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Abstract

The angiotensin-(1-7) [Ang-(1-7)[/MAS1 receptor signaling axis is a key endogenous anti-
inflammatory signaling pathway. However, the mechanisms by which its mediates the anti-
inflammatory effects are not completely understood. Using an allergic murine model of
asthma, we investigated whether Ang-1(1-7)/MAS1 receptor axis a): inhibits allergic inflam-
mation via modulation of Src-dependent transactivation of the epidermal growth factor
receptor (EGFR) and downstream signaling effectors such as ERK1/2, and b): directly inhib-
its neutrophil and/or eosinophil chemotaxis ex vivo. Ovalbumin (OVA)-induced allergic
inflammation resulted in increased phosphorylation of Src kinase, EGFR, and ERK1/2. In
addition, OVA challenge increased airway cellular influx, perivascular and peribronchial
inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyperresponsiveness
(AHR). Treatment with Ang-(1-7) inhibited phosphorylation of Src kinase, EGFR, ERK1/2,
the cellular and histopathological changes and AHR. Ang-(1-7) treatment also inhibited
neutrophil and eosinophil chemotaxis ex vivo. These changes were reversed following pre-
treatment with A779. These data show that the anti-inflammatory actions of Ang-(1-7)/
MAS1 receptor axis are mediated, at least in part, via inhibition of Src-dependent transacti-
vation of EGFR and downstream signaling molecules such as ERK1/2. This study therefore
shows that inhibition of the Src/EGRF/ERK1/2 dependent signaling pathway is one of the
mechanisms by which the Ang-(1-7)/ MAS1 receptor axis mediates it anti-inflammatory
effects in diseases such as asthma.
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Introduction

Chronic airway inflammatory response is characterized by repeating cycles of allergen insults
and airway repair leading to structural and functional changes such as airway remodeling, air-
way obstruction and hyperresponsiveness (AHR) [1, 2]. The epithelial cell in particular, with
its unique position, has been shown to play a critical role in driving these deleterious changes
in the asthmatic airway through the generation of many pro-inflammatory signals, such as
through activation of epidermal growth factor receptor (EGFR) and its downstream signaling
molecules [3, 4].

Opver the last two decades, many cytokines/chemokines have been shown to have important
regulatory and effector roles in asthma pathogenesis [5]. Nonetheless antagonism of their sig-
naling pathways has not resulted in the anticipated therapeutic benefits in the wider asthma
population with only modest effects seen in severe asthma [6, 7]. Interestingly, as predicted by
“network biology analysis”, to have any significant impact on disease metrics, several “nodes”
need to be targeted simultaneously, rather than blockade of individual mediator signaling
pathways [8]. This approach is in line with the mechanisms of action of steroids, the most
effective asthma therapy, which act to “switch oft” many pro-inflammatory signaling pathways
simultaneously and is so far the gold standard in asthma therapy [9].

There is a growing body of evidence suggesting an important and beneficial role for the
newly discovered arm of the renin-angiotensin-aldosterone system (RAAS); angiotensin con-
verting enzyme 2 (ACE2)/angiotensin (Ang) 1-7/ MAS1 receptor axis in the pathogenesis of
various disorders [10, 11]. Indeed, Ang-(1-7) was shown to oppose various effector functions
of Ang IT in regulating cardiovascular and renal functions [10, 12-15]. Also, anti-inflammatory
actions of Ang-(1-7) have been demonstrated in numerous inflammatory models such as
arthritis [16], atherosclerosis plaque [17], and more recently in a model of colitis [18]. We, and
others, have reported that treatment with the Ang-(1-7) or the non-peptide compound MAS1
receptor agonist AVE 0991 (AVE) ameliorates OVA-induced airway perivascular and peri-
bronchial inflammation, fibrosis, goblet cell hyper/metaplasia, and inflammatory cell counts in
the bronchoalveolar lavage fluid (BALF) [19, 20] in a model of allergic inflammation. The
important role that (Ang) 1-7 MAS1/receptor axis plays in regulating inflammation has also
been highlighted in a study showing that deletion of the MAS1 genes enhances the airway
inflammatory response to allergen challenge [21]. Altogether, these studies underscore the
important role that Ang-(1-7)/MASI1 receptor axis plays in counteracting pro-inflammatory
pathways.

The exact molecular mechanism of action of Ang-(1-7)/MASI axis is not known but it has
been shown to modulate various arms of the inflammatory response such as inhibition of cyto-
kines such as TNF-a, IL-18, CXCL1 [16, 22] and activity of pro-inflammatory enzymes such as
NADPH oxidase (NOX) [23]. More recently, using a Th1 driven colitis model, we have shown
that Ang-(1-7)/MASI axis modulates inflammatory cell functions such as induction of neutro-
phil apoptosis, and inhibition of chemotaxis and superoxide release in vitro [24]. However, the
effects of activation of the Ang-(1-7)/MASI receptor axis on neutrophil and/or eosinophil
chemotaxis, within an allergic inflammation response, is not known.

The epithelial growth factor (EGF) and its receptor have been implicated in the pathogene-
sis of diseases such as cancers, diabetes and asthma [25-32]. In asthma for example, enhanced
expression of EGF/EGFR was observed in the bronchial epithelium, airway glands, smooth
muscle and basement membrane of asthmatic individuals, and correlated well with sub-epithe-
lial basement membrane thickening [25]. In animal models of asthma, selective EGFR inhibi-
tors such as AG1478 and gefitinib, significantly reduced airway smooth muscle hyperplasia/
remodeling, eosinophil recruitment, inflammation, AHR and epithelial and goblet cell
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proliferation [27, 33, 34]. Members of the Src family of tyrosine kinases have also been directly
implicated in a number of signaling pathways involved in asthma [35-38] and allergen activa-
tion of IgE receptors [39-41]. We have recently shown, in both asthma and diabetes disease
models, in which EGFR activity is enhanced, that inhibition of Src kinase reduces EGFR trans-
activation and ameliorates the disease features [4, 42, 43].

The objective of this study was to investigate, using an allergic murine model of asthma,
whether the Ang-1(1-7)/MASI receptor axis a) inhibits allergic inflammation via modulation
of Src kinase and/or EGFR and/or their downstream signaling pathways through ERK1/2 and
b), modulates neutrophil and/or eosinophil chemotaxis ex vivo to bronchoalveolar lavage
(BALF) from OVA challenged mice.

Methods
Animals

Male BALB/c mice (6-8 weeks old) used in this study were maintained under temperature-
controlled conditions with an artificial 12 h light/dark cycle and were allowed standard chow
and water ad libitum. All studies involving animals are reported in accordance with the
ARRIVE guidelines for reporting experiments involving animals. All experimental protocols
were approved by the Animal Welfare and Use of Laboratory Animals Committee in the
Health Sciences Center, Kuwait University and complied with the ARRIVE Guidelines and
were carried out in accordance with the EU Directive 2010/63/EU for animal experiments and
the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publi-
cations No. 8023, revised 1978).

Immunization and intranasal challenge and drug treatment protocols

BALB/c mice were immunized once by intraperitoneal (i.p.) injection of 10 pg ovalbumin
(OVA) in 0.2 ml of alu-Gel-S (Alu-Gel-S; SERVA Electrophoresis GmbH) on day 0. Ten days
later, the animals were challenged intranasally once a day over 4 consecutive days with 30 pg
OVA dissolved in 50 ul PBS solution. Control animals were similarly immunized with OVA
but challenged intranasally with 50 ul PBS. All intranasal administrations were done following
light anesthesia with halothane.

Five treatment groups (n = 9-14) were established. Groups A and B were treated (i.p.) with
the vehicle (water) for A779 and then 1 h later treated with the vehicle (water) for Ang-(1-7)
and 30 minutes thereafter, mice were challenged intranasally with PBS and OV A respectively.
One hour subsequently, these mice were treated with the vehicle (water) for Ang-(1-7). Group
C was treated (i.p.) with the vehicle (water) for A779 and 1 h later treated with Ang-(1-7) (0.3
mg/kg; i.p.). Thirty minutes thereafter, these mice were challenged intranasally with OVA and
1 h subsequently were treated with Ang-(1-7) (0.3 mg/kg; i.p.). Group D was treated with
A779 (1 mg/kg; i.p.), and 1 h later, the mice were treated with Ang-(1-7) (0.3 mg/kg; i.p.).
Thirty minutes thereafter, mice were challenged intranasally with OV, and 1 h later they
were treated with Ang-(1-7) (0.3 mg/kg; i.p.). Group E was treated (i.p.) with the vehicle
(water) and 1 h later they treated with dexamethasone (1 mg/kg; i.p.). Thirty minutes thereaf-
ter, mice were challenged intranasally with OVA. The drug/vehicle treatment and PBS/ovalbu-
min intranasal challenges were continued for four consecutive days.

BAL fluid cell counts and lung histology

BAL fluid was collected by cannulating the trachea and washing the lungs with saline solution
(4 x 0.3 ml each) after sacrificing the animals with an over dose with halothane. BAL cells were
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counted using a particle-size counter (Z1 Single Threshold; Beckman Coulter) and cytosmears
were prepared for differential count. Cells were stained with Diff-Quik and a differential count
of 200 cells was performed using standard morphologic criteria. Results are expressed as total
cell count/ml and as total macrophages, lymphocytes, neutrophils, and eosinophils/ml in BAL
fluid.

For histology, pieces of lung tissue were removed and fixed in 10% buffered formalin,
embedded in paraffin wax and sectioned into 5-um-thick slices. The sections were processed
and stained separately with H&E stain, Masson’s Trichrome stains and periodic acid-Schiff
(PAS) according to standard methods. Sections were examined under light microscope and
the severity of pathologic changes scored independently by two experienced histologists unfa-
miliar with the slides. Score coding was as follows: (1 = normal, 2 = mild, 3 = moderate,

4 = severe and 5 = highly severe).

Measurement of airway responsiveness

Measurement of airway responsiveness was done on a separate set of animals 24 h after last
OVA or PBS challenge using a Buxco FinePointe series RC site (DSI, Wilmington, NC),
according to the manufacturer’s guidelines. In short, mice were anesthetized with an intraperi-
toneal injection of ketamine/xylazine (1:0.1 mg/kg) cocktail and tracheotomized with a steel
18-gauge cannula. Mice were subsequently mechanically ventilated at a rate of 150 breaths/
min, and tidal volume of 0.15 ml, using a computerized small animal ventilator (FinePointe
site), as previously described [42, 44, 45]. After 5 min of stabilization followed, by administra-
tion of PBS, airway resistance was measured by exposing mice to aerosolized methalcholine
(6.25-50.0 mg/ml, 5 pl per delivery) delivered by an aerogen nebulizer administration, and
reported as total lung resistance (R;) (centimeters H,O per milliliter per second).

Immunofluorescence

Lung tissues were processed as described above. Immunofluorescence was performed as previ-
ously described [46]. In brief, lung sections were incubated in blocking solution (5% bovine
serum albumin (BSA) + 0.3% Triton X-100 in PBS) for 1 h, followed by incubation overnight
at 4°C with primary antibodies [p-EGFR, p-Src, and p-ERK1/2 (1:50-1:100 dilution) or only
1% BSA (for negative control); Cell Signaling, USA], diluted in 1% blocking solution. On the
following day, sections were washed and incubated with secondary antibody conjugated to
Alexa Fluor 555 (Goat anti rabbit SFX kit; Life Technologies, USA, 1:400 dilution) for 2 h at
room temperature) in the dark. After several washes in PBS, sections were stained with 4’, 6
diamidino-2- phenyl indole and mounted. Images were captured on a ZIESS LSM 700 confo-
cal microscope and fluorescence intensity estimated in defined fields using Image J software
package. The laser setting and photo processing were equal amongst the different treatment
groups for each protein. 40x magnification for the tested molecules were equally modified in
terms of sharpness and contrast to show localization of the phospho proteins in the lung
tissue.

Western blotting

The right lobes from the dissected lungs of the mice were snap-frozen in liquid nitrogen and
stored at —80°C. The tissue samples were defrosted in ice then transferred to lysis buffer (pH
7.6) containing 50 mM Tris-base, 5mM EGTA, 150mM NaCl, 1% Triton 100, 2mM Na;VOy,,
50mM NAF, 1mM PMSF, 20 uM phenyl arsine, 10 mM sodium molybdate,

10 ugmL ™" leupeptin and 8 ugmL ™" aprotinin. Using homogenizer, the tissues were homog-
enized for 10 second, 3 times. The samples were left to lyse completely by incubation on ice for
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30 min. Lysates were then centrifuged at 13000 rpm for 10 min at 4°C and supernatants were
collected and protein concentration estimated by Bio-Rad Bradford protein assay (Bio-Rad,
Hercules, CA, USA). Actin was used as a loading control. The following antibodies from Cell
Signaling (USA) were used in this study: p-EGFR-Antibody (Y1068) (rabbit; Cat. No.

2234L), pp44/42 MAPK (ERK1/2) (137F5) (Rabbit; Cat. No. 4695T), and from pSrc Family
(Tyr416) (Cat.No.6943S), whereas the anti-actin rabbit polyclonal IgG (1 ul/10 ml) (Cat. No.
A-2066) was obtained from Sigma Chemical Co, USA. Aliquots containing equal amounts of
protein were subjected to SDS-PAGE and transferred electrophoretic ally onto nitrocellulose
membrane (Schleicher & Schuell, Dassel, Germany). The membranes were blocked with 5%
bovine serum albumin (BSA) and then incubated with primary antibodies (1:1000 in 5% BSA)
or B-actin primary antibodies at 4 °C overnight. Membranes were incubated with either
monoclonal antibodies (Cell Signaling, Danvers, MA, USA) to detect phosphorylated forms of
EGF receptor (bands seen at approximately 175kDa), ERK1/2 (at 42/44kDa), pSrc (at 56-
62kDa), and subsequently with appropriate secondary antibodies conjugated to horseradish
peroxidase (Amersham, Buckinghamshire, UK).

To ensure equal loading of proteins, B-actin levels were detected using primary rabbit anti-
human B-actin antibody (1:1000 in 5% BSA) followed by the secondary anti-rabbit IgG horse-
radish peroxidase conjugated antibody (Cell Signaling). Immunoreactive bands were detected
with Super Signal chemiluminescent substrate (Immuno Cruz Western blotting luminal
reagent SC-20428, Santa Cruz Biotechnology) using Kodak autoradiography film (Care stream
Biomax Xarfil 1660760). Images were finally analyzed and all data were normalized to B-actin
levels. The experiment was run twice with lung samples from three different mice, in each
treatment groups (pooled), in each run.

Isolation of murine bone-marrow derived neutrophils

Neutrophils were isolated from murine tibial and femoral bone marrow as described previ-
ously [24]. Briefly, mice were euthanized and the femurs and tibias dissected from the animal
and the ends of bones removed. The marrow was flushed from the bone with ice-cold 50 ml
PBS and then centrifuged at 1300 rpm for 6 min at 4°C. After harvesting of bone-marrow-
derived cells by flushing with PBS, the cells were re-suspended in 3 ml of 52% Percoll and lay-
ered on a 3-step Percoll gradient (72%, 64%, and 52% plus cells), and centrifuged (2600 rpm
for 30 min at 4 °C). Purified neutrophils were removed from the layer between the 64% and
72% Percoll and washed once with ice-cold PBS and suspended in RPMI culture media con-
taining 20% FBS at a concentration of 10”cells/ml. Neutrophil viability was >95% based on
Trypan blue exclusion test.

Assessment of neutrophil chemotaxis (under-agarose assay) in vitro

The under agarose chemotaxis assay [24, 46] was used to determine the effect of BALF on cell
chemotaxis. Tissue culture dishes were filled with 3 ml of 0.5% agarose solution. After solidifi-
cation, three wells (3.5 mm diameter) were created in the gel 2.5 mm apart in a horizontal line.
The center well was loaded with 10 pl of BALF taken from vehicle- (control) or OVA-treated
mice, and the outer wells were loaded with 10 ul neutrophils (107 cells/ml) (pretreated for 30
min with vehicle or different concentrations of Ang- (1-7) and incubated for 4 h (at 37 °C, 5%
CO,). Results were analyzed by visual microscopic examination (x100). The degree of chemo-
taxis was determined by counting the number of cells which migrate towards the source of
chemoattractant minus the number migrating away from it.
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Isolation of human blood eosinophils

Fresh blood was obtained from healthy individuals, after getting their informed consent, with
no history of allergic disease nor had taken any medication in the last 72 h. The methods and
protocol for these experiments were performed in accordance to and approved by the “Ethical
Committee of the Faculty of Medicine, Kuwait University”. Granulocytes were isolated from
heparinized (10 IU/ml) blood by erythrocyte sedimentation, followed by percoll gradient cen-
trifugation as previously described [44]. Eosinophils were separated using negative selection
with the immunomagnetic method as previously described [47]. The eosinophil purity was
assessed by differential count of a Wright-Giemsa stained cytosmear and was routinely >98%.
Viability was determined by Trypan blue exclusion and exceeded 98%.

Boyden chamber assay for eosinophil chemotaxis

Peripheral blood derived eosinophils were used for chemotaxis assay using the Boyden cham-
ber as previously described [48]. Purified eosinophils (2 x 10°) (pretreated for 30 min with
vehicle or different concentrations of Ang -(17); A779 pretreated cells were pretreated for 30
min prior to Ang -(1-7). Cell were then placed in the upper wells and in the lower wells, 500 ul
of BALF derived from mice challenged with PBS (vehicle) or OVA pretreated and allowed to
migrate for 1 h (37 “C/5%CO,). The transmigrated cells were determined by counting under
the microscope by using a hemocytometer.

Statistical analyses

All numerical values were expressed as means + S.E.M. Total cell counts represent the number
of BALF cells/ml. Differential cell counts represent the absolute number of each cell type/ml of
BALF. Absolute Ry, values were calculated and used as an index of the airway responsiveness to
methacholine. For the histopathology, a semi-quantitative 5-level lung pathology score was
used to grade the extent of abnormalities in each microscopic field at 200X. All data were ini-
tially assessed for normality. For the airway responsiveness, a two-way repeated measure anal-
ysis of variance followed by a Bonferroni post hoc test was used. One-way analysis of variance
(ANOVA) test followed by Bonferroni post hoc was used to compare differences between indi-
vidual groups for both total and differential cell count and histopathological data. An ANOVA
test followed by Bonferroni post hoc test was used for the immunofluorescence data. The
mean difference was considered as significant at a probability level of less than 0.05. All results
analysis was performed using GraphPad Prism.

Results

Effect of Ang-(1-7) on phosphorylation of Src, EGFR and ERK1/2 as
determined by immunofluorescence

Effect on Src kinase. OVA challenge resulted in a significant increase of approximately
3.3-fold in the phosphorylation of Src compared to PBS control as detected by immunofluores-
cence (P<0.05; Fig 1B, 1C and 1G). Treatment with Ang-(1-7) significantly inhibited the
OVA-induced increase in Src phosphorylation by approximately 52.0% (P<0.05) and was
somewhat comparable to the inhibition noted in the dexamethasone treatment group
(P<0.05; Fig 1C, 1D, 1F and 1G). Treatment with A779, the MAS1 receptor antagonist, signifi-
cantly reversed the effects of Ang-(1-7) on OVA-induced Src phosphorylation (P<0.05; Fig
1E and 1G). Fig 1H is a higher magnification (x40) immunofluorescence image of the OVA
challenged mice lungs and shows that p-Src has a somewhat diffuse expression in both the air-
ways and lung tissue.
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Fig 1. Immunofluorescent (Alexa Fluor) detection of phosphorylated Src shown on the upper panels are overlaid with DAPI stain on the lower panel
to show lung tissue architecture. Lung sections were taken from different treatment groups and immunostained for phosphorylated Src (Fig 1(b-f)).
Negative control (a); PBS/Veh (b); OVA/Veh (c); OVA/Ang-(1-7) (d); OVA/Ang-(1-7) + A779 (e) and OVA/Dex (f). PBS treated mice showed minimal
pSrc (b). OVA challenge resulted in a significant increase in pSrc and this was inhibited following treatment with Ang-(1-7) (0.3 mg/kg) (c, d and g) and was
comparable to the dexamethasone treated animals (f and g). Treatment with A779 inhibited the Ang-(1-7) (0.3 mg/kg)-induced decrease in pSrc (e and g).
Quantitative assessment of fluorescence intensity of p-Src (Fig 1(g)) (arbitrary units). Data are expressed as mean = SEM (n = 4-8). *P < 0.05 versus time-
matched PBS-challenged mice. *P < 0.05 versus time-matched ovalbumin-challenged mice. ¥ P < 0.05 versus time-matched OVA/Ang-(1-7) treated
animals. Panel (h) is a higher magnification (x40) (x40) of the OVA challenged group to better show the localization of the stain.
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Effect on EGFR. OVA challenge resulted in a significant (P<0.05) 7.8-fold increase in the
phosphorylation of EGFR compared to PBS control (Fig 2B, 2C and 2G). Treatment with Ang-
(1-7) significantly (P<0.05) reduced the EGFR phosphorylation by about 48.0% (P<0.05; Fig
2C, 2D, 2F and 2G). The inhibitory effect of Ang-(1-7) on EGFR phosphorylation was
completely reversed following treatment with A779 (P<0.05; Fig 2E and 2G). Fig 2H is a
higher magnification (x40) immunofluorescence image of the OVA challenged mice and
shows that whilst p-EGFR is expressed throughout the lung tissue and airways, there is a ten-
dency for higher expression on the mucosal side of the airway.

Effect on ERK1/2. OVA challenge resulted in a significant (P<0.05) 2.7-fold increase in
the phosphorylation of ERK1/2 compared to PBS control (Fig 3B, 3C and 3G). Treatment with
Ang-(1-7) also resulted in significant (P<0.05) 78.0% inhibition of ERK1/2 phosphorylation
which was slightly greater than the inhibition (61%) noted following the dexamethasone treat-
ment reduction (P<0.05; 1c, d, fand g). Again, treatment with A779 completely blocked the
Ang-(1-7) mediated inhibition of the OVA-induced increase in ERK1/2 phosphorylation
(P<0.05; Fig 3E and 3G). Fig 2H is a higher magnification (x40) immunofluorescence image
of the OVA challenged mice and shows high expression of p-ERK throughout the airways.

Effect of Ang-(1-7) on phosphorylation of Src, EGFR and ERK1/2

Western blotting analysis of lung homogenate (Fig 4) confirmed the modulated levels of p-Src,
p-EGFR and p-ERK1/2 seen in IF analysis (Figs 1, 2 and 3). OVA challenge resulted in a
marked increase in p-Src, p-EGFR and p-ERK1/2 compared to PBS challenged mice (Fig 4).
Treatment with Ang—(1-7) resulted in a clear inhibition of all of the phosphorylated proteins.
In contrast, treatment with A779 blocked the Ang -(1-7) mediated inhibition whereas treat-
ment with dexamethasone resulted in an inhibition of the OVA-induced increase in p-Src, p-
EGFR and p-ERK1/2, similar to the effect of Ang-(1-7) (Fig 4).

Effect of Ang-(1-7) on OVA- induced inflammatory cell influx

OVA-sensitized and challenged animals had a significant increase in total cell count compared
with the control group 24 h after the last challenge (119.1 + 20.4 versus 35 + 3.6 (x10*) cells/ml
BAL fluid, respectively; P < 0.05; n = 14; Fig 5). Similarly, there were significant increases in
the numbers of lymphocytes, neutrophils and eosinophils, but not macrophages (Fig 5). Treat-
ment with Ang-(1-7) (0.3mg/kg; i.p.) significantly (P<0.05) decreased both total and the dif-
ferential (lymphocytes, neutrophils and eosinophils) cell numbers to levels similar to those
observed with dexamethasone treatment (1 mg/kg) (Fig 5). Furthermore, treatment with A779
(1 mg/kg; i.p.) significantly (P < 0.05) blocked the Ang-(1-7)-induced decrease in total cell
count, eosinophils, lymphocytes and neutrophils compared with vehicle-treated mice (Fig 5).

Effect of Ang-(1-7) on OVA—Induced histopathological changes

Airway remodeling was observed following OV A challenge in the OV A group as evidenced by
severe perivascular and peribronchial inflammatory cell infiltration (H&E stain), peribronchial
fibrosis (Masson’s Trichrome stain) and bronchial mucus production and goblet cell hyper/
metaplasia (PAS stain) compared to the PBS challenged control group which had a normal air-
way morphology (Fig 6a 6b, 6¢ and 6d, P<0.05). Treatment with Ang-(1-7) (0.3mg/kg; i.p.)
resulted in amelioration of OVA-induced inflammation with a significant reduction in the air-
way cellular influx, airway fibrosis, goblet cell hyper/metaplasia and mucus production, achiev-
ing almost normal histological appearance and indeed was as effective as dexamethasone
treatment (1 mg/kg) (Fig 6a, 6b, 6¢c and 6d, P<0.05). These effects of Ang-(1-7) were
completely reversed upon treatment with A779 (Fig 6a 6b, 6¢ and 6d, P<0.05).
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Fig 2. Immunofluorescent (Alexa Fluor) detection of phosphorylated EGFR shown on the upper panels are overlaid with DAPI stain on the lower
panel to show lung tissue architecture. Lung sections were taken from different treatment groups and immunostained for pEGFR (Fig (1b-1f)). Negative
control (a); PBS/Veh (b); OVA/Veh (c); OVA/Ang-(1-7) (d); OVA/Ang-(1-7) + A779 (e) and OVA/Dex (f). PBS treated mice showed minimal pEGFR (b).
(aand b). OVA challenge resulted in a significant increase in pPEGFR and this was inhibited following treatment with Ang-(1-7) (0.3 mg/kg) (¢, d and g) and
was comparable to the dexamethasone treated animals (f and g). Treatment with A779 inhibited the Ang-(1-7) (0.3 mg/kg)-induced decrease in pEGFR (e
and g). Quantitative assessment of fluorescence intensity of pEGFR (Fig 1(g)) (arbitrary units). Data are expressed as mean + SEM (n = 6-8). *P < 0.05
versus time-matched PBS-challenged mice. “P < 0.05 versus time-matched ovalbumin-challenged mice. ¥ P < 0.05 versus time-matched OVA/Ang-(1-7)
treated animals. Panel (h) is a higher magnification (x40) of the OVA challenged group to better show the localization of the stain.

https://doi.org/10.1371/journal.pone.0224163.9002
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Fig 3. Immunofluorescent (Alexa Fluor) detection of phosphorylated ERK1/2 shown on the upper panels are overlaid with DAPI stain on the lower
panel to show lung tissue architecture. Lung sections were taken from different treatment groups and immunostained for ERK1/2 (Fig (1b-1f)). Negative
control (a); PBS/Veh (b); OVA/Veh (c); OVA/Ang-(1-7) (d); OVA/Ang-(1-7) + A779 (e) and OVA/Dex (f) (x 20 magnification). PBS treated mice showed
minimal pERK1. OVA challenge resulted in a significant increase in ERK1/2 and this was inhibited following treatment with Ang-(1-7) (0.3 mg/kg) (c, d
and g) and was comparable to the dexamethasone treated animals (f and g). Treatment with A779 inhibited the Ang-(1-7) (0.3 mg/kg)-induced decrease in
ERK1/2 (e and g). Quantitative assessment of fluorescence intensity of ERK1/2 (Fig 1(g)) (arbitrary units). Data are expressed as mean + SEM (n = 5-11).
*P < 0.05 versus time-matched PBS-challenged mice. *P < 0.05 versus time-matched ovalbumin-challenged mice. ¥ P < 0.05 versus time-matched OVA/
Ang-(1-7) treated animals. Panel (h) is a higher magnification (x40) of the OVA challenged group to better show the localization of the stain.

https://doi.org/10.1371/journal.pone.0224163.9003
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Fig 4. Western blot analysis of pSrc, pEGFR and p-ERK1/2 protein levels from lungs of PBS challenged mice pretreated with vehicle (PBS), ovalbumin challenged
pretreated with vehicle (OVA), ovalbumin challenged pretreated with Ang-(1-7) (Ang-(1-7)), ovalbumin mice challenged pretreated with A779 + Ang-(1-7)
(A779) and ovalbumin challenged pretreated with dexamethasone (DEX). The blots are representative of two similar but independent experiments (n = 3). Graphs a,
b and c are densitometric quantification showing relative levels of p-Src, p-EGFR and p-ERK1/2, respectively (normalized to B-actin) of the shown blot.
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In these experiments we evaluated the effect of Ang-(1-7) treatment on the OV A-induced
AHR. Twenty-four hours after the last intranasal OVA challenge of sensitized mice, there was
a significant increase in airway responsiveness, characterized by an increase in lung resistance
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Fig 5. Effect of Ang-(1-7) (0.3 mg/kg; i.p) and A779 on ovalbumin-induced change in total BALF cell count, eosinophils,
lymphocytes, neutrophils and macrophage. Treatment with A779 significantly attenuated the Ang-(1-7)-mediated inhibition of the
ovalbumin-induced increase in total cell influx, eosinophils, lymphocytes and neutrophils in the airways. Data are expressed as

mean + SEM (1 = 8-14). * P < 0.05 versus time-matched PBS-challenged mice. “P < 0.05 versus time-matched ovalbumin-challenged

mice.

https://doi.org/10.1371/journal.pone.0224163.9g005
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Fig 6. Representative low-magnification light photomicrographs display H&E staining (Fig 6(a)), Masson’s Trichrome staining (Fig 6(b)) and PAS stain Fig 6(c))

of whole lung samples from PBS-challenged/ vehicle treated (n = 6) (PBS), OV A-challenged/ vehicle treated (n = 6) (OVA), OVA-challenged/Ang-(1-7) treated

(0.3 mg/kg; n = 6) (Ang-1-7), OVA-challenged/Ang-(1-7) and A779 treated (0.3 mg/kg; n = 6 and 1mg/kg; n = 5; respectively) (Ang-1-7 + A779), OVA-challenged/
dexamethasone treated (1 mg/kg; n = 6) (DEX). OVA-challenged/vehicle treated mice showed marked and significant peribronchial and perivascular inflammatory cell
infiltrations (a) peribronchial and perivascular fibrosis (b) and bronchial mucus production and goblet cell hyper/metaplasia (c) compared with PBS-challenged vehicle
treated mice. Treatment with Ang-(1-7) resulted in a significant reduction in the peribronchial and perivascular dark-staining inflammatory cell infiltration (a),
peribronchial and perivascular fibrosis (b) and bronchial mucus production and goblet cell hyper/metaplasia (c) compared to the OVA - challenged mice and was
comparable to PBS-challenged and OV A-challenged/dexamethasone treated mice. Effect of Ang-(1-7) (0.3 mg/kg) on inflammation severity score is shown in Fig 6(d).
Data are expressed as mean + SEM (1 = 5-6). * P < 0.05 versus time-matched PBS-challenged mice. “P < 0.05 versus time-matched ovalbumin-challenged mice.

+P < 0.05 versus time-matched Ang-(1-7)-treated ovalbumin-challenged mice.

https://doi.org/10.1371/journal.pone.0224163.9006

(Ry) to methacholine in the OVA challenged mice compared to the PBS treated control mice
and was significant at doses 25 and 50 mg/ml of methacholine compared (6.1 + 0.6 and
7.6+0.7vs 4.3+ 0.4 and 5.4 £ 0.6; P < 0.05; Fig 7). Treatment with Ang-(1-7) (0.3mg/kg) sig-
nificantly reduced the average Ry in comparison with the OV A-challenged/vehicle-treated
group at both the 25 and 50 mg/ml dose of methacholine (4.3 + 0.4 and 5.9 + 0.7 vs 6.1 £ 0.6
and 7.6 £ 0.7; cm H,O/ml per second P < 0.05; Fig 7), and was comparable to that of dexa-
methasone (1 mg/kg) treated group (4.4 + 0.3 and 5.6 + 0.6 cm H,O/ml per second) as it pro-
duced a significant reduction (P < 0.05) of AHR. On the other hand, treatment with A779 (1
mg/kg; i.p.) completely blocked the Ang-(1-7) induced reduction of the AHR

Effect of Ang 1-7 treatment on neutrophil and eosinophil chemotaxis ex
vivo

There was a significant increase in neutrophil chemotaxis towards BALF from OV A-treated
mice compared to BALF taken from PBS challenged mice (UT) (P<0.05; Fig 8A). Ang 1-7
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Fig 7. Effect of Ang-(1-7) (0.3 mg/kg), Ang-(1-7) (0.3 mg/kg) and A779 (1 mg/kg), and dexamethasone (1 mg/kg)
on ovalbumin-induced AHR to inhaled methacholine. Lung function measurements were done 24 h after the last
challenge. OVA challenged mice had significant AHR compared with the PBS/Veh group. Treatment with both Ang-
(1-7) (0.3 mg/kg) and dexamethasone (1 mg/kg) both significantly reduced the OVA-induced AHR. Data are
expressed as mean + SEM (n = 12-19).

https://doi.org/10.1371/journal.pone.0224163.9007

pretreatment (100-1000 nM) significantly reduced the OVA/BALF-induced neutrophil che-
motaxis ex vivo (P<0.05; Fig 8A). Similarly, there was a significant increase in eosinophil che-
motaxis towards BALF from OVA-treated mice compared to BALF from PBS challenged mice
(UT) (P<0.05; Fig 8B). Again, pretreatment with Ang-(1-7) (100-1000 nM) dose dependently
inhibited the OVA/BALF-induced eosinophil chemotaxis and this was significantly (P<0.05)
inhibited following pretreatment with A779.

Discussion

The major finding of this study is that the anti-inflammatory effects of Ang-(1-7) in an allergic
murine model of asthma are mediated, at least in part, via the inhibition of Src and EGFR
phosphorylation and consequent suppression of their downstream signaling effectors such as
ERK1/2. Furthermore, we also showed that Ang-(1-7) directly inhibits neutrophil and eosino-
phil chemotaxis ex vivo. These results imply that the anti-inflammatory and anti-AHR effects
of the Ang-(1-7)/MASI receptor axis are mediated, at least in part, via suppression of the Src/
EGFR/ERK1/2 dependent signaling pathway.

The RAAS system has long been known to be a central regulator of heart and kidney
homeostasis. Its activation has also been implicated in several disease states such as asthma,
cardiovascular, renal and cancer and induces many pathophysiological effects such as vasocon-
striction, cell proliferation, inflammation and fibrosis [49-51]. These effects are thought to be
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Fig 8. Effect of Ang (1-7) treatment on (a) neutrophil and (b) eosinophil chemotaxis towards BALF taken from either
vehicle- or OVA-treated mice. Treatment with Ang-(1-7) inhibited both neutrophil and eosinophil migration.
Treatment with A779 inhibited the eosinophil migration. Data are expressed as mean + SEM (1 = 5-8). *P < 0.05
versus time-matched PBS-challenged mice. *P<0.05 versus time-matched OVA-challenged mice.

https://doi.org/10.1371/journal.pone.0224163.9008

mediated mainly via the ACE/AnglI/AT R-axis. The recent discovery of new components of
the RAAS such as angiotensin converting enzyme 2 (ACE2), Ang-(1-7) MASI receptor, Ang-
(1-9) and alamandine has shed a different light on the biology of the RAAS system [52, 53]. In
particular, the identification of ACEII/Ang -(1-7)/ MASI receptor axis reveals an interesting
level of complexity whereby the RAAS system regulates itself. Indeed, there is now overwhelm-
ing evidence that ACEII/(Ang-1-7)/ MASI receptor axis acts as a counter-regulatory axis to
the ACE/AnglII/AT;R-axis receptor axis [54]. This is clearly exemplified in the cardiovascular
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system, particularly in blood pressure regulation and in cardiac pathologies [55-57]. This para-
digm is also seen in several biological systems regulated by the RAAS system [54, 56], but the
molecular mechanisms by which this is achieved remains unknown.

A major finding of our study is that treatment with Ang-(1-7) resulted in MASI receptor
mediated inhibition of the OVA- induced EGFR phosphorylation. The Ang-(1-7) effects on
EGEFR were also associated with a significant reduction in the OVA-induced effects on the
total and differential airway cellular influx, particularly eosinophil and neutrophils, which have
roles in stable and severe asthma, respectively [2, 58]. There was also a decrease in OVA-
induced perivascular and peribronchial inflammation, fibrosis and goblet cell hyper/metapla-
sia. These effects on the allergic phenotype are in agreement with recent findings from our lab-
oratory, and that of others, which show that activation of the ACEII/(Ang-1-7)/ MAS1
receptor via administration of Ang-(1-7) or AVE 0991 (AVE), the non-peptide mimetic of the
angiotensin (Ang)-(1-7), significantly reduced airway inflammation and remodeling [19, 20].
The anti-inflammatory action of the (Ang-1-7)/ MASI receptor was also demonstrated in a
recent study with MASI knockout mice [21]. The inhibition of EGFR activation by Ang-(1-7)
reported in this study is in agreement with our previous data showing that pretreatment with
Ang-(1-7) prevents hyperglycemia-induced EGFR transactivation-dependent vascular com-
plications [43]. A growing body of evidence shows that EGFR-dependent signaling plays a sig-
nificant role in asthma [59-61]. We and others have also recently reported in animal models,
and in clinical studies, that increased EGFR activity is associated with the asthma phenotype.
Our current data also shows that unlike p-Src and p-ERK1/2, there is a clear trend for an
increase in p-EGFR in the mucosal side of the airways, which is in-line with findings demon-
strating increased EGFR immunoreactivity in the bronchial epithelium [25]. The important
role that EGFR plays in asthma is also underscored by studies showing that tyrosine kinase
inhibitors such as gefitnib, erlotinibin and AG1478, inhibit both EGFR phosphorylation and
asthma features such as cellular influx and airway remodeling and AHR [4, 27, 62].

The importance of EGFR signaling has also been noted in chronic obstructive pulmonary
disease (COPD) where EGFR activity is increased and is associated with mucosal cell metapla-
sia—an important pathophysiological feature in both asthma and COPD [63]. Inhibition of
EGFR activation is likely to be of clinical importance in the treatment of chronic airway
inflammatory diseases [64]. However, one of the issues with EGFR inhibitors is their extensive
side effect profile [65] which may be drug and/or receptor specific, as well as a potential for
drug resistance [66], as is typical in cancer patients receiving EGFR inhibitors. The develop-
ment of stable long acting MAS1 agonists may be a more effective alternative to EGFR inhibi-
tors as potential anti-inflammatory therapy for asthma and other diseases.

Our data also show that treatment with Ang-(1-7) significantly reduced the OVA-induced
increased phosphorylation of Src kinase, which appeared to be diffusely expressed in the lung
tissue and the airways. This activation was fully reversed following treatment with the MAS1
receptor blocker A779. These data clearly suggest that activation of the Ang-(1-7)/MAS1
receptor axis has an inhibitory effect on Src kinase. This finding is in line with our recent
study showing that, in hyperglycemic diabetic animal model, Ang-(1-7) inhibits enhanced Src
phosphorylation and the diabetes-associated changes in the mesenteric vasculature [43, 67].
The importance of Src in asthma was also highlighted in our recent study where we showed
that its inhibition results in the inhibition of airway inflammation, airway remodeling and
AHR [4]. Importantly, inhibition of Src was associated with significant inhibition of EGFR
activation suggesting that Src kinase is indeed upstream of EGFR. The exact role of the Src
kinase family in asthma is still not fully understood. Nonetheless, Src kinases have been shown
to play a role in the signaling pathways for critically important receptors in asthma such the T
cell receptor (TCR) and the high affinity receptor for IgE (FceRI) phenotype [68, 69] and thus,
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may act as an important signaling hub in the pathogenesis of this respiratory condition. Fur-
ther, the inhibition of OVA-induced phosphorylation of both EGFR and Src kinase by Ang-
(1-7) implies that this may be part of a broad-based anti-inflammatory effect possibly via inhi-
bition of several pro-inflammatory pathways. However, that SU 6656, a selective Src family of
kinase inhibitors, also prevented EGFR activation [4] suggests that a likely scenario is that
Ang-(1-7) inhibits Src activation which in turn inhibits EGFR and its downstream signaling
effectors such as ERK1/2.

We showed that treatment with Ang-(1-7) significantly inhibited the phosphorylation of
ERK1/2, an effect that was reversed by treatment with the MASI receptor blocker A779. It is of
interest to note that the effects of Ang-(1-7) on both EGFR and ERK1/2 were comparable to
the dexamethasone treatment. ERK1/2 dependent signaling pathway has been shown to medi-
ate important pathophysiological effects in models of asthma [19, 70, 71]. Indeed, we have
recently shown that ERK1/2, in addition to PI3K/AKT, is an important signaling effector mol-
ecule downstream of EGFR and its selective blockade results in reduction of the asthma phe-
notype [4]. Interestingly, inhibition of ERK1/2 was more effective than inhibition of either Src
or EGFR, implying that downstream inhibition is more effective than upstream pathway.
Taken together, these data support the notion that the beneficial effects of Ang-(1-7) in a
murine model of asthma involve, at least in part, an inhibition of the deleterious effects of
increased activity of EGFR and its downstream signaling pathways.

Our data also showed that Ang-(1-7) can have direct effects on cell chemotaxis. For
example, ex vivo neutrophil chemotaxis towards BALF from OV A-challenged mice was sig-
nificantly inhibited by exogenous Ang-(1-7) application. This is in agreement with our pre-
vious study showing that Ang-(1-7) inhibited WKYMVm peptide induced neutrophil
influx [46]. Moreover, a recent study has shown that pretreatment with Ang-(1-7) signifi-
cantly reduces leukocyte adhesion and extravasation in diabetic mice in vivo, and also pre-
vented the hyperglycemia-induced increase in adhesion molecules (ICAM-1 and VCAM-1)
as well as neutrophil adhesion in vitro [72]. Similar to the effects on neutrophils, Ang-(1-7)
also significantly inhibited the ex vivo eosinophil chemotaxis to BALF from our OVA chal-
lenged mice and this was reversed following treatment with A779. It is of interest to note
that Ang-(1-7) has also been reported to promote eosinophilic resolution at least partly via
induction of eosinophil apoptosis indicating the presence of the MASI receptor on eosino-
phils which when activated can directly modulate cellular functions such as chemotaxis and
apoptosis [73]. Together, the data show that the inhibitory actions of Ang-(1-7) on cell
migration can be mediated directly (Fig 8).

Our data also show that Ang-(1-7) suppresses the allergen-induced AHR. Increased airway
responsiveness is an important clinical feature of asthma that is not easily amenable to asthma
therapy [74]. Several studies have suggested that both airway inflammation and airway sensory
hyper-excitability may underlie AHR, [75, 76]. Activation of the ACEII/(Ang-1-7)/ MAS1
pathway prevents the development of AHR but it is not clear whether this effect is due to inhi-
bition of Src/EGFR/ ERK1/2 pathway or inhibition of another pro- inflammatory pathway.

In conclusion, the data presented in this study shows that inhibition of Src/EGRF/ERK1/2
is one of the mechanisms by which the Ang-(1-7)/ MAS1 receptor axis mediates its anti-
inflammatory and anti-AHR effects in inflammatory diseases such as asthma.
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