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Abstract

Background: Culex nigripalpus has a wide geographical distribution and is found in North and South America.
Females are considered primary vectors for several arboviruses, including Saint Louis encephalitis virus, Venezuelan
equine encephalitis virus and Eastern equine encephalitis virus, as well as a potential vector of West Nile virus. In
view of the epidemiological importance of this mosquito and its high abundance, this study sought to investigate
wing variation in Cx. nigripalpus populations from urban parks in the city of São Paulo, Brazil.

Methods: Female mosquitoes were collected in seven urban parks in the city of São Paulo between 2011 and 2013.
Eighteen landmark coordinates from the right wing of each female mosquito were digitized, and the dissimilarities
between populations were assessed by canonical variate analysis and cross-validated reclassification and by constructing
a Neighbor-Joining (NJ) tree based on Mahalanobis distances. The centroid size was calculated to determine mean wing
size in each population.

Results: Canonical variate analysis based on fixed landmarks of the wing revealed a pattern of segregation between
urban and sylvatic Cx. nigripalpus, a similar result to that revealed by the NJ tree topology, in which the population from
Shangrilá Park segregated into a distinct branch separate from the other more urban populations.

Conclusion: Environmental heterogeneity may be affecting the wing shape variation of Cx. nigripalpus populations.
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Background
Culex (Culex) nigripalpus (Theobald) is a species native
to Brazil that has a tropical and subtropical distribution
in North and South America. Females can lay eggs in
artificial containers, thrive in urban environments and
females have been reported to blood-feed on birds and
humans as well as other mammals [1–8]. This feeding
behavior makes the species more of a public health con-
cern as females can vector several arboviruses, such as
Saint Louis encephalitis virus (SLEV), Venezuelan equine
encephalitis virus (VEEV), Eastern equine encephalitis
virus (EEEV) and West Nile virus (WNV) [9–14].
The increase in anthropogenic impact and pressure on

natural environments increases the risk of contact be-
tween humans and pathogens and may accelerate the
spread of arthropod-borne pathogens, resulting in an

increase in morbidity and mortality due to the diseases
they cause, which have been identified as one of the five
major emerging problems in public health [15, 16]. As
many pathogens of human diseases are transmitted by
mosquitoes, controlling the spread of pathogens is a
major challenge [17, 18]. The growth of the human
population and continuing land occupation have been
dramatically modifying the landscape and changing the
climate conditions, favoring the spread of vector mos-
quitoes capable of surviving in urbanized environments
as well as an increase in their density [18–21].
In an attempt to minimize the negative effects of

urbanization on the human population, urban parks
have been created in large cities around the world to
preserve the remaining natural habitats and create ref-
uges for native and exotic species of fauna and flora.
These parks act as “green islands” surrounded by the
urban matrix [17, 22–26].* Correspondence: andrewilke@usp.br
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Genotypic markers are frequently used to investigate
the microevolution of mosquitoes [27–31]. However,
wing geometric morphometrics are not only useful for
assessing microevolution events but can also provide
valuable information on phenotypic variability and
population structure [32–34].
We hypothesize that heterogeneous environmental

areas may be correlated with the variation in shape and
size of wings of Culex nigripalpus in populations in the
city of São Paulo, Brazil. The objective of the present
study was, therefore, to use wing geometric morphomet-
rics to analyze wing variation patterns in Cx. nigripalpus
females in urban parks.

Methods
Mosquito collections
Culex nigripalpus females were collected once a month
for one year in seven urban parks in the city of São
Paulo (except for Anhanguera Park, where collections
lasted two years) using CDC light traps baited with dry
ice (Table 1) [35]. All parks surveyed in this study have
similar characteristics, they have been created as the city
grew and there was an increase in the urban area of the
city of São Paulo; also, they consist of secondary forest,
except the Shangrilá Park, which is located in an adja-
cent area to a remnant of Atlantic Forest extending
60 km from São Paulo to the coast [36]. Mosquitoes
were identified using taxonomic keys by Consoli & Lour-
enço de Oliveira [5].

Wing preparation and data collection
The right wing of each female was removed from the
thorax and mounted between slide and coverslip (0.08–
0.12 mm) using Canada balsam (Sigma-Aldrich, St.
Louis, MO, USA). The wings were then viewed using a
Leica M205C stereoscope under 35× magnification. In
each image, the coordinates of 18 landmarks represented
by the intersections of wing veins were digitized using
TpsDig software 1.4 [37] (Fig. 1).

Morphometric approach
To assess mean wing size for each population, the iso-
metric estimator known as centroid size (CS) [38] was
calculated using MorphoJ 1.02 [39]. The results for CS
were compared by non-parametric ANOVA and post-
hoc Tukey’s test in PAST 1.89 (Table 1) [40].
The allometric effect of wing size on wing shape was esti-

mated using multiple regression analysis of the Procrustes
coordinates on CS. The statistical significance of the allo-
metric effect was determined by non-parametric permuta-
tion testing with 10,000 randomizations in MorphoJ 1.02.
Discriminant analysis was used to explore the degree

of wing shape dissimilarity between females in the mor-
phospace produced by canonical variate analysis (CVA)
using MorphoJ 1.02 and to calculate the Mahalanobis
distances between samples. The latter were used to con-
struct a NJ tree to further examine the similarities
among populations with PAST 1.89. Culex quinquefas-
ciatus (Say) (n = 30) was used as the outgroup.
The dissimilarity in wing shape between populations

was estimated by cross-validated reclassification tests in
MorphoJ 1.02. To test for possible isolation by distance,
the correlation between Procrustes distances and geo-
graphical distances (linear kilometers) was calculated
using the Mantel test in PAST 1.89.

Results
Centroid size ranged from 3.25 to 4.85 mm; the SHA
population had the lowest average (3.84 mm) and the
SDS the highest (4.13 mm). The IBR population had the
highest intra-population variation (3.25 to 4.78 mm)
(Fig. 2). The statistical significance of the variation in
mean CS was found between the following populations:
SDS and IBR, SDS and PIQ, SHA and ANG, SHA and
BMX, and SHA and SDS (ANOVA: F(5,62) = 94.54,
P < 0.01) (Additional file 1: Table S1).
Allometry accounted for 1.45% (P = 0.0027) of wing size

influencing variations in wing shape and, although consid-
ered negligible, was removed from the subsequent
analysis. The Mantel test showed a weak correlation

Table 1 Sampling information for Culex nigripalpus populations collected in seven urban parks in the city of São Paulo, Brazil

Park Coordinates Collection year Sample size

Anhanguera (ANG) 23°29′33.36″S, 46°45′43.50″W 2011–2013 60

Burle Marx (BMX) 23°37′55.92″S, 46°43′17.25″W 2012–2013 30

Ibirapuera (IBR) 23°35′14.40″S, 46°39′27.48″W 2011–2012 23

Piqueri (PIQ) 23°31′39.98″S, 46°34′24.98″W 2012–2013 34

Previdência (PRV) 23°34′40.99″S, 46°43′37.92″W 2012–2013 32

Santo Dias (SDS) 23°45′29.35″S, 46°46′23.18″W 2011–2012 33

Shangrilá (SHA) 23°45′29.35″S, 46°39′44.28″W 2011–2012 33
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between Procrustes values and geographical distance
(r = 0.31979, r2 = 0.10226), but this was not statistically
significant (P = 0.1586).
While CVA revealed a certain level of segregation

between IBR, SHA and SDS, there was major overlapping
between BMX, PRV, SDS, ANG, IBR and PIQ. SHA segre-
gated into two major subpopulations, one with wing shapes
similar to those of the other populations and another with
wing shape patterns unlike those of any of the other popu-
lations (Fig. 3).

The SHA population was segregated in two major clus-
ters, (i) one cluster sharing similar wing shapes with the
other studied populations, labeled urban; and (ii) a second
cluster composed of unique wing shape patterns, exclu-
sively found in this subpopulation, labeled sylvatic. These
labels were defined according to the characteristics of the
Shangrilá Park, as a protected part of native Atlantic
Forest, spreading for more than 60 km to the coast.
A cross-validated reclassification test in which the speci-

mens were labeled urban or sylvatic yielded 96% accuracy

Fig. 1 Wing of female Culex nigripalpus. a The 18 landmarks. b Wireframe representation of the 18 landmarks

Fig. 2 Boxplot showing mean centroid sizes of Culex nigripalpus wings. Differences between the following populations were statistically significant
(P < 0.05): SDS vs IBR, SDS vs PIQ, SHA vs ANG, SHA vs BMX, and SHA vs SDS. Abbreviations: ANG, Anhanguera; BMX, Burle Marx; IBR, Ibirapuera; PIQ,
Piqueri; SDS, Santo Dias; SHA, Shangrilá
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for the urban wing shape and 100% accuracy for the syl-
vatic wing shape, indicating that wing shape variation was
significantly different between these two groups.
The CVA using the urban and sylvatic specimens re-

vealed a similar pattern among the populations, but when
SHA was analyzed individually, the specimens segregated
into two groups, one urban (SHA-URBAN) and the other
sylvatic (SHA-SYLVATIC). The sylvatic group of speci-
mens was subsequently compared with the remaining
populations, resulting in a clear pattern of segregation be-
tween the urban and sylvatic specimens for all the popula-
tions (Fig. 4). This highlights the existence of two distinct
patterns of wing shapes in the populations studied.
In the NJ tree, the SHA and SDS populations segregated

into branches supported by high bootstrap values (100
and 95, respectively) (Fig. 5). Discriminant analysis
revealed that the differences in wing shape between fe-
males of the populations were statistically significant
(P < 0.05) except for the difference between the PIQ and
IBR populations (P = 0.3839) (Additional file 2: Table S2).
The cross-validated reclassification tests for the SDS

and IBR populations yielded a reclassification score of
80%, indicating a difference in wing shape patterns be-
tween females of these two populations. In contrast, the
ANG and IBR populations had a reclassification score of
34%, indicating homogeneous wing shape patterns be-
tween females of these populations. The SHA population
had the highest reclassification scores of all the popula-
tions studied, ranging from 70.5% when compared with
PIQ to 88.3% when compared with ANG, indicating that
females of this population have wing shape patterns that
were not found in females of the other populations, in-
creasing its reclassification scores and corroborating the
CVA analysis (Table 2).

Discussion
Our results indicate that the wing shape of Culex nigripal-
pus females is moderately heterogeneous in the popula-
tions studied. Of the seven populations analyzed, six had
similar wing shapes, which can be explained by the fact
that these populations were collected in areas with high
levels of urbanization and anthropogenic impact, and were
therefore under high selective pressures [41], resulting in
lower wing shape variation. This phenomenon has been
reported in previous studies of species of Aedes and
Anopheles [34, 42, 43].
The SHA specimens, however, were collected in a

remnant of Atlantic Forest that borders on the Billings
reservoir in the city and on a very large conservation
area in the Atlantic Forest. These specimens had two
distinct wing shape patterns, one similar to that of the
urbanized populations and another that was not found
in any of the six other populations. This variation may
be explained by the fact that the specimens were col-
lected in a park containing a remnant of native Atlantic
Forest, as well as the influence of urban areas near its
entrance, providing two distinct habitats for Cx.
nigripalpus. Environmental heterogeneity can affect the
phenotypic patterns of organisms, driving their pheno-
type to local conditions.
Wing shape variability is an important trait indicator

of how insects cope with environmental variations,
which ultimately may affect their genomes being
perceived as genetic variation at the phenotypic level. A
possible explanation for the wing shape variation
observed in SHA not being observed in any other popu-
lation is that the vegetation of those parks was mostly
complete reforestation [24]. Although it is not possible
to infer that the wing shape pattern is due to specific

Fig. 3 Morphological space of the first two canonical variates for Culex nigripalpus based on 18 wing landmarks, considering all populations (a);
and with urban populations excluded highlighting specimens from SHA population (b). The relative contribution of each canonical variate is
shown in parentheses
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selective pressures from the urban environment, the
presence of a unique wing shape pattern found exclu-
sively in a preserved environment may indicate a correl-
ation between these variables. Similar wing shape
variation was found for butterflies in China [44].
The urban areas are characterized as highly fragmen-

ted environments with different use and occupations,
under which conditions, biological communities tend to
undergo radical changes in their composition and diver-
sity [45–47]. This phenomenon was previously seen in
studies of vector-mosquitoes in the city of São Paulo,
Brazil, in which urbanization was driving their popula-
tion dynamics, promoting a population demographic
expansion of a few species of mosquitoes that are
adapted to urban areas, such as Ae. aegypti (Linnaeus),
Ae. fluviatilis (Lutz), Cx. quinquefasciatus and Cx. nigri-
palpus, which are widely found throughout the urban
environment [17, 31, 36, 48, 49].
The structuring of the SHA population may be related

to the intraspecific variation of distinctive morphometric

characters that resulted from environmental conditions
from which a given population is sampled. Urbanization
is known for promoting both genetic and biotic
homogenization [46], consistent with the patterns seen
in Cx. nigripalpus; similar results have been found for
Ae. aegypti [28]. Moreover, the segregation of the SHA
population into a single branch with a bootstrap value of
100 may indicate a possible retention of ancestral wing
shape polymorphism, since Cx. nigripalpus is native to
Brazil [22, 49], and Shangrilá Park is located in an
urban-sylvatic transition zone, forming an ecological
corridor between the Atlantic Forest and Billings
Reservoir [24]. In addition, the cross-validated reclassifi-
cation test indicated that females of this population have
wing shape patterns different from those of the other
populations studied here, corroborating the hypothesis
of an exclusive wing shape pattern in the sylvatic group
of specimens.
The adaptation of vector mosquitoes to urban habitats

is an important selection driver that may lead to

Fig. 4 Wing shape diagram of the first canonical variable from the comparison of urban and sylvatic specimens. Blue: wing shape patterns
common to sylvatic specimens found exclusively in the SHA population; red: wing shape patterns for each population. X axis: first canonical
variable; Y axis: frequency. Abbreviations: ANG, Anhanguera; BMX, Burle Marx; IBR, Ibirapuera; PIQ, Piqueri; SDS, Santo Dias; SHA, Shangrilá

de Carvalho et al. Parasites & Vectors  (2017) 10:423 Page 5 of 8



population structuring and the appearance of subpopula-
tions. With ever-increasing urbanization, mosquitoes
need to adapt to new conditions imposed by the envir-
onment, such as restricted genetic variability during the
early domestication process, host-dependent dispersal,
isolation and genetic drift, a favorable scenario for the
emergence of subpopulations [50–54]. Furthermore,
wing shape in mosquitoes is known to be a heritable
trait and thus can be an indicator of evolutionary change
[55]. The fact that the ANG, BMX, IBR, PIQ, PREV and
SDS populations had homogeneous wing shape patterns
is consistent with a genetic homogenization scenario, in
which a population undergoes a demographic expansion
driven by the urban environment, losing its structure in
the process, as seen in a previous study of Ae. fluviatilis
collected in similar urban parks in the city of São Paulo,
Brazil [31].
The moderate wing polymorphism in the study

populations detected by the CVA, NJ tree and reclas-
sification test, and the fact that isolation by distance
was not identified, indicate that urban environment
has a greater influence on population structure than
geographical distance in the populations studied.
Similar results were found in previous studies for
other mosquito species, including Ae. aegypti and Ae.
fluviatilis [29, 31].
Population density, availability of food sources and

temperature are known to modify wing size in insects
[52]. The differences in centroid sizes found in our ana-
lysis probably result from the conditions in the locations
where the mosquitoes originated. The SHA and SDS
were the only populations that exhibited different wing
sizes. Our hypothesis is that mosquitoes in the former
have a high ecological valence whereas mosquitoes in
the latter are found in more anthropic areas, where their
larvae can develop in artificial containers. Wing vari-
ation due to habitat conditions of the immature stages
has also been found in Triatoma sordida (Stål) and Ae.
aegypti [56, 57].

Conclusion
Mosquito species that can survive in urban environ-
ments tend to have an advantage over sylvatic species
because of their ability to utilize different habitats for
development of the immature stages and because of the
easier access to hosts for blood-feeding in such environ-
ments, leading to an increase in the abundance and ter-
ritorial expansion of these species [46, 58]. Therefore,
the structuring pattern observed in Cx. nigripalpus pop-
ulations, which segregated into two distinct groups (syl-
vatic and urban), as well as the overall low variability of
wing shape resulting from high selective pressures, indi-
cate that differences of environmental heterogeneity may
have influenced wing shape in the populations studied.

Fig. 5 Neighbor-Joining tree for Culex nigripalpus based on
Mahalanobis distances with 1000 bootstrap replicates. Abbreviations:
ANG, Anhanguera; BMX, Burle Marx; IBR, Ibirapuera; PIQ, Piqueri; SDS,
Santo Dias; SHA, Shangrilá

Table 2 Cross-validated reclassification scores (%) based on
wing shape similarities for Culex nigripalpus populations
collected in seven urban parks in the city of São Paulo, Brazil

ANG BMX IBR PIQ PRV SDS SHA

ANG – 56.6 34.7 55.8 68.7 60.6 75.7

BMX 75 – 78.2 55.8 78.1 54.5 69.6

IBR 71.6 76.6 – 52.1 60.8 65.2 69.5

PIQ 65.0 60.0 50.0 – 58.8 61.7 73.5

PRV 73.3 60.0 70.0 65.5 – 65.6 78.1

SDS 75.6 53.3 81.8 66.6 63.6 – 81.8

SHA 88.3 80.0 78.7 70.5 75.7 72.7 –
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Additional files

Additional file 1: Table S1. ANOVA test for the significance of median
Centroid Size differences between Cx. nigripalpus populations collected in
seven urban parks in the city of São Paulo, Brazil. Tukey’s post-hoc
pairwise comparisons (ANOVA: F(5,62) = 94.54, P < 0.01). (DOCX 15 kb)

Additional file 2: Table S2. Values of Mahalanobis distances between
Cx. nigripalpus populations collected in seven urban parks in the city of
São Paulo, Brazil. (DOCX 14 kb)
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ANG: Anhanguera; ANOVA: Analysis of variance; BMX: Burle Marx;
CDC: Centers for Disease Control; CS: Centroid size; CVA: Canonical variate
analysis; EEEV: Eastern equine encephalitis virus; IBR: Ibirapuera; NJ: Neighbor-
joining; PIQ: Piqueri; PRV: Previdência; SDS: Santo Dias; SHA: Shangrilá;
SLEV: Saint Louis encephalitis virus; VEEV: Venezuelan equine encephalitis
virus; WNV: West Nile virus
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