
1Scientific RepoRts | 6:20088 | DOI: 10.1038/srep20088

www.nature.com/scientificreports

Self-organization of frozen light in 
near-zero-index media with cubic 
nonlinearity
A. Marini1 & F. J. García de Abajo1,2

Optical beams are generally unbound in bulk media, and propagate with a velocity approximately 
amounting to the speed of light in free-space. Guidance and full spatial confinement of light are 
usually achieved by means of waveguides, mirrors, resonators, and photonic crystals. Here we 
theoretically demonstrate that nonlinear self-organization can be exploited to freeze optical beams 
in bulk near-zero-index media, thus enabling three-dimensional self-trapping of still light without the 
need of optical resonators. Light is stopped to a standstill owing to the divergent wavelength and 
the vanishing group velocity, effectively rendering, through nonlinearity, a positive-epsilon trapping 
cavity carved in an otherwise slightly-negative-epsilon medium. By numerically solving Maxwell’s 
equations, we find a soliton-like family of still azimuthal doughnuts, which we further study through 
an adiabatic perturbative theory that describes soliton evaporation in lossy media or condensation in 
actively pumped materials. Our results suggest applications in optical data processing and storage, 
quantum optical memories, and soliton-based lasers without cavities. Additionally, near-zero-index 
conditions can also be found in the interplanetary medium and in the atmosphere, where we provide a 
complementary explanation to the rare phenomenon of ball-lightning.

Spatial and temporal self-trapping1–4 occur in several optical systems, including photorefractive media5,6, liq-
uid crystals7,8, and metamaterials9,10. Remarkably, nonlinearity can act simultaneously on temporal and spa-
tial domains to compensate for both diffraction and dispersion, thus enabling the formation of light bullets, 
spatio-temporal doughnuts, and X-shaped waves11–15.

Physical systems enabling either slow or fast light16–18 naturally enhance radiation-matter interaction, thus 
boosting nonlinear processes that can be efficiently used for active light control19, all-optical switching, and mod-
ulation20,21. In particular, near-zero-index (NZI) media can slow down light propagation22–24 and enable extreme 
nonlinear dynamics25, enhanced second and third harmonic generation26, active control of tunneling27, optical 
switching, and bistable response28. These materials naturally exist in nature, for example plasmas, transparent con-
ductors, and metals near their bulk plasma frequency ωp

29. Besides, they can be artificially realized as waveguides 
close to modal cutoff30, using surface phonon polaritons in GaAs quantum wells31, or by engineering subwave-
length metallic nanowires, nano-spheres, or nano-circuits embedded in dielectric matrices. The latter strategy has 
enabled the development of epsilon-near-zero (ENZ) metamaterials, which have been investigated for applications 
such as enhanced transmission32, cloaking33, energy squeezing in narrow channels34, and subwavelength imag-
ing35,36. The ENZ regime is inevitably associated with high dispersion and is therefore accompanied by absorption, 
which can be suppressed by embedding externally pumped active inclusions in the NZI medium37.

Here we theoretically investigate self-organization of light in NZI media with Kerr-like instantaneous nonlin-
earity. In particular, we reveal the existence of fully confined doughnut-shaped solitons with vanishing Poynting 
vector and angular momentum. In practice nonlinearity enables digging a three-dimensional cavity for light, 
which in turn remains frozen and self-trapped. We study the effect of loss on stationary light doughnuts by 
developing a fully numerical soliton perturbative theory, finding that they evaporate over time due to absorption: 
their amplitude decreases, their frequency blueshifts slightly, and their radius increases. Conversely, if externally 
pumped active inclusions with inversion of population are embedded within the NZI medium, the opposite 
scenario takes place and azimuthal doughnuts condensate over time. These findings demonstrate the possibility 
to freeze light beams in ENZ media, with potential applications in optical data processing and storage, quantum 
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optical memories, and NZI lasers operating without cavities. Interestingly, ENZ conditions are found also in the 
interplanetary medium and in the atmosphere, and we argue that our theoretical results may provide insight into 
ball-lightning (BL) formation38–40.

Results and Discussion
Still light. We consider a generic NZI medium with Drude temporal response and instantaneous Kerr-like 
nonlinearity (see Methods). Both of these ingredients ensue from free-particle temporal dynamics, which is char-
acteristic of plasmas, metals, transparent conductors, and ENZ metamaterials, all examples of NZI media. In 
particular, Kerr-like nonlinearity naturally arises from the ponderomotive force in plasmas and metals41.

In the linear limit, homogeneous transverse electromagnetic (TEM) waves are solutions of Maxwell’s equa-
tions with a complex electric field given by  = ω⋅ −ee i i tk r

0 , where ⋅ =k e 00 . The angular frequency ω and the 
wave-vector k satisfy the dispersion relation ω ω ω( ) = ( / ) ( )k c  , where c is the speed of light in free space and 
ω ω ω ω γ( ) = − / ( + )i1 p

2  is the frequency-dependent dielectric constant, which is given by the Fourier trans-
form of the Drude temporal response function  τ( ) (see Methods). The material dispersion basically depends  
on two constants: the plasma frequency ωp and the damping rate γ. The linear dispersion relation of TEM  
waves ω( )k  is depicted in Fig. 1 in the lossless limit γ → 0, together with the phase and group velocities 
ω ω ω ω ω( ) = / ( ), ( ) = /k kv v d df g . Note the cutoff of TEM waves at the plasma frequency ω ω= p, where the 

medium enters the ENZ regime, the phase velocity diverges, and the group velocity vanishes22–24.

Homogeneous nonlinear modes. Owing to the vanishing group velocity, nonlinear effects are dramati-
cally enhanced in the ENZ regime25,26. For ω ω< p, homogeneous modes with vanishing wave-number, infinite 
phase velocity, and zero group velocity can be found by neglecting damping and setting = ω−eE i t

0 , with 
ω χ= − ( )/( )E 2 30 3 , and χ3 being the material’s Kerr coefficient (see Methods). The resulting dispersion rela-

tion is plotted in Fig. 2(a). We find zero-index homogeneous modes to have a cutoff at the plasma frequency ωp, 
where the electric field amplitude drops to zero. In order to evaluate the stability of homogeneous modes, we 
perturb them with small-amplitude waves: δ δ= + +α α ω⋅ + − ⋅ + −⁎ ⁎

e e eE E E[ ]i t i t i tq r q r
0 1 2 , where δ δ,E E1 2 are the 

perturbation amplitudes with wave-vector q and temporal growth eigenvalue α. Inserting this expression in the 
Maxwell’s equations and retaining only the lowest-order terms in δE1 and δE2, we find a homogeneous system of 
linear equations, whose non-trivial solutions are signaled by the vanishing of the secular determinant [see supple-
mentary information (SI) for more details on the technical aspects of the theory]. This condition determines the 
complex temporal eigenvalues α. Instabilities are then associated with positive real parts of the eigenvalue α, 
indicating unbound amplification of the perturbation. We plot results of the stability analysis in Fig. 2(b–d), and 
in particular, we depict the maximum of the real part of the eigenvalue, α ′M. In analogy to standard modulation 
instability in 1D paraxial systems3, the gain spectrum of the perturbations is non-vanishing within a finite 
wave-vector window and is peaked at a characteristic wave-vector modulus. However, in contrast to 1D paraxial 

Figure 1. Dispersion relation k(ω) (cyan right y-axis) and phase and group velocities (vf and vg, red left y-
axis) of TEM waves in the linear loss-less limit. All quantities are plotted in dimensionless units: the angular 
frequency ω is normalized to the plasma frequency ωp, the wave-vector k is normalized to ω= /k cp p , and the 
phase and group velocities are normalized to the speed of light in vacuum c. The red dashed line indicates the 
dispersion-less limit = = cv vf g .
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systems, the gain spectrum is 3D and has a non-trivial dependence on polar and azimuthal angles (θ,φ) of the 
perturbation wave-vector q.

Still azimuthal doughnuts. The modulation instability scenario strongly suggests the presence of still 3D 
solitons in NZI media. In order to verify this hypothesis, we transform Maxwell’s equations into spherical coordi-
nates and search for azimuthally-polarized solutions: θ φ= ( , )φ

ω− ˆE r e i t . As Maxwell’s equations are invariant 
under a constant phase shift (see Methods), without any loss of generality we can assume that the electric field 
envelope is real θ( , ) ∈φ RE r , meaning that we are seeking non-propagating solutions which are not accompa-
nied by a phase flow. Indeed, assuming that such solutions exist, we show that the Poynting vector vanishes thor-
oughly (see SI). Besides, we seek localized soliton-like solutions vanishing at → ∞r  and at =r 0, θ π= ,0  owing 
to the azimuthal polarization. Upon examination of the asymptotical expansion of Maxwell’s equations for 
→ ∞r , we find that 3D soliton-like azimuthal solutions can actually exist only in the ENZ regime (see SI). Thus, 

we discretize derivatives with respect to the radius rn and the polar angle θm and then transform the differential 
wave equation for the electric field into a nonlinear algebraic system for the electric field amplitudes φ, ,E n m in the 
two-dimensional grid θ,rn m (see SI). We solve this nonlinear algebraic system by means of an iterative 
Newton-Raphson algorithm, and find a family of still azimuthal doughnuts [see Fig. 3(a)] for ω ω< p, which 
presents a cutoff at ωp, where the soliton loses localization and its amplitude vanishes. The frequency-dependent 
maximum amplitude and the corresponding radius of the still doughnut family are plotted in Fig. 3(b), while a r-θ 
contour-plot of the squared electric field profile ( )/φE Er S

2
 (normalized to the scaling field )χ= /E 1S 3  of the 

still doughnut at ω ω/ = .0 995p  is depicted in Fig.  3(c). The total dielectric permittivity profile 
ω ω χ ω( , ) = ( ) + ( / ) ( , )φEr r3 2T 3

2
   is shown in Fig. 3(d). Importantly, in the soliton existence domain 
ω ω< p, the linear dielectric constant is negative  ω( ) < 0, and thus, at long radius where the electric field ampli-
tude is small, the NZI medium is metal-like. Conversely, in the volume around the radius rmax for which the 
electric field is maximum, nonlinearity is non-negligible and the total dielectric permittivity is positive 

Figure 2. (a) Nonlinear dispersion of zero-index homogeneous modes existing for angular frequencies ω 
smaller than the cutoff ωp. The electric field amplitude E0 is normalized to the scaling electric field χ= − /ES 3

1 2. 
(b,c) Maximum instability growth α ′M (normalized to the plasma frequency ω )p  as a function of the perturbing 
wave-vector modulus q (normalized to )ω= /k cp p  for several directions in the reciprocal space: (b) θ π= /4, 
φ π π= , / , /0 4 2, and (c) φ = 0, and θ π π= , / , /0 4 2. (d) Contour-plot of the maximum instability growth α ′M 
(normalized to the plasma frequency ω )p  as a function of θ φ,  for a fixed perturbing wave-vector modulus 
/ = .q k 0 1p .
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( ) >r 0T max  (dielectric-like). From here we see that the existence of still azimuthal doughnuts originates in the 
extraordinary ability of nonlinearity to dig a dielectric-like 3D cavity within a metal-like environment. This sce-
nario is unique of NZI media, which prevent propagation of the fields outside the induced-dielectric trapping 
cavity. We emphasize that modulation instability enables the excitation of non-propagating solitons starting 
directly from unstable homogeneous waves with frequency falling in the ENZ regime.

Doughnut evaporation/condensation. In standard transparent media, the main quantity accounting for 
optical propagation is the Poynting vector, representing the temporal rate of energy transfer per unit area. For our 
trapped solitons, the Poynting vector is thoroughly vanishing (see SI), so we describe doughnut self-trapping 
through the optical-cycle-averaged density of electromagnetic energy. Now, if absorption is taken into account, 
the energy density is expected to be damped and vanish exponentially over time. A numerical verification of this 
hypothesis could consist in temporally evolving Maxwell’s equation with the doughnut initial condition. However, 
temporal evolution requires nonlinear 3D finite-difference-time-domain (FDTD) numerical simulations, which 
are computationally demanding. Besides, traditional approaches used in dielectric and plasmonic waveguides42–44 
relying on the slowly-varying-envelope approximation (SVEA) can not be used, as the SVEA does not hold in the 
ENZ regime25. Instead, we have developed a soliton perturbation theory (see SI) capable of accounting for both 
damping and amplification (e.g., in systems containing externally pumped active inclusions within the NZI 
medium) under the assumption that (i) damping γ( > )0  or (ii) gain γ( < )0  are much smaller than the soliton 
angular frequency ω. We further assume that the temporal evolution of the still doughnut adiabatically follows the 
soliton family, finding that the soliton amplitude (i) decays or (ii) increases over time following the exponential 
law ( ) = γ− /E t E e t

M 0
2, where E0 is the initial field amplitude and γ is a phenomenological absorption/pumping 

rate. Accordingly, the doughnut (i) expands and blueshifts or (ii) shrinks and redshifts in either case (see SI). The 
time-dependent field amplitude (blue left y-axis) and doughnut radius (red right y-axis) are plotted in Fig. 4(a) for 
a representative example, along with three snap-shots of the iso-surface | ( )/ | = ×φ

−E Er 1 10S
2 3 at different times 

in Fig. 4(b–d), where we have assumed as initial condition the doughnut of Fig. 3(a,i) damping γ( > )0  (For the 
full temporal evolution see movie in the SI). The doughnut evaporates over time, as its amplitude decreases and 
its radius increases. The gain scenario (ii) γ( < )0  can be interpreted by inverting the temporal direction, so that 
the doughnut condensates over time, as its amplitude increases and its radius decreases.

Figure 3. (a) Iso-surface | ( )/ | = .φE Er 0 005S
2  of a still doughnut with maximum squared amplitude 

/ = .E E 0 01M S
2 , where χ= /E 1S 3  is the scaling field amplitude, excited at an angular frequency 

ω ω/ = .0 9992p . (b) Soliton maximum amplitude /E EM S (red left y-axis) and its corresponding radius rmax 
(cyan right y-axis) as a function of angular frequency ω ω/ p. (c) Contour-plot in the r-θ plane of the 
dimensionless intensity profile θ| ( , )/ |φE r ES

2 and (d) total dielectric permittivity profile  θ( , )rT  (red surface) 
associated with the still doughnut of (a). The blue plane in (d) represents the metal-dielectric transition plane 
 θ( , ) =r 0T . All quantities are plotted in dimensionless units: the angular frequency ω is normalized to the 
plasma frequency ωp, while spatial coordinates are normalized to the inverse of the plasma wave-vector −kp

1.
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Ball-lightnings? BLs are rare lightning events with hitherto unknown theoretical explanation38–40. BLs 
emit broadband radiation and can either propagate or stand still. Initially considered as myth, BLs have puz-
zled scientists for centuries and their existence has been questioned until the first recent experiment able to 
measure their spectrum40. Understanding of the nature of BLs is still unsatisfactory as they can not be easily 
reproduced in laboratory. Among the several theories trying to explain their nature, the so-called maser-caviton 
theory38 suggests that BLs are localized high-field solitons forming a cavity surrounded by plasma. Indeed, dur-
ing thunderstorms, atmosphere can get ionized and become a NZI medium with a plasma frequency falling in 
the terahertz-microwave spectral region, where rotational levels of water can be excited. The ensuing emitted 
radiation is thought to remain self-trapped and heat up the air, thus emitting broadband blackbody radiation38. 
This theory explains several aspects of BLs, e.g., their typical size and their motion due to plasma density per-
turbations, but it does not provide any quantitative description of the self-induced soliton cavity. Following our 
rigorous calculations, as suggested by the maser-caviton theory, we speculate that BLs may actually ensue from a 
self-organization process in the ENZ regime, where we theoretically demonstrate the existence of still doughnut 
solitons, as discussed above. The actual spherical shape of BLs observed in experiments40 may be due to mixed 
polarization, heating and higher order nonlinear effects, or the intrinsically incoherent nature of radiation emit-
ted in the atmosphere. The ENZ condition would explain the infrequency of the phenomenon and provides an 
insightful signature for experimental investigations.

Conclusions
Our investigation of self-organization phenomena in NZI media with cubic nonlinearity has resulted in the 
demonstration that zero-index nonlinear waves are unstable in all spatial directions and that still azimuthally 
polarized self-trapped doughnuts can be excited. We have discussed the existence domain of this 3D soliton fam-
ily with thoroughly vanishing Poynting vector and provided details on its characteristics. Besides, we have studied 
the effect of loss/amplification, finding that still light doughnuts evaporate/condensate over time, respectively. 
Our model applies to any NZI medium with cubic nonlinearity and our results are universal as they are rescaled 
to the relevant physical quantities (plasma frequency ωp, plasma wave-vector kp, Kerr coefficient χ )3  of any spe-
cific medium in this regime (e.g., metals, transparent conductors, plasmas, and metal-dielectric ENZ metamate-
rials). Our findings pave the way for the development of novel applications in optical data processing and storage, 
the realization of quantum optical memories, and the design of soliton-based lasers without cavities. Incidentally, 
NZI conditions can be found also in the interplanetary medium and in the atmosphere, and we have discussed 
possible relationships between our results and ball-lightning formation.

Methods
Model. In our investigations we have considered a generic NZI medium with Drude temporal response and 
instantaneous Kerr-like nonlinearity. Both of these ingredients ensue from free-particle temporal dynamics, which 
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Figure 4. (a) Soliton maximum amplitude /E EM S (red left y-axis) and its corresponding dimensionless radius 
k rp max (cyan right y-axis) as a function of dimensionless time γt, where γ is a phenomenological damping.  
(b–d) Iso-surfaces | ( )/ | = .φE Er 0 001S

2  of the time-evolving doughnut with initial condition as in Fig. 3(a) for 
(b) γ =t 0, (c) γ =t 1, and (d) γ =t 2.
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is characteristic of plasmas, metals, transparent conductors, and ENZ metamaterials, all examples of NZI media. 
In particular, Kerr-like nonlinearity naturally arises from the ponderomotive force in plasmas and metals41, and is 
well represented by the constitutive relation between the displacement vector ( )t  and the electric field ( )t :

∫ χ( ) = ( ′) ( − ′) ′ + | ( )| ( ) + ( / ) ( ) ⋅ ( ) ( ) , ( )
∞ ⁎t t E t t dt t t t t t{ 1 2 [ ] } 10

0
0 3

2D ε ε ε E E E E E

where 0  is  the vacuum permitt ivity,  χ3 is  the nonlinear suscept ibi l ity  of  the medium, 
τ δ τ ω γ( ) = ( ) + ( − )/γτ−e1p

2  is the Drude temporal response function, δ τ( ) is the Dirac delta-function, ωp is 
the plasma frequency, and γ is the temporal damping rate due to inelastic collisions. Optical propagation is gov-
erned by the wave equation

E Dµ∇ × ∇ × = − ∂ , ( )2t0
2

where µ0 is the vacuum permeability.

Still homogeneous waves. Homogeneous nonlinear modes with vanishing group velocity and diverging 
phase velocity have been calculated by inserting the Ansatz ( , ) = ( ) ω−t er E r i t in Eq. (2), which in turn enables 
the calculation of the nonlinear dispersion.

In order to evaluate the stability of homogeneous modes, we have perturbed them with small-amplitude waves

δ δ( , ) = + + , ( )α α ω⋅ + − ⋅ + −⁎ ⁎
t e e er E E E[ ] 3i t i t i tq r q r

0 1 2

where δE1 and δE2 are the perturbation amplitudes with wave-vector q and temporal growth eigenvalue α. We 
have thus numerically calculated the complex eigenvalues α (which real parts represent the instability growth 
rates) of the ensuing homogeneous system of algebraic equations (see SI).

Still azimuthal doughnuts. Given the isotropic nature of the system, the most natural coordinates to cal-
culate 3D solitons are spherical θ φ( , , )r , where r is the modulus of the position vector, and θ ϕ,  are its polar and 
azimuthal angles (see SI). In our calculations we have assumed that the electric field does not depend on the azi-
muthal angle, and thus it is polarized along the azimuthal direction φ= φ

ˆE E . Still non-paraxial soliton-like solu-
tions of Maxwell’s equations have been calculated numerically by transforming the continuous variables θ,r  into 
a discrete two-dimensional grid θ θ= ∆ , = ∆r n r mn m  with steps θ∆ , ∆r , and the azimuthal electric field 

θ( , )φE r  into an ordered vector θ( , ) = ( , )φn m E rV n m . Approximating derivatives by finite differences, Eq. (2) 
becomes a nonlinear system of algebraic equations, which we have numerically solved through the 
Newton-Raphson method.

Doughnut evaporation/condensation. We have accounted for the effect of damping/amplification in the 
temporal domain through an electric field amplitude  φ( , ) = ( )φ

ω γ− − / ˆt E er r i t t 2  oscillating with angular fre-
quency ω and exponentially decaying/increasing over time at a rate γ /2. The soliton perturbative theory is then 
developed by assuming that, under the assumption of small damping/amplification γ ω

, at every time t, the 
field pattern adiabatically follows the unperturbed soliton family with time-dependent maximum amplitude 
( )E tM , radius ( )r tmax , and angular frequency ω ( )t . Inserting the expression for the electric field 

 φ( , ) = ( )φ
ω γ− − / ˆt E er r i t t 2  into Eqs. (1) and (2), and making use of the adiabatic approximation, one obtains the 

time-dependent soliton parameters ( ) = γ− /E t E eM
t

0
2, and

( )
ω

ω

ω ω
( ) =

− − /
,

( )
γ−

t
e1 1 4

t

p

p
2

0
2

( )ω
ω

ω ω( ) = − − / ,
( )

γ γ/ −r t r e e1 1
5

t t
max

0

p
0

2
p
2

0
2

where = ( )E E 0M0 , = ( )r r 00 max , and ω ω= ( )00  are the field amplitude, radius, and angular frequency of the 
soliton at the initial time =t 0, respectively.
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