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Abstract: The sarcomere regulates striated muscle contraction. This structure is composed of several
myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal
muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression
of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the
heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads
to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibro-
sis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle
genes in the myocardium will provide important information for understanding numerous cardiac
pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomy-
opathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We
therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219
represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly
to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked
down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data
strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian
heart regulates cardiomyocyte identity and myocardial contraction.

Keywords: Chd4; NuRD; Znf219; chromatin remodeling; epigenetics; heart; arrhythmia

1. Introduction

Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortal-
ity worldwide. Given the economic burden these conditions place on healthcare systems,
research on this topic is therefore extremely important [1,2]. A prominent class of rare
CVDs are the arrhythmias [3], mostly affecting the function of the cardiac conduction
system (CCS). These disorders are very diverse phenotypically and their lethality depends
on their origin and the level of involvement of the natural pacemaker and the CCS. The
most sustained form of cardiac arrhythmia is atrial fibrillation (AF), which has a prevalence
of 3% in the general population and is associated with cardiovascular morbidity, stroke,
and ultimately sudden death [4,5].

The heart is one of the first organs to differentiate and function during mammalian
development, since it must provide the embryo with oxygen from early stages. From
its beginnings as a simple tube, the heart beats through synchronized cardiomyocyte
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contractions. In contrast, in the adult heart, the heartbeat is controlled by the CCS, which
regulates and synchronizes the propagation of the electrical impulse from the atria to the
ventricles. The electrical impulse arises in the sinoatrial node (SAN) in the right atrium,
triggering the depolarization of neighboring cardiomyocytes and rapidly reaching the
atrioventricular node (AVN), which results in the contraction of the atria (atrial systole). The
AVN slightly delays the propagation of the electrical impulse, permitting late ventricular
filling and the final steps of atrial contraction. From the AVN, the impulse travels through
the asymmetrical bundles of His to the ventricles through the Purkinje fiber network
that, in turn, will coordinate ventricular contraction and the ejection of blood through the
right and left ventricular tracts [6,7]. This complex system is tightly regulated, and the
slightest alteration to the synchronized propagation of electrical coupling could trigger
arrhythmogenesis. Although some arrhythmias lead to sudden death, the mechanisms
regulating their development remain poorly characterized.

The cardiac and skeletal muscles are both striated tissues that, despite their distinct
embryonic origins, have a very similar contractile apparatus called the sarcomere. This
highly organized structure is responsible for contraction and relaxation movements, and
its cytoskeletal components are exquisitely assembled to generate contraction forces [8].
Despite the similarities between the sarcomeres of cardiac and skeletal muscles, the protein
isoforms expressed in each tissue are different [9]. In each striated muscle type, tran-
scriptional regulation of these isoforms is important for ensuring correct function and
homeostasis. Abnormal expression of any sarcomeric protein can lead to a plethora of
skeletal and cardiac myopathies. The regulation of striated muscles therefore requires the
fine-tuning of numerous transcription factors and epigenetic regulators. These molecular
networks maintain the correct expression of the specific isoforms required in any particular
muscle and also repress the expression of the opposing transcriptional sarcomeric program.
One of the epigenetic regulators involved in the maintenance of striated-sarcomeric identity
is the chromatin remodeler Chd4 (chromatin helicase DNA binding protein 4, also called
Mi-2β), which forms part of the chromatin remodeling complex NuRD (Nucleosome Re-
modeling and Deacetylation). Chd4 is a highly conserved ATP-dependent helicase involved
in a wide range of cellular processes, such as transcriptional regulation, DNA-damage
responses, cell-cycle progression, and eukaryote differentiation and development [10]. We
and others recently reported that Chd4/NuRD regulates the identity of both striated muscle
types by repressing the skeletal muscle program in the heart and the cardiac program in
skeletal muscle [9,11]. The importance of this chromatin remodeler has also been revealed
by the description of the human CHD4-related condition Sifrim–Hitz–Weiss syndrome
(SIHIWES) [12–14]. This clinical research effort has revealed that mutations in CHD4 lead
to congenital heart defects and neurodevelopmental disorders [15], strongly suggesting
critical roles for this protein both in cardiac development and in neural development
and plasticity.

The Chd4/NuRD complex does not directly bind to DNA, and research in other tissues
has demonstrated that the complex is recruited to DNA by transcription factors [16–18]. In
search of TFs that interact with Chd4 and recruit it to regulatory regions in cardiomyocyte
DNA, we conducted an in silico analysis of putative TF DNA binding sites in targets
ectopically expressed in Chd4-mutant hearts, using the TRANSFAC platform. This anal-
ysis showed that the transcripts upregulated in Chd4-mutant hearts were enriched in
DNA-binding sites for the TF Znf219, among others. Znf219 (also called Zfp219) is a zinc-
finger protein composed of nine Cys2His2-type zinc-finger domains [19,20]. The function
of Znf219 is largely unknown, but it has been reported to act mainly as a repressor of
transcription, like Chd4/NuRD [21]. Nevertheless, Znf219 can also positively regulate tran-
scription, and enhances the activity of Sox9, which in turn regulates Col2a1 transcription
and chondrogenesis [22]. Moreover, the zebrafish Znf219 ortholog ZNF219L coordinates
with Sox9a to regulate notochord-specific expression of Synuclein-2γ [23] and Collagen
Type 2 Alpha 1a (Col2a1a) [24]. Dysregulation of Synuclein-2γ leads to accumulation of
afunctional proteins that, in humans, lead ultimately to cellular dysfunction and neurotoxi-
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city [23]. Znf219 has been shown to interact with NuRD complex components in several
cell lines in vitro, and this interaction seems to involve the 4 N-terminal zinc-fingers of
Znf219 and the C-terminal end of Chd4 [25].

The major aim of this study was to determine whether Znf219 and Chd4 interact in
the heart, and whether this interaction regulates cardiac homeostasis. We show here that
Znf219 and the NuRD complex also physically interact in the mammalian heart, strongly
suggesting a genetic interplay between these proteins. These physical and genetic inter-
actions led us to hypothesize that Znf219 might regulate, together with Chd4/NuRD,
the repression of the skeletal-muscle gene program in the heart to ensure cardiomyocyte
identity. Knockdown of Znf219 in the HL-1 cardiomyocytic cell line and in mouse car-
diomyocytes induced the ectopic expression of mRNAs and proteins of the skeletal muscle
sarcomeric program, inducing heart arrhythmias.

2. Results
2.1. Promoter Regions of the Genes Upregulated in Chd4-Mutant Hearts Are Enriched in Znf219
DNA-Binding Sites

To decipher the transcriptional mechanisms controlling the repression of the skeletal
muscle program in cardiomyocytes, we first conducted a bioinformatics analysis using our
previously generated RNA-Seq data [9]. To identify TFs potentially regulating transcrip-
tional repression, we screened the regulatory regions of the genes upregulated in adult
PD21 Chd4F/F; Corincre/cre (Chd4corin) and embryonic (ED10.5) Chd4F/F; Nkx2-5cre/wt

(Chd4nkx) mutant hearts. An enrichment analysis using the TRANSFAC tool identified TFs
potentially regulating the repression of these genes in wild-type (WT-Chd4F/F; Corinwt/wt

and Chd4F/F; Nkx2-5wt/wt) hearts (Figure 1). The promoters of these genes included TF
DNA-binding sites (DBS) for cKROX, SP1/SP3, and Znf219, among others (Table S1). We
focused our study on Znf219 because it is the only one of these TFs that physically in-
teracts with Chd4 ([25]; see the next section). Moreover, many of the upregulated genes
in both the adult and embryo mutants were enriched in the Znf219 DBS (Figure 1a,b).
The embryonic and adult mutant hearts showed similar and significant gene expression
alterations, not only for the upregulated genes, but also for genes that were downreg-
ulated (Table S2). These data suggest that Znf219 might regulate the repression of the
skeletal-muscle sarcomeric gene program in the heart.

2.2. The Chd4/NuRD Complex and Znf219 Physically Interact in the Heart

The NuRD complex and Znf219 have been shown to pull down together in an in vitro
system [25], and we confirmed this finding in co-transfected HEK293T cells (Figure S1, sup-
plementary material). However, whether Chd4 and Znf219 interact directly in cardiac tissue
has not been reported. We therefore first searched for proteins interacting with the NuRD
complex in the adult heart by comparing the profiles of proteins co-immunoprecipitated
with anti-Chd4 (α-Chd4) antibody in hearts from 4-week-old WT (Chd4F/F; Corinwt/wt)
and Chd4corin (Chd4F/F; Corincre/cre) cKO mice. Mass spectrometry of Chd4-interacting
proteins detected in WT tissue confirmed that many of the peptides were derived from
NuRD complex components (Figure 1c and Table S3). Anti-Chd4 immunoprecipitates
from WT hearts also contained peptides derived from Znf219, which were not observed in
Chd4corin hearts (Figure 1c,d and Table S3). This association was confirmed using Western
blot (Figure 1e), demonstrating that Znf219 specifically interacts with the Chd4/NuRD
complex in cardiomyocytes. Although anti-Chd4 immunoprecipitates included peptides
derived from other TFs (eg, Zbtb20), no other TFs from the in silico study (such as SP1)
were found to associate with Chd4 in the heart (Table S3), suggesting that the physical
interaction between Znf219 and Chd4 likely has transcriptional consequences.
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Figure 1. Chd4 and Znf219 physically interact in the mouse heart. (a) Bubble plot representation of 
the enrichment analysis for transcription factor (TF) binding sites in the set of upregulated genes in 
adult Chd4corin hearts (TRANSFAC version 7.4). (b) Bubble plot representation of similar enrichment 
analysis for TF binding sites present in the set of upregulated genes in ED10.5 Chd4nkx hearts. (c) 
The Chd4/NuRD complex composition in heart tissue; components were identified from peptides 
(pept.) recovered by mass spectrometry after Chd4 immunoprecipitation (IP) from 4-week-old WT 
mouse hearts (Chd4F/F; Corinwt/w). The table represents the number of distinct peptides (IP: pept.) 

Figure 1. Chd4 and Znf219 physically interact in the mouse heart. (a) Bubble plot representation of
the enrichment analysis for transcription factor (TF) binding sites in the set of upregulated genes in
adult Chd4corin hearts (TRANSFAC version 7.4). (b) Bubble plot representation of similar enrichment
analysis for TF binding sites present in the set of upregulated genes in ED10.5 Chd4nkx hearts. (c) The
Chd4/NuRD complex composition in heart tissue; components were identified from peptides (pept.)
recovered by mass spectrometry after Chd4 immunoprecipitation (IP) from 4-week-old WT mouse
hearts (Chd4F/F; Corinwt/w). The table represents the number of distinct peptides (IP: pept.) derived
from the proteins associated with Chd4 (Mi-2β) in WT hearts, and in Chd4corin (Chd4F/F; Corincre/cre)
cKO hearts. (d) The specificity of the association of Znf219 with WT Chd4 was demonstrated by
analyzing the extracted ion chromatography traces of the peptides from the proteins indicated in
each graph. M* means oxidated methionine. (e) Western blot of WT and Chd4corin cardiac nuclear
extracts (Ext.) and Chd4 (α-Chd4) immunoprecipitated (IP), showing an association between Chd4
(arrow) and Znf219 (*)) only in WT hearts; ** = IgG heavy chain from denaturalized IP antibody. The
double asterisk marks the heavy chain of antibodies used for IP.
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2.3. Znf219 Is Highly Expressed in Mouse Heart and in Striated Muscle Cell Lines and Is Involved
in the Repression of the Skeletal-Muscle Gene Program In Vitro

Considering that Znf219 interacts with Chd4 in the heart, we next analyzed the
expression of this TF in cardiac tissue and other adult mouse organs, both at the mRNA ([22],
Figure 2a) and protein levels (Figure 2b). The Znf219 transcript was highly expressed in the
thymus and testis, followed by the liver, heart, and spleen (Figure 2a). Western blot analysis
of selected organs showed the highest Znf219 protein expression in the heart (Figure 2b).
The analysis of the transcriptional expression of Znf219 throughout heart development
revealed that, while low at embryonic days 10.5 (ED10.5) and ED11.5, expression strongly
increased at ED12.5. These levels were sustained during the following developmental
stages until mouse adulthood (Figure 2c). We also tested the protein expression levels
of Znf219 in the established skeletal-muscle cell line C2C12, where Znf219 expression is
maintained at similar levels under growing and differentiation conditions (Figure 2d).
Abundant Znf219 protein expression was also detected in the atrial cardiomyocytic cell line
HL-1 (Figure 2d).

We next used an shRNA-lentiviral system to silence Znf219 or Chd4 in HL-1 cells and in
this way analyzed whether the skeletal-muscle gene program is similarly repressed by each
of these proteins (shRNA sequences in Table S4). We first confirmed the cardiomyocytic-
like identify of HL-1 cells using immunofluorescence detection of the cardiac markers
alpha-actinin and cardiac tropomyosin. Up to 84% of cells expressed these cardiac markers
(Figure S2, supplementary material), and the cultures beat coordinately when confluent
(data not shown). Knockdown of Znf219 (Figure 2e, top) or Chd4 (Figure 2e, bottom)
induced a statistically significant increase in the transcript levels of selected skeletal-muscle
genes (Tnni2, Tnnc2, Atp2a1, and Tnnt3), with Chd4 knockdown having the stronger effect.
Interestingly, Znf219 silencing reduced the expression of Acta1, in contrast to the effect of
Chd4 knockdown or Chd4 cKO [9]. This different outcome could reflect differing levels
of down-modulation with the lentiviral shRNAs, and we therefore checked Znf219 and
Chd4 protein expression in HL-1 cells after silencing. This analysis showed that shRNA-
Znf219 did not fully suppress Znf219 protein expression, contrasting the total lack of Chd4
protein after Chd4 knockdown (Figure 2f). Knockdown of Znf219 did not decrease Chd4
protein expression (Figure 2f), and Chd4 knockdown did not reduce Znf219 mRNA levels
(Figure 2e and Figure S3, supplementary material).

These results confirmed that Znf219 and Chd4 both repress the expression of skeletal-
muscle genes in cultured cardiomyocytes, also suggesting a putative genetic interaction
between these proteins to negatively regulate skeletal-muscle gene promoters in the my-
ocardium, whose ectopic expression would otherwise have deleterious consequences
in vivo.

2.4. Znf219 Represses the Skeletal Muscle Gene Program in the Heart

The lack of Znf219 KO mice prompted us to knockdown this TF in vivo using shRNAs
expressed by adeno-associated virus (AAV). We used the AAV serotype 9 (AAV9), which
efficiently and stably transduces the heart [26]. On day 1 or 2 after birth (PD1 and PD2),
mouse pups were given subcutaneous injections of shRNA-Znf219-eGFP-U6 (shRNA-
Znf219—check sequences in Table S4) or AAV-shRNA-Scramble-eGFP-U6 (shRNA-Scramble)
at a dose of 2 × 1011 viral particles per pup. To test which shuttle shRNA-Znf219 plasmid
worked best in vivo, we first tested the three commercially available plasmids (Figure S4,
supplementary material). While all three Znf219-targeting shRNAs had a similar silencing
effect at the RNA level (Figure S4a, supplementary material), shRNA1 had the best trans-
duction efficiency, as shown by immunohistochemistry (IHC) detection of GFP (Figure S4b,
supplementary material), and we therefore used this shRNA for further analysis.
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Figure 2. Znf219 represses the skeletal-muscle sarcomeric program in vitro. (a) Relative mRNA ex-
pression of Znf219 in different mouse organs (n = 4). Sk-muscle = skeletal muscle (tibialis anterior). 
(b) Western blot of different mouse organs, showing predominant Znf219 protein expression in the 
heart. (c) Relative mRNA expression of Znf219 during mouse cardiac development (n = 3). (d) West-
ern blot of skeletal and cardiac cell lines, showing Znf219 protein expression in myocytic cell line 
C2C12 and the cardiomyocytic cell line HL-1. DM = differentiation media; GM = growth media. (e) 
qPCR analysis of representative skeletal muscle genes in HL-1 cells silenced for Znf219 or Chd4 
with corresponding shRNAs. Cells infected with scrambled shRNA were used as a control (n = 4); 
two-way ANOVA (Bonferroni); * adj-p-value <0.05, **** p-value <0.0001. (f) Western blot showing 
the extent of knockdown of Znf219 (lane 2, middle) and Chd4 (lane 3, up) with the corresponding 
shRNAs. Lane 1 corresponds to HL-1 cells infected with scrambled shRNA (Scramble). 

Figure 2. Znf219 represses the skeletal-muscle sarcomeric program in vitro. (a) Relative mRNA
expression of Znf219 in different mouse organs (n = 4). Sk-muscle = skeletal muscle (tibialis anterior).
(b) Western blot of different mouse organs, showing predominant Znf219 protein expression in
the heart. (c) Relative mRNA expression of Znf219 during mouse cardiac development (n = 3).
(d) Western blot of skeletal and cardiac cell lines, showing Znf219 protein expression in myocytic cell
line C2C12 and the cardiomyocytic cell line HL-1. DM = differentiation media; GM = growth media.
(e) qPCR analysis of representative skeletal muscle genes in HL-1 cells silenced for Znf219 or Chd4
with corresponding shRNAs. Cells infected with scrambled shRNA were used as a control (n = 4);
two-way ANOVA (Bonferroni); * adj-p-value < 0.05, **** p-value < 0.0001. (f) Western blot showing
the extent of knockdown of Znf219 (lane 2, middle) and Chd4 (lane 3, up) with the corresponding
shRNAs. Lane 1 corresponds to HL-1 cells infected with scrambled shRNA (Scramble).

The infected mice were monitored using electrocardiography between the ages of
4 and 8 weeks, followed by euthanasia and sample collection for further study (Figure 3a).
Fluorescence microscopy of dissected hearts confirmed extensive GFP expression, both
in the atria and to a lesser extent in the ventricles (Figure 3b). Closer inspection of heart
morphology revealed a slight increase in size of hearts infected with shRNA-Znf219. Deter-
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mination of the heart weight/tibia length ratio confirmed that sh-Znf219-infected hearts
were hypertrophic when compared to those of sh-Scramble-infected mice (Figure 3c). IHC
detection of GFP expression demonstrated extensive yet mosaic infection throughout the
heart chambers (Figure 3d). H&E staining revealed no apparent morphological changes in
the hearts of sh-Znf219-infected mice (Figure 3d); however, in 30% of the animals (4 out
of 13) knockdown for Znf219 presented apparent interstitial fibrosis (Figures 3d and S5a).
To further analyze fibrosis, we quantified collagen deposition with MetaMorph offline
software. In these experiments, we observed no significant increase in collagen deposition;
however, an increase tendency of collagen could be observed (Figure S5b). In order to
deepen in the collagen deposition in ShZnf219 knocked down hearts versus shScramble,
we next tested the levels of expression of the transcripts for Collagen type I alpha 1 (Col1a1)
and collagen type III alpha 1 (Col3a1) and found a tendency of increase in Col1a1 (p = 0.08)
and a significant increase in Col3a1 (Figure S5c).
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length ratios in infected mice. Paired t-test (two-tailed), ** adj. p-value <0.01. (d) H&E (HE), Sirius 
Red (SR), and GFP staining on transverse heart sections from 8-week-old infected mice. Hearts were 
infected with 2 × 1011 particles of AAV9-shRNA-Scramble (left) or 2 × 1011 AAV9-shRNA-Znf219 
(right). Mice infected with shRNA-Znf219 show interstitial fibrosis (middle right). ShRNA-Scramble 
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ure 4a) and Western blotting (Figure 4b), respectively. To confirm the in vitro data in HL-
1 cells (Figure 2), we next checked the transcriptional expression state of sh-Znf219 in-
fected and sh-Scramble-infected hearts. This analysis showed that Znf219 knockdown in-
duced ectopic expression of some of the same skeletal-muscle sarcomeric transcripts up-
regulated in Chd4 cKO mice [9]: Acta1 (2.1-fold), Tnnc2 (2.5-fold), and Tnnt3 (2.5-fold) 
(Figure 4c). Atp2a1 and Tnni2 did not appear to be upregulated, but this likely reflects the 
lower detection background, since the AAV9 infection was mosaic. We also analyzed 
whether RNA upregulation in vivo translated into protein expression. In contrast to its 
corresponding mRNA, we could detect ectopic protein expression of troponin I2, fast skel-
etal type (Tnni2) in Znf219-knockdown hearts, as well as the troponin I3, fast skeletal type 
(Tnnt3) isoform (Figure 4d). Like Tnni2, Atp2a1 mRNA was not apparently upregulated, 
but we nonetheless detected scattered Atp2a1 protein expression in atrial cardiomyocytes, 

Figure 3. Znf219 regulates heart homeostasis in vivo. (a) Schematic representation of the experimental
design after subcutaneous AAV9 injection into CD1 PD1-2 pups. (b) Gross morphological appearance
of whole hearts of 8-week-old infected mice (upper panels) and fluorescence microscopy showing
GFP expression in both atria and ventricles (lower panels). (c) Heart weight/tibia length ratios
in infected mice. Paired t-test (two-tailed), ** adj. p-value < 0.01. (d) H&E (HE), Sirius Red (SR),
and GFP staining on transverse heart sections from 8-week-old infected mice. Hearts were infected
with 2 × 1011 particles of AAV9-shRNA-Scramble (left) or 2 × 1011 AAV9-shRNA-Znf219 (right).
Mice infected with shRNA-Znf219 show interstitial fibrosis (middle right). ShRNA-Scramble (n = 9);
shRNAZnf219 (n = 13).

Znf219 RNA knockdown and protein reduction were confirmed using RT-qPCR
(Figure 4a) and Western blotting (Figure 4b), respectively. To confirm the in vitro data
in HL-1 cells (Figure 2), we next checked the transcriptional expression state of sh-Znf219
infected and sh-Scramble-infected hearts. This analysis showed that Znf219 knockdown
induced ectopic expression of some of the same skeletal-muscle sarcomeric transcripts
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upregulated in Chd4 cKO mice [9]: Acta1 (2.1-fold), Tnnc2 (2.5-fold), and Tnnt3 (2.5-fold)
(Figure 4c). Atp2a1 and Tnni2 did not appear to be upregulated, but this likely reflects
the lower detection background, since the AAV9 infection was mosaic. We also analyzed
whether RNA upregulation in vivo translated into protein expression. In contrast to its
corresponding mRNA, we could detect ectopic protein expression of troponin I2, fast skele-
tal type (Tnni2) in Znf219-knockdown hearts, as well as the troponin I3, fast skeletal type
(Tnnt3) isoform (Figure 4d). Like Tnni2, Atp2a1 mRNA was not apparently upregulated,
but we nonetheless detected scattered Atp2a1 protein expression in atrial cardiomyocytes,
likely reflecting mosaic infection (Figure 4e). Given the involvement of Chd4 in regulating
CCS genes and calcium, sodium, and potassium ion channels [9], we investigated whether
Znf219 knockdown produced similar outcomes, but we observed no changes relative to
sh-Scramble hearts (Figure S6, supplementary material).
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Figure 4. Znf219 represses the skeletal-muscle sarcomeric program in vivo. (a) qPCR analysis show-
ing downregulation of Znf219 but no change in Chd4 in mice infected with ShZnf219; paired t-test
(two-tailed) **** p-value < 0.0001). (b) Western blot showing Znf219 protein expression in ShScramble-
and ShZnf219-infected mice. (c) qPCR analysis of selected genes encoding sarcomeric skeletal-muscle
proteins (two-way ANOVA: ns = not significant; ** p-value ≤ 0.01, **** p-value ≤ 0.0001); ns = non-
significant. (d) Western blot showing α-troponin I and T fast skeletal protein expression. (e) IHC
analysis of Atp2a1 in longitudinal heart sections of 8-week-old infected mice. ShZnf219 mice (right)
show ectopic atrial expression of Atp2a1.
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Finally, given that Znf219 represses the expression of the skeletal-muscle genes in the
heart, we wanted to discard a concomitant transcriptional alteration of sarcomeric cardiac
genes. qPCRS analysis of some cardiac muscle genes, indeed, discarded this hypothesis
(Figure S6b).

2.5. Cardiac Znf219 Knockdown Induces Arrhythmia in Adult Mice

Chd4 cardiac deletion induces arrhythmias, probably due to contraction defects pro-
voked by the misexpression of skeletal-muscle sarcomeric isoforms [9]. For this reason,
we next checked whether the skeletal muscle gene misexpression in Znf219 KD hearts
also presented alterations in their electrocardiograms (Figure 5), as it does in Chd4 cKO
mice [9]. While the ECGs of mice transduced with ShScramble were normal 4 weeks
after infection (Figure 5a), 68% of mice transduced with shRNA-Znf219 developed ar-
rhythmias (Figure 5a). At this age, all animals had normal atrial (p wave) and ventricular
(QRS) depolarization (Figure 5a). By 8 weeks of age, while ShScramble-infected mice had
normal ECGs (Figure 5b), up to 78% of Znf219-knockdown mice had more prominent
arrhythmias (Figures 5b and S7, supplementary material), with episodes of bradycardia
and tachycardia, suggesting a progressive phenotype. Again, QRS waves were normal
(Figure 5c, right), but the PR interval spiked in the Znf219-knockdown mice at this age
(Figure 5c, left). This finding indicates a deceleration of conduction between the atria and
ventricles, which is usually due to slow conduction through the AVN, thus, reflecting
first-degree atrioventricular block.
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3. Discussion

The results presented here show that Znf219 physically interacts with Chd4/NuRD in
the heart and demonstrates a putative cooperation between these proteins in the control
of cardiomyocyte cell identity, in part through the repression of the skeletal-muscle gene
program. We previously reported that Chd4/NuRD regulates striated muscle identity by
repressing the opposing sarcomeric program. Thus, Chd4/NuRD represses the skeletal-
muscle sarcomeric program in the heart, as well as regulating the metabolic performance
of this tissue [9]. In search for TFs interacting with and potentially recruiting the chromatin
remodeling complex NuRD to skeletal-muscle gene promoters in the heart, we first per-
formed a TRANSFAC in silico study to analyze the promoter regions of the genes found
previously to be upregulated in Chd4 cKO hearts [9]. This analysis showed that many
of these gene promoters contained putative DNA-binding sites for Znf219, together with
DNA-binding sites for other TFs, such as SP1 and KROX.

Supporting a role for Znf219 in the cardiovascular system, we observed high ex-
pression of Znf219 transcripts and protein in the heart in comparison with other tissues
(Figure 2, HumanAtlas (https://www.proteinatlas.org/ENSG00000165804-ZNF219/tissue,
accessed on 20 August 2022)). We also observed that Znf219 mRNA expression increases
sharply in embryonic hearts from ED11.5 to ED12.5, and that this elevated expression is
then maintained at later stages of development and after birth. The elevation of Znf219
mRNA levels during the later stages of development suggests that this repressive TF plays
a prominent role in the heart once this organ is formed, but that it may not be necessary for
early stages of heart development. Supporting this view, Znf219 knockdown in the adult
heart induced the ectopic expression of some skeletal-muscle sarcomeric genes, which
resulted in the induction of arrhythmias similar to those observed in Chd4 cKO mice [9]. In
our study, transduction with the Znf219 AAV9-shRNAs was efficient but always mosaic,
which would explain a milder phenotype. Likely as a consequence of this, we did not
detect upregulation of Tnni2 or Atp2a1 mRNA in hearts infected with AAV9-shRNA-Znf219,
contrary to our findings in HL-1 cells silenced with lentiviral shRNA-Znf219, even though
the Znf219-knockdown hearts showed clear evidence of ectopic expression of both Tnni2
and Atp2a1 proteins; ectopically expressed Tnni2 was detected in Znf219-knockdown
hearts with Western blot, and Serca1 (Atp2a1) was prominently expressed in atria, with
a patchy pattern, reflecting the mosaic viral transduction. In contrast, Chd4 lentiviral
silencing in the cardiomyocytic cell line HL-1 induced a strong upregulation of some of
the transcripts examined, including Tnnc2 (more than 30 times) and TnnT3 and Atp2a1
(more than 20 times) compared with Znf219-silenced cells. This finding corroborates our
previous report in Chd4 cKO mice [9]. Notably, Western blotting analysis showed complete
knockdown of Chd4 but only a partial reduction in Znf219 protein, which may explain the
partial phenotype of Znf219-silenced HL-1 cells. This reflects a direct transcriptional effect
of Znf219 on the upregulated genes, since no downregulation of Chd4 mRNA or Chd4
protein was observed in Znf219-silenced HL-1 cells. The lack of Znf219 cKO models and the
potential for compensatory action by other zinc-finger proteins make it difficult to study
the full contribution of this TF to heart homeostasis and heart development. Nevertheless,
our approach highlights the importance of Znf219 in the heart and opens the way to new
research into the function of this TF in heart homeostasis.

It was recently reported that the transcription factors Gata4, Nkx2-5, and Tbx5 phys-
ically interact with Chd4, recruiting it to repress the expression of tissue-specific genes
during cardiac development [27]. Our proteomic analysis of Chd4 immunoprecipitates
from adult heart tissue did not detect peptides of any of these heart-differentiation TFs,
suggesting that Znf219 may be necessary for the repression of these genes in the fully differ-
entiated tissue. As mentioned before, the upregulation of Znf219 during heart development
might corroborate these data. One can envision a scenario in which the developmental
TFs Gata4 and Nkx2-5 recruit the NuRD complex during development, but that Znf219
takes over this role at later stages of development and in the adult, perhaps with additional
involvement of other ubiquitously expressed TFs, such as SP1, MAZ, or WT1. In fact, we
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found SP1 and MAZ DNA-binding sites in the promoters of many of the genes upregulated
upon Chd4 cKO. These G-rich DNA-binding sites are interchangeable, and so can be bound
by any of these TFs, including Znf219 [28]. Despite the difficulties posed by the lack of
Znf219 cKO mice, it will still be important to study the implication of Znf219 in these pro-
cesses in order to ascertain whether it cooperates with cardiogenic TFs during development
and whether Znf219 or other TFs maintain the repression of the skeletal-muscle sarcomeric
gene program in the post-mitotic heart, and of the cardiac sarcomeric gene program in
skeletal muscle.

To analyze the pathological implications of Znf219 knockdown in the heart, we con-
ducted electrocardiographic examination of infected mice, finding that the PR interval was
significantly increased in shRNA-Znf219-infected animals. This is indicative of a delay in
the propagation of the electrical impulse from the atria to the ventricles, although ventricle
contraction seemed normal. The relatively greater impairment of atrial function compared
with the ventricles may indicate a higher rate of infection in the atria, where we detected
ectopic expression of Atp2a1, in contrast with the ventricles where we did not. Atp2a1
plays a pivotal role in Ca2+ regulation in skeletal muscle, and Atp2a1 mutations have been
linked to Brody myopathy and atrophic muscular disease [29]. Overexpression of this
protein and of the skeletal-muscle troponins could lead to arrhythmias, but this was not
sufficient to lead to heart failure in our experimental setting.

In addition to Znf219, our proteomic analysis also detected binding of other TFs,
for example, Zbtb20 (Table S1). Lack of Zbtb20 causes metabolic and cardiac contractile
dysfunction [30], and this TF seems to regulate the expression of mitochondrial genes,
which are also a target of Chd4/NuRD in the heart. Further research will be needed
to determine whether the regulation of metabolic genes and potentially other targets is
mediated by the interaction between Zbtb20 and Chd4. Regarding other transcriptional
regulators that might counteract the actions of the Chd4/NuRD complex, we cannot
discard myogenic transcription factors. For example, Mef2 and Srf are expressed in both
striated muscles, where they positively regulate the transcription of sarcomeric proteins.
Chd4/NuRD and Znf219 may contribute to maintenance of closed chromatin surrounding
DNA-response elements for Mef2, Srf, and other TFs in skeletal-muscle genes in the heart,
thus, preventing their binding. More research will be needed to fully demonstrate that
Znf219 recruits Chd4/NuRD or maintains its binding to repressed genes in the heart and
skeletal muscle, where Znf219 is also highly expressed. The lack of good Znf219 ChIP
antibodies has so far prevented us from checking this possibility.

Altogether, our data indicate that Znf219 regulates cardiomyocyte cell identity, by
controlling the transcriptional repression of the skeletal muscle gene program. Therefore,
knockdown of this Chd4-interacting transcription factor results in arrhythmias, with a sig-
nificant increase in the PR interval, a phenotype very similar to that observed in Chd4 cKO
mice. In our working model (Figure 6), Znf219 and Chd4/NuRD, probably through their in-
teraction, maintain the repression of skeletal muscle genes in a differentiated cardiomyocyte
(Figure 6a). This would maintain the normal physiology, contractility, and energy intake
of the cell. When Chd4 or Znf219 are removed from the cardiomyocyte (Figure 6b), the
skeletal muscle sarcomeric program is aberrantly expressed in the cardiomyocyte and this
translates to the induction of arrhythmias, cardiac fibrosis, and, eventually, to heart failure.

Study Strengths and Limitations

The lack of Znf219 cKO mice makes very difficult to study the role of this transcription
factor in vivo. Our approach to the problem, infecting with adeno-associated viruses to
knock down the expression of this gene, allowed us to conclude that Znf219 is important
in heart homeostasis, keeping skeletal muscle genes silenced. The limitations of the study,
however, can be found in the translation of our results to human cardiac pathophysiology,
since our investigation is basic in nature. Chd4 mutations have been found in humans
that translate into cardiac disorders, but more research would be needed in order to find
mutations or misexpression of Znf219 in humans. Another limitation of our study is that,
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although we found a direct interaction between Znf219 and Chd4, we did not directly
demonstrate in this work that there is a transcriptional cooperation between both proteins.
We are currently performing Znf219 silencing experiments in Chd4 cKO mice to corroborate
this hypothesis.
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Our study highlights the power of reanalyzing existing transcriptomics datasets using
appropriate bioinformatic tools. For the discovery of novel factors, we envision that this
approach will be boosted in the near future with the use of more advanced statistical
tools optimized to extract relevant information depending on the characteristics of the
transcriptomics datasets, such as artificial intelligence models.

4. Materials and Methods
4.1. Mouse Strains and Adeno-Associated Viral Infections

The Chd4 floxed and transgenic Corin cre/cre mouse strains have been described
previously [9,18]. Wild-type (WT) adult male and female mice on the CD1 genetic back-
ground were originally obtained from Jackson Laboratories (Charles River Laboratories)
and housed in the CNIC animal facility. Pups (P0–P1) were ice-anesthetized, immobilized,
and given subcutaneous injections of 20 µL AAV9-shRNA-Scramble or AAV9-shRNA-
Znf219 viral particles (VP) at 2.1× 1011 VP/mL. The subcutaneous injection was adminis-
tered in the dorsal region of the pup with a micro-fine insulin syringe [26]. Correct injection
was verified by bump formation beneath the skin. After the injection, pups were allowed to
recover for several minutes on a heated cage at 37 ◦C before being returned to their mothers.

4.2. AAV9 Generation

AAV vectors were produced by the triple transfection method using HEK293T
cells [31,32]. The shuttle plasmids pAAV[shRNA]-EGFP-U6 > mZnf219[shRNA#1] or
[shRNA scramble] (VectorBuilder) were packaged into AAV9 capsids using the helper
plasmids pAdDF6 and plasmid pAAV9 (providing the rep and cap viral genes) (PennVec-
tor). All plasmids were co-transfected into HEK293T cells using linear polyethylenimine
(MW 25,000). The cells were seeded in Hyperflasks (Corning) at 1.2 × 108 cells per flask the
day before transfection.

Transfection and viral particle collection were performed as previously described [33].
Sequences of sh-RNAs are included in Table S4.

4.3. Electrocardiography (ECG)

ECG was performed on 4–8-week-old sedated mice using Accutac Diaphoretic ECG
Electrodes (ConMed Corp., Utica, NY, USA) [9].

4.4. Protein Identification Using Mass Spectrometry

Whole WT (Chd4F/F; Corinwt/wt) and Chd4 (Chd4F/F; Corincre/cre) mutant hearts were
dissected in PBS and nuclear extracts were obtained [9]. Chd4 was immunoprecipitated
with a mouse monoclonal anti-Chd4 antibody (ab70469, Abcam, Cambridge, UK). Proteins
were in-gel digested with trypsin at a 5:1 protein: trypsin (w/w) ratio. Peptides were
analyzed using LC-MS/MS [34].

The MS/MS raw files were searched against the Mouse Swissprot database using
Sequest running in Proteome Discoverer 1.4. Peptide identification was validated using the
probability ratio method [35] with an additional filtering for precursor mass tolerance of
12 ppm [36]. The false discovery rate (FDR) was calculated using decoy databases. Peptide
and scan-counting were performed assuming as positive events those with an FDR equal
to or below 5%.

4.5. Cell Culture, Lentiviral Production, and Cell Infection

The HL-1 cell line was maintained in Claycomb medium (Sigma-Aldrich, Merck
KGaA, Darmstadt, Germany) supplemented with 10% FCS, L-glutamine (2 mM), penicillin
(100 U/mL), and streptomycin (100 U/mL) in standard culture conditions. Before use,
complete Claycomb medium was supplemented with insulin, retinoic acid, ascorbic acid,
and norepinephrine [37]. This supplemented medium was added to the cells every 24 h,
and the cells were re-seeded every three to four days, once they had become confluent and
started beating.
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Non-differentiated cells of the C2C12 cell line were maintained in Growth Medium
(GM—Dulbecco’s modified Eagle medium (DMEM, Sigma) supplemented with 20% fetal
bovine serum (FBS)), and differentiated C2C12 cells were maintained in Differentiation
Medium (DM—DMEM supplemented with 2% horse serum (Gibco, Thermo Scientific,
Cambridge, UK) and insulin). GM was added to the cells every 24 h, and the cells were
re-seeded every three to four days, once they had reached 30–40% confluency. DM was
added to induce differentiation of cells to myotubes when cells were confluent.

Lentiviruses encoding short hairpin RNAs targeting Chd4 and Znf219 (SIGMA-Aldrich)
were produced by transient calcium phosphate transfection of HEK-293 cells with a
three-plasmid HIV-derived and VSV-pseudotyped lentiviral system (Addgene plasmid
12259). HEK-293 cells were cultured in DMEM (Sigma) supplemented with 10% fetal bovine
serum (FBS), L-glutamine (2 mM), penicillin (100 U/mL), and streptomycin (100 U/mL).
Cells were plated at 30% confluency and transfected the next day. At 48 and 72 h after
transfection, supernatants were collected, concentrated by ultracentrifugation (88,000 g
for 2 h at 4 ◦C), and stored at −80 ◦C. HL-1 cells were then infected with concentrated
lentiviral supernatant for 24 h. Then, 24 h later, puromycin was added to select infected
cells and RNA and protein were extracted 48 h later for analysis. Sequences of sh-RNAs
are included in Table S4.

4.6. Transient Transfection with Calcium Phosphate

The HEK293 cell line was used for these experiments because of its high transfection
efficiency. Cells were prepared and cultured to 80% confluency. Cells were plated on the
evening before the transfection day. The next day, at least 4 h in advance of transfection, the
medium was changed. One plate was transfected with Flag-Chd4 plasmid DNA and two
plates were transfected for co-transfection with Flag-Chd4 and Myc-Znf219 plasmid DNA.

Transfection mixtures were prepared for each 150 mm2 plate in 15 mL FALCON
tubes. The transfection mixture for Chd4 transfection included 1.25 mL HBS (Hepes
Buffered Saline) and 20 µg DNA. The mixture for co-transfection with Chd4 and Znf219
included 2.5mL HBS (Hepes-buffered saline), 60 µg Chd4 plasmid DNA, and 20 µg Znf219
plasmid DNA. CaCl2 (150 µL) was added dropwise to each mixture with gentle vortexing.
This procedure favors the formation of precipitates during a 20 min incubation at room
temperature, after which mixtures were uniformly added to the cells. The cells were placed
in the incubator overnight at 37 ◦C, 5% CO2. The next day, the condition of the cells was
checked, and transfection was stopped by removing the transfection medium and adding
20 mL of fresh medium.

4.7. Reverse Transcription-qPCR (RT-PCR) and Gene Expression Analysis

RNA from cell cultures was collected by adding 1 mL of TRIsure buffer (Ecogen) to
the culture plate after washing with PBS. Embryonic hearts of CD1 WT mice were collected,
individually introduced into 1 mL TRIsure buffer, immediately snap-frozen in liquid N2,
and stored at −80 ◦C for later RNA extraction. Hearts from CD1 mice transduced with
AAV9-shRNA-Scramble or AAV9-shRNA-Znf219 (VectorBuilder) were collected in 1mL of
Trisure for RNA extraction.

Tissues were homogenized with a Magnalyzer system, and total RNA was isolated
according to the manufacturer’s instructions. Reverse transcription reactions were carried
out with 2 µg total RNA and using standard procedures. Quantitative PCR was performed
on a CFX96TM Real Time System and aC1000TM Thermal Cycler using SYBR®-Green and
the gene-specific oligonucleotide primers (Table 1).
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Table 1. Oligonucleotide primers used for qPCR.

Gene Name Oligo Forward (Fw) Oligo Reverse (Rv)

m36B4 (Rplp0) GCGACCTGGAAGTCCAACTA ATCTGCTGCATCTGCTTGG
Znf219 GGGACCCAGGCGAGATCC CACGGCCCGCTTCAGATC
Chd4 CTGCTCAGCGGGAGTGAGG GGGTCTCGAGGTTTCTTAGGCT
Tnni2 CACCTGAAGAGTGTGATGCTC GGGCAGTGTTCTGACAGGTAG
Acta1 GTGACCACAGCTGAACGTG CCAGGGAGGAGGAAGAGG
Tnnc2 GAGATGATCGCTGAGTTCAAG GTCTGCCCTAGCATCCTCAT
Atp2a1 TTTGGCAGGAACGGAATG AGCCTTGATCCTTTGCACTG
Tnnt3 ACAGATTGGCGGAGGAGAAG CATGGAGGACAGAGCCTTTT
Cx40 GGAGGAAAGGAAGCAGAAGG GACTGTGGAGTGCTTGTGGA

Cacna1h ATTTCTGGCCGAACAGTCC AGCATCTTGGAGGCCTTTG
Hcn4 TGACTTCAGATTTTACTGGGA TTGAAGACGATCCAGGGTGT
Kcnh2 TCGCTTTCTCAGGTTTCCCA GCCTGGATCTGAGCCATGT
Scn5a TCGTCATGGCATACACAACT GTCTTCAGGCCTGAAATGA
Scn10a TTGACAACTTCAATCAACAGAA TGGTACTTATTCAAAGGCCGT
Col1a1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG
Col3a1 CTGTAACATGGAAACTGGGGAAA CCATAGCTGAACTGAAAACCACC

4.8. Western Blotting

For detection of Chd4, Znf219, troponin I2, fast skeletal type (Tnni2), and troponin
I3, fast skeletal type (Tnnt3), heart tissue was homogenized in lysis buffer (50 mM Tris
pH 8, 0.42 M NaCl, 1% Triton X-100, 1 mM EDTA) supplemented with protease inhibitors
(pepstatin, leupeptin, aprotinin, and PMSF) using a Magnalyzer apparatus. The resulting
homogenate was incubated for 60 min at 4 ◦C on a rocking platform and then centrifuged
at 14,000× g for 15 min, and the supernatant was recovered. Equal amounts of protein
were resolved by 6% or 10% SDS-PAGE, and proteins were transferred to 0.22 µm ni-
trocellulose membranes. Blots were probed with polyclonal primary antibodies against
Chd4 (1:1000 dilution; ab72418, Abcam, Cambridge, UK), Znf219 (1:1000 dilution; ab71279,
Abcam), Tnni2 (1:1000 dilution; ab119943, Abcam, Cambridge, UK), or Tnnt3 (1:1000 dilu-
tion; sc-20643; Millipore, Bedford, USA), followed by HRP-conjugated goat anti-rabbit IgG
secondary antibody (Bio-Rad) and detection by enhanced chemiluminescence (Amersham,
Los Angeles, CA, USA). As a loading control, membranes were re-probed with a primary
antibody against tubulin (mouse monoclonal, 1:40,000 dilution; T6074, Sigma) or PSF
(mouse monoclonal, 1:1000 dilution; Santa Cruz Biotechnology, Dallas, TX, USA) (Table 2).

Table 2. Primary and secondary antibodies used and their respective dilutions.

Antibody Host Dilution Secondary Dilution

α-Flag Mouse 1:500 α-mouse 1:5000 or 1:3000
α-Myc Mouse 1:15 α-mouse 1:5000

α-tubulina Mouse 1:400,000 α-mouse 1:5000
α-CHD4 Rabbit 1:500 α-rabbit 1:5000
α-Znf219 Mouse 1:500 α-mouse 1:2000
α-Tnni2 Rabbit 1:500 α-rabbit 1:3000
α-Tnnt3 Mouse 1:500 α-mouse 1:3000

4.9. Histological Analysis

Adult hearts were dissected in cold PBS, fixed overnight in 4% paraformaldehyde
buffer, embedded in paraffin, and cut at 5 µm intervals with a microtome. Sections were
stained with hematoxylin and eosin (H&E) using standard procedures. Immunohistochem-
istry (IHC) was performed using standard procedures.
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All images were acquired at room temperature using a DM2500, Leica microscope
fitted with 10, 20, or 40 × HCX PL Fluotar objective lenses and Leica acquisition software
(Leica Application Suite V3.5.0). Images were processed for presentation with the Adobe
Photoshop program.

4.10. Transcription Factor (TF) Binding Analysis

Putative TF binding motifs were detected in the regions 600 bp upstream and 200 bp
downstream from the transcription start sites (TSS) of genes of interest with the STORM
algorithm [38], using position frequency matrices (PFMs) from the TRANSFAC database
(Professional version, release 2009.4) [39]. The cut off p-value was 0.0000125. To identify
over-represented TF binding sites in the dysregulated genes against the background of all
genes in the genome, an enrichment analysis and heat mapping were performed using
Gitools [40]. Resulting p-values were adjusted for multiple testing using the Benjamin and
Hochberg’s false discovery rate (FDR) method [41].

4.11. Statistical Analysis and Software Used

Results are expressed as mean ± S.E.M. The significance of differences between
WT and corresponding mutant groups was assessed by two-tailed Student’s t-test or by
one-way or two-way ANOVA, as stated in each figure legend. Statistical significance was
set at a p value < 0.05.

The software used in this study was GraphPad Prism 8.0 for quantitative data anal-
ysis, Adobe Illustrator CC 2018 to generate the figures, and MetaMorph offline software
(University Image Corp., Buckinghamshire, UK) for fibrosis quantification.
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