essential for induction of virus-
specific CD8+ T-cells and antitumor immune responses  
(21, 24, 25). However, cDC1s have an inferior capacity to take 
up allergens compared to other DC subsets (1). Whether cDC1s 

are also implicated in Th2 skewing in response to allergen expo-
sure remains controversial, as cDC1s are reported to promote, 
inhibit, or be redundant for Th2 immune responses (1, 26, 27). 
These differences may be explained by the allergen used, amount 
of allergen, or the mouse strain used to deplete cDC1s. Besides 
promoting CD8+ T-cell responses, cDC1s are often associated 
with a tolerogenic function. cDC1s can induce differentiation 
of Tregs upon house dust mite (HDM) exposure through induc-
tion of retinoic acid (RA) and peroxisome proliferator-activated 
receptor gamma (PPARγ) (26, 28) (Figure  2A). During OVA 
or HDM-mediated airway inflammation (29) and helminth 
infections (30), cDC1s can limit Th2 inflammatory responses, 
emphasizing their tolerogenic potential. Anti-inflammatory 
properties of Helicobacter pylori treatment, which dampens 
allergic airway disease also depend on cDC1s (31). Furthermore, 
CD103-deficient mice exposed to an OVA-mediated asthma 
protocol containing five OVA aerosol challenges developed a 
more pronounced eosinophilic inflammation indicating their 
tolerogenic role during Th2-mediated immune responses (29). 
In contrast, CD103−/− mice that received only a single OVA chal-
lenge had decreased eosinophilic inflammation, arguing against 
the tolerogenic properties of cDC1s. Absence of CD103 did not 
affect DC migration, but decreased the percentage of allergen-
loaded migratory DCs in the MLN (32). Because CD103 can be 
expressed on both T-cells and cDC1s (33), it is hard to determine 
which effects are caused by the DCs. However, it is conceivable 
that cDC1s are essential for allergen uptake at low antigen con-
centrations. This could explain the decrease in allergen-loaded 
DCs and the absence of Th2-cell immune responses with only 
a single OVA challenge. By increasing the allergen exposures, 
absence of cDC1s can be overcome by protease activity or passive 
leakage, enabling other DC subsets to access the allergens and 
migrate toward the MLN.

In addition to their capabilities to suppress Th2-cell dif-
ferentiation, cDC1s also control Th17 immune responses upon 
Aspergillus infections through secretion of interleukin (IL)-2 
(34), indicating that cDC1s maintain homeostasis in the airways. 
Furthermore, cDC1s are also important for the removal of apop-
totic cells, because resolution of airway inflammation is reduced 
in CD103-deficient mice (29), and cDC1s have been shown to 
remove apoptotic cells (35).

As it was described that pulmonary cDC1s express Langerin 
(14), some studies that investigated pulmonary cDC1 function 
used Langerin-diphtheria toxin (DTR) mice to specifically 
deplete pulmonary cDC1s (1). However, flow cytometric analysis 
showed that only a minority of the pulmonary cDC1s expressed 
Langerin (36), indicating heterogeneity within the pulmonary 
cDC1 population.

MuRine COnvenTiOnAL TYPe 2 DCs

Development of cDC2
In contrast to knowledge on cDC1 development, the transcrip-
tional control of cDC2s is not well characterized. Differentiation 
of cDC2s from pre-cDCs is regulated by v-rel avian reticuloendo-
theliosis viral oncogene homolog B (37), PU.1 (38), recombination 
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FiguRe 2 | Dendritic cell (DC) functions in asthma. (A) Murine DC functions in asthma. Type 2 cDCs are essential for the migration and induction of differentiation of 
Th2 cells in the lung draining lymph node upon allergen exposure. Monocyte-derived DCs (MoDCs) are important for the chemotaxis of effector Th2 cells toward the 
lungs by secretion of chemokines CCL17 and CCL22. In asthmatic disease, plasmacytoid DCs (pDCs) suppress Th2-mediated inflammation via programmed 
death-ligand 1 (PD-L1) expression, whereas cDC1s induce regulatory T cells (Tregs) via expression of retinoic acid (RA). (B) DC alterations in asthmatic individuals. 
Conventional DCs, including both cDC1s and cDC2s of asthma patients display higher levels of interleukin (IL)-25R, thymic stromal lymphopoietin (TSLP) receptor, 
OX-40 ligand (OX-40L), and secretion of CCL17. Especially inducible T-cell costimulator ligand (ICOSL) expression in cDC2s of asthmatics is reduced whereas 
FcεRIa expression is increased in asthmatics that display a Th2 high phenotype. MoDCs of asthmatics display increased expression of human leukocyte antigen-D 
(HLA-DR), CD141 and protease-activated receptor 2 (PAR-2), and the anti-inflammatory cytokine IL-10, whereas IL-12 production is reduced. pDCs of asthmatics 
show increased expression of the IL-25R, whereas interferon alpha (IFN-α) secretion was reduced.
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signal-binding protein 1 for J-Kappa (39–41), and IRF4 (42–44). 
However, it is unknown during which cDC2 developmental stage 
these transcription factors are important (Figure 1). Also, the role 
of the cytokine Flt3L in cDC2 development is controversial, as it 
has been reported that cDC2 development is both dependent (1) 
and independent (23) of Flt3L. These differences are likely caused 
by different methods to distinguish cDC2s from moDCs, leading 
to cDC2 fractions containing moDCs that develop independent 
of Flt3L (1). The newly proposed universal gating strategy using 
IRF4 and IRF8 (3) makes the distinction between DC subsets 
easier and will help future studies investigating the role of spe-
cific transcription factors or cytokines in the development of DC 
subsets.

Function of cDC2s in Asthma
cDC2s can take up allergen very efficiently (1, 45), migrate well to 
the MLN, and induce proper T cell proliferation (1) (Figure 2A). 
cDC2s are essential for the induction of Th2-cell differentiation 
in allergen-exposed lungs (1, 45, 46) and possess the capability to 
induce Th17-cell differentiation in the gut (42, 47). In an HDM-
mediated asthma model, cDC2s induced both Th2 and Th17 
differentiation (48). HDM can be recognized by various innate 
receptors on the cell membrane of DCs, including C-type lectin 
receptors, such as Dectin-2 (49). Differentiation of both HDM-
mediated Th2 and Th17 is dependent on Dectin-2-mediated 
recognition and/or allergen uptake, as both Th2 and Th17 
cytokines are reduced in T-cells of Dectin-2-deficient mice (48). 
cDC2-deficient mice through IRF4 deficiency have reduced Th2 
immune responses in the airways upon sensitization in the airways 
(50) or in the skin (51). Similarly, no eosinophilic inflammation 
or Th2 differentiation was induced in mice in which IRF4 was 
depleted in mature DCs, using a different CD11cCre, which did 
not affect cDC2 cell development (52). This indicates the impor-
tance of cDC2s for the induction of Th2 differentiation. Dectin-1 
expression on DCs appears to be important for migration, as 
Dectin-1-deficient cDC2s display lower levels of CCR7, and have 
lower numbers of migratory cDC2s in the MLN. Furthermore, 
Dectin-1−/− mice did not develop eosinophilic inflammation, 
nor did they show induction of Th2 or Th17 cytokines in an 
HDM-mediated asthma model (53). These findings indicate 
that Dectin-1 is required for the induction of chemokines and 
chemokine receptors on cDC2s, enabling migration and T-cell 
differentiation. cDC2s exclusively express the TNF-superfamily 
member OX-40 ligand (OX-40L) (54), essential for Th2 cell 
differentiation, indicating the importance of cDC2s for Th2 
differentiation (Figure  2A). In neonatal mice, HDM-induced 
IL-33 production suppressed IL-12p35 expression and induced 
OX-40L in cDC2s, driving Th2 differentiation (55).

MuRine moDCs

Development of moDCs
As their name implicates and stated above, moDCs derive from 
monocytes. There are two types of monocytes, Ly6Chi and Ly6Clow 
monocytes (56). Ly6Chi monocytes migrate toward inflamma-
tory sites and give rise to Ly6Chi moDCs, Ly6Clow moDCs (57), 

and Ly6Clow monocytes (58). MoDCs downregulate Ly6C upon 
differentiation from monocytes (1). Ly6Clow monocytes patrol the 
vasculature (56, 59) and differentiate into more long-lived Ly6Clow 
moDCs (57). It is suggested that monocytes or moDCs can serve as 
cDC precursors, in which cDC1s arise from Ly6Chi CCR2hi mono-
cytes, and cDC2s develop from Ly6Clow CCR2low monocytes (60).

Function of moDCs in Asthma
After a primary high dose of HDM in the airways, moDCs 
accumulate within 48  h in the lungs and peak at 72  h in the 
MLN (1). HDM and other environmental factors trigger the 
airway epithelium to secrete chemokines and cytokines (61). 
Secretion of CCL2 will drive migration of monocytes toward the 
lungs (62), where they will differentiate into moDCs under the 
regulation of both CCL2 (1) and colony-stimulating factor 1 (23). 
MoDCs are efficient in antigen uptake; however, their capacity to 
drive T-cell proliferation is inferior to cDC2s. Instead, moDCs 
produce vast amounts of cytokines and chemokines essential for 
the recruitment and activation of Th2-cells upon HDM exposure 
(1) (Figure 2A). This indicates that moDCs are dispensable for 
Th2 differentiation but essential during the effector phase of 
asthma models, as depletion of CD11b+ myeloid cells, which 
includes monocytes, during allergen challenge drastically reduces 
eosinophilia (63). Nevertheless, with high antigen dose, moDCs 
migrate toward the MLN and induce Th2 differentiation in the 
absence of cDCs upon exposure to HDM (1) or cockroach extract 
(64). Depletion of migratory cDCs enhances Th2 cell-mediated 
immune responses in an OVA-alum model (65). Furthermore, 
absence of Th2-cell-mediated immunity, due to the absence 
of DCs, can be reverted by an adoptive transfer of monocytes 
that differentiate into moDCs (66). Likewise, it was shown that 
systemic administration of BM-derived CD11b+ cells efficiently 
induces Th2-mediated eosinophilic airway inflammation (67). 
This implicates that at high allergen concentration, moDCs can 
acquire migratory capacities, induce Th2 differentiation, and 
thereby drive Th2-mediated immune responses.

MuRine pDCs

Development of pDCs
Plasmacytoid DCs differentiate directly in the BM from CDPs 
(68). Differentiation of pDCs depends on Flt3L and signal trans-
ducer and activator of transcription 3 signaling, in combination 
with transcription factors, such as E2-2, IRF8, Ikaros, and PU.1, 
of which E2-2 is highly specific for pDC development (69–71) 
(Figure 1).

Function of pDCs in Asthma
Plasmacytoid DCs are essential for antiviral immune responses 
as they produce large amounts of interferon alpha (IFN-α) after 
Toll-like receptor (TLR7) activation (72, 73). In comparison to 
other DC subsets, pDCs have a limited capacity to take up and 
present antigens (1, 19, 74, 75). pDCs have a tolerogenic function 
in asthma, as pDCs induce Treg cell differentiation (76, 77), and 
depletion of pDCs in Siglec-H-DTR mice increased the prolif-
eration of antigen-specific CD4+ T-cells (78). Increase in pDC 
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numbers, as induced by Flt3L treatment, alleviate eosinophilic 
inflammation, which is reversed upon pDC depletion (79). 
Programmed death-ligand 1 (PD-L1) expression on pDCs is 
essential for their suppressive effect, as PD-L1-deficient pDCs 
could not alleviate allergic airway inflammation, whereas IDO 
or inducible T-cell costimulator ligand (ICOSL)-deficient pDCs 
could do so (79) (Figure  2A). Development of HDM-driven 
allergic asthma can be inhibited by adoptive transfer of pDCs 
from sensitized donors (80). Different pulmonary pDC subsets 
have been described, e.g., CD8α−β−, CD8α+β−, and CD8α+β+ 
pDCs (81). Only CD8α+β− pDCs and CD8α+β+ pDCs have 
tolerogenic capacities, whereas CD8α−β− pDCs display more pro-
inflammatory functions upon TLR7 and TLR9 stimulation (81). 
Specifically, CD8α+β+ pDCs and CD8α+β− pDCs have increased 
expression of retinal dehydrogenase leading to RA production, 
resulting in increased Treg differentiation (81).

Plasmacytoid DCs are essential for beneficial effects observed 
in immunotherapy via complement subunit C1q. Administration 
of C1q reduces airway hyperresponsiveness (AHR) and eosino-
philia as efficiently as dexamethasone administration. pDC 
depletion abrogates the protective effect of C1q (82).

Viral infections are often detected during asthma exacerba-
tions. Viral particles activate DC subsets via TLR7, and its 
expression was decreased in pDCs by allergic inflammation. 
TLR7-deficient mice displayed reduced IFN secretion, increased 
virus replication, and increased eosinophilic inflammation and 
AHR, indicating that impaired TLR7 expression on pDCs by 
allergic inflammation exaggerates asthma exacerbations (83). 
Furthermore, pDCs transferred from donors with a respiratory 
tract syncytial virus (RSV) infection did not provide protection 
from Th2-mediated inflammation as transferred pDCs from 
naïve mice did (80). CpG-maturated pDCs are well capable of 
protecting from eosinophilic inflammation (79), suggesting that 
altered activation of pDCs affects their function.

HuMAn PuLMOnARY DC SuBSeTS

Transcriptional Development of  
Human DCs
In human lungs, three different DC subsets have been described, 
human DC1s, which express BDCA1/CD1c, DC2s, which 
expresses BDCA3/CD141 and pDCs, which express BDCA2/
CD123 (3, 4, 84). Gene expression profiles of human DC1s and 
DC2s revealed that human DC subsets resembled mouse cDC1s 
and cDC2s, respectively (3, 85–88). Development of human DCs 
is also highly dependent on Flt3L, as Flt3L injection drastically 
increases the number of blood DCs of healthy volunteers (89). 
Similar to that in mice, differentiation of human pDCs is medi-
ated by E2-2 (90), whereas cDC1 and cDC2 differentiation is 
controlled by BATF3 (91) and IRF4 (92, 93), respectively.

Location of Human DC Subsets  
in the Lungs
BDCA1+ cDC2s were increased in the airway epithelium of 
asthma patients that display a Th2 phenotype, whereas this was not 
observed in patients without a Th2 profile (94). DCs are increased 

in the outer wall of the large airways in patients who suffer from 
fatal asthma (95). These are likely moDCs, as they express XIIIa 
(95), a coagulation factor also expressed by macrophages in the 
skin (96). As both moDCs and macrophages are derived from 
monocytes this suggests an overlapping ontogeny. Unfortunately, 
lack of lung material containing epithelium and interstitium of 
both healthy controls and asthma patients complicates research 
on the localization of DC subset during steady state and in asth-
matic lung. Recent consensus regarding universal markers that 
can identify DC subsets will facilitate the visualization of DC 
subsets in human organs (3).

Function of Human DCs in Asthma
Most studies that investigated human DC function, compared 
pDCs to myeloid DCs (mDCs) that include both DC1s and 
DC2s. Allergic asthmatics showed increased frequencies of DC1s 
and DC2s in peripheral blood (97), induced sputum and bron-
choalveolar lavage (BAL) upon allergen inhalation compared to 
controls (98–100). After allergen inhalation, only DC2s migrated 
toward bronchial tissue (100). Allergen exposure increased the 
expression of thymic stromal lymphopoietin (TSLP)-receptor but 
not IL-33-receptor on cultured cDCs from CD34+ BM precursors, 
which are implicated as Th2 instructive cytokine receptors (100). 
Allergen inhalation induced expression of IL-25-receptor on 
both cDCs and pDC (101). The costimulatory molecule OX-40L 
and expression of Th2 chemoattractant CCL17 was higher on 
cDCs of patients with mild asthma than on cDCs of healthy 
controls (102) (Figure  2B). In patients who displayed high 
Th2-cell numbers, a large proportion of airway mucosal DC2s 
expressed FcεRIa compared to Th2-cell low asthma patients (94) 
(Figure 2B). This is likely, as high IgE-levels are associated with 
high Th2-cell numbers, thereby suggesting that IgE increases 
FcεRIa expression. IgE-bound antigens are rapidly internalized, 
processed, and presented by DCs to antigen-specific CD4+ T-cells 
(103, 104). DC2s loaded with Dermatophagoides pteronyssinus 
antigen P1 (Der p1) allergen-IgE immune complexes induced 
IL-4 and lowered IFN-γ-expression in in  vitro cocultures with 
naïve T-cells (105), indicating that allergen-IgE immune com-
plexes promote Th2 differentiation (106). CD86 expression was 
higher on mDCs of asthmatic children than on mDCs of atopic 
children. Furthermore, upon LPS stimulation IL-6 production 
by mDCs of asthmatic children was decreased, compared with 
mDCs of atopic children (107). The numbers of IL12-producing 
mDCs were also lower in asthmatic children (108), indicating the 
presence of a Th2 promoting environment in asthmatic children. 
cDCs of allergic asthmatics induced increased Th2 differentia-
tion upon stimulation with TSLP and Der p compared to cDCs 
of controls (109). TSLP-stimulated cDCs of allergic asthmatics 
and not of controls, induced IL-9 production and PU.1 expres-
sion, indicative of Th9 differentiation (109). When Th2 priming 
capacity of DC1s and DC2s from human blood and lungs were 
compared, both lung and blood DC1s were superior in Th2 differ-
entiation (110). However, in this study, live-attenuated influenza 
virus was used to activate DC1s and DC2s, which primarily 
activates DC1s, as these induce antiviral immune responses (24). 
The expression of CD141, a marker for DC1s, is increased in 
blood leukocytes during acute asthma exacerbations on moDCs, 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Vroman et al. DC Subsets in Asthma

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 941

but surprisingly not on DC1s (111). This indicates that DC1s or 
CD141 expression plays an important role in the pathogenesis 
of asthma. DC2s from allergic rhinitis patients efficiently prime 
Th2 differentiation (112) and express lower levels of ICOSL, 
compared to controls (Figure 2B). Blockade of ICOSL in DC2s 
of controls increases the production of Th2 cytokines, indicat-
ing that decreased ICOSL expression on DC2s promotes Th2 
differentiation (113). Both human DC1s and DC2s induce Th2 
cytokines; however, Th2 differentiation by cDC1s was observed 
following exposure to live-attenuated viral particles (112). This 
implicated that during virus infections, cDC1s in asthmatics shift 
from promoting Th1 immune responses or maintaining tolerance 
toward a Th2-promoting phenotype.

Allergen inhalation increased pDCs numbers in the airway 
lumen (98, 114); however, variable results exist whether circu-
lating pDCs differ between asthmatics and healthy individuals  
(115, 116). In a birth cohort, circulating pDCs predicted respira-
tory tract infections, wheezing, and asthma diagnosis by 5 years 
of age (117). pDCs of severe asthmatics also produced less IFN-α 
following influenza infection, than pDCs of healthy controls did 
(118) (Figure 2B). Single-cell analysis revealed that characteriza-
tion of pDCs based on CD123 expression included DC precursors 
(119, 120). Therefore, these findings need to be revisited whether 
they truly induced by pDCs.

House dust mite activation of cultured moDCs of HDM-
allergic asthma patients expressed higher levels of human leuko-
cyte antigen-D, induced more T-cell proliferation (121), and Th2 
differentiation than control moDCs (122). When examining the 
frequency of CD14+/CD16+ monocytes, conflicting results exist 
in severe asthmatics (123, 124). Monocytes of allergic patients 
showed increased IL-10 and decreased IL-12 production upon 
HDM and Der p1 stimulation, which enhanced Th2 differentia-
tion (125). CD14+/CD16+ monocytes of severe asthmatics display 

higher expression of protease activation receptor 2 (PAR-2) as 
compared to mild/moderate asthmatics (124) (Figure  2B). 
PAR-2-mediated activation of monocytes induces secretion of 
IL-1β, IL-6, and IL-8 (126), indicating that activation via PAR-2 
facilitates secretion of cytokines important for Th17-cell differen-
tiation and neutrophil activation and attraction, which does not 
occur in mild/moderate asthmatics.

CLiniCAL iMPLiCATiOnS

In conclusion, whereas in mice the function of different DC 
subsets in asthma pathogenesis is becoming more and more 
clear, there are no studies at present that compared the Th2- 
or Th17-priming capacity of different human DC subsets in 
response to allergens. The limited number of DCs in peripheral 
blood and the difficulty to obtain lung or lung-draining lymph 
nodes hamper these studies. Current advances in single-cell 
analysis enable analysis of DC subsets and have already proven 
that more DC subsets and DC precursors can be found in 
peripheral blood (119, 120). Further research should provide 
insights into DC subset characteristics and function in asth-
matics that display either a Th2, Th2/Th17, or Th17-mediated 
inflammation.
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