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Abstract

Motivation: Identifying variants, both discrete and continuous, that are associated with quantitative

traits, or QTs, is the primary focus of quantitative genetics. Most current methods are limited to iden-

tifying mean effects, or associations between genotype or covariates and the mean value of a quanti-

tative trait. It is possible, however, that a variant may affect the variance of the quantitative trait in

lieu of, or in addition to, affecting the trait mean. Here, we develop a general methodology to identify

covariates with variance effects on a quantitative trait using a Bayesian heteroskedastic linear regres-

sion model (BTH). We compare BTH with existing methods to detect variance effects across a large

range of simulations drawn from scenarios common to the analysis of quantitative traits.

Results: We find that BTH and a double generalized linear model (dglm) outperform classical tests

used for detecting variance effects in recent genomic studies. We show BTH and dglm are less like-

ly to generate spurious discoveries through simulations and application to identifying methylation

variance QTs and expression variance QTs. We identify four variance effects of sex in the

Cardiovascular and Pharmacogenetics study. Our work is the first to offer a comprehensive view of

variance identifying methodology. We identify shortcomings in previously used methodology and

provide a more conservative and robust alternative. We extend variance effect analysis to a wide

array of covariates that enables a new statistical dimension in the study of sex and age specific

quantitative trait effects.

Availability and implementation: https://github.com/b2du/bth.

Contact: bee@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying covariates in a population that are associated with com-

plex quantitative traits (QTs) is central to the study of statistical

genetics (Stranger et al., 2007; Zeggini et al., 2007). Quantitative

trait loci (QTLs) are genetic variants that are associated with differ-

ences in mean phenotype values within a population. Recently, vari-

ance QTLs (vQTLs), or genetic variants associated with differences

in the variance of a quantitative trait, have been observed in genetic

studies (Ayroles et al., 2015; Brown et al., 2014; Metzger et al.,

2015; Paré et al., 2010; Yang et al., 2012). These studies include

diverse quantitative phenotypes, including left-right turning ten-

dency in the fruit fly Drosophila melanogaster (Ayroles et al., 2015),

coat color in the rock pocket mice Chaetodipus intermedius

(Nachman et al., 2003), and thermotolerance (Queitsch et al., 2002)

and flowering time (Salomé et al., 2011) in the plant Arabidopsis

thaliana.

These variance-associated covariates have wide ranging implica-

tions in phenotypic variance. Phenotypic variability offers an adap-

tive evolutionary solution to changing environments (Gibson and

Wagner, 2000; Queitsch et al., 2002), and indicates the presence of
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other complex effects such as epistasis (Brown et al., 2014; Paré

et al., 2010) or canalization (Gibson and Wagner, 2000). In medical

genetics, where disease states often emerge beyond a phenotypic

threshold (Wang et al., 2017), controlling phenotypic variability

allows control over the proportion of individuals that exceed that

threshold while population means are preserved (Ayroles et al.,

2015). Robust statistical methods to identify variance effects are

therefore essential to characterize the role that population covariates

with variance effects on quantitative traits, or vQTCs, play in the

regulation of complex traits, including disease risk.

Methodologically, detecting vQTCs is performed using statistical

tests for heteroskedasticity. Heteroskedasticity refers to the circum-

stance in which the variance of a response variable—here, a quanti-

tative trait—is unequal across the range of values of a covariate such

as genotype or age (Fig. 1). In the case of vQTCs, the quantitative

traits can be gene expression levels, methylation levels, or hip-to-

waist ratio. Here, we develop and validate a robust statistical test

for variance effects. More broadly, we extend this approach to ac-

count for both continuous and discrete non-genetic covariates such

as sex, age and BMI. While some of these covariates, such as sex

and genotype, will by definition have a causal relationship with the

QT, others such as BMI may not have a causal effect on the variance

of a QT despite their correlation; while we use the language of ‘vari-

ance effects’ throughout, this does not imply causation for non-

causal covariates.

Three methods widely used in the genetics literature (Ayroles

et al., 2015; Brown et al., 2014; Metzger et al., 2015; Paré et al.,

2010; Yang et al., 2012) to identify vQTCs are the Levene and

Brown-Forysthe tests (Brown and Forsythe, 1974; Schultz, 1985),

and the correlation least squares (CLS) test (Brown et al., 2014).

The Levene and Brown-Forsythe tests for heteroskedasticity across k

groups come from a similar family of ANOVA-based statistics,

where the within-group variance is compared to the across-group

variance. The null hypothesis for these tests is that all groups have

the same variance. The two tests differ in that the Levene test uses

mean statistics to compute variance whereas Brown-Forsythe uses

median statistics to compute variance. The Bartlett test (Bartlett,

1937) has also been used in genomic contexts (Yang et al., 2012).

The Bartlett test relies on the computation of pooled variances, or

weighted average of the groups, which are used to approximate an

F-distribution, and assumes the groups come from normal distribu-

tions. While similar to the Levene test, the Bartlett test is more

sensitive to departures from normality, which makes it less useful

for genomic analyses (Supplementary Methods).

The CLS test first fits a linear regression model to the trait and

the covariate, then tests for a correlation between the covariate and

the squared residual errors of the fitted linear model using Spearman

rank correlation (Brown et al., 2014). The test statistic is the corre-

sponding Spearman’s rank correlation coefficient. Related two stage

tests include likelihood ratio-based tests such as dglm (Dunn and

Smyth, 2012; Rönnegård and Valdar, 2011) or famLRTV (Cao

et al., 2015). As famLRTV performs similarly to the Levene test

(Cao et al., 2014), we did not include it in our analysis.

While the Levene, Brown-Forsythe and CLS tests are standard in

various research areas, they each have drawbacks when applied to

genomic data. The Levene and Brown-Forsythe tests both require

categorical covariates, preventing the use of continuous covariates

such as imputed genetic variants, age or methylation levels. These

methods sacrifice statistical power by avoiding assumptions about

the functional form of the heteroskedastic effects, allowing the vari-

ance across the covariate-defined groups to change in a non-

monotone way. CLS addresses both of these drawbacks by using a

standard linear model; however, because the test is performed in

two stages—neither of which incorporate uncertainty explicitly—

CLS is prone to overfitting.

Less common in genomics research, dglm is a parametric ap-

proach that models variance explicitly and cycles over two stages

until convergence (Verbyla and Smyth, 1998). First, it fits a linear

predictor of the variance by taking the estimated squared residuals

from the fit of a weighted linear model. Second, it uses the fit of a

generalized linear model (GLM) with variance as its response to up-

date the weighted linear model of the first step. This approach is ef-

fective because it uses a GLM framework to capture the possible

heteroskedasticity in the data; as with CLS, it does not incorporate

uncertainty in the point estimate from the first stage. However, the

main drawback of dglm is its numerical instability, which makes it

difficult to apply to large genomic data. This numerical instability

often arises in the context of low minor allele frequency, which

makes the method challenging to apply from a practitioner’s point

of view.

In this study, we propose a flexible Bayesian strategy for detect-

ing genotypic loci and covariates with effects on phenotypic vari-

ance. Our method can incorporate both discrete and continuous

covariates, and leads to stable, effective inference. We show through

extensive simulations that it outperforms similar tests that are rou-

tinely used in genomic studies. On real data, where alternative meth-

ods generate hundreds of hits, this fact has important implications,

suggesting not only that our test is robust and conservative, but that

alternative tests are poorly calibrated and lead to spurious results.

2 Approach

2.1 A Bayesian test for heteroskedasticity
The Bayesian test for heteroskedasticity (BTH) models a continuous

trait across n samples, y 2 R
n, with a Gaussian distribution, where

both the mean and variance parameters are functions of the covari-

ate x 2 R
n, yi � Nðb0 þ bxi; r2a�xi Þ. Here, b0 / 1 is the y-axis

intercept, b � Nð0; l�1Þ is the regression coefficient (or the mean

effect size), r2 � InvGaðh1; h2Þ is the residual variance, and a is

the heteroskedastic effect with a prior log a � Cauchyð0; �Þ.
When a¼1, the variance of the response is not a function of the

covariate, whereas when a 6¼1, the variance term is associated with

the covariate. We put priors on each of these parameters in order to

A B

Fig. 1. Example of heteroskedasticity for biallelic variation. The x-axis is geno-

types represented as the number of copies of the minor allele. The y-axis is

the quantitative trait values across individuals sampled from a population.

Panel A: Homoskedasticity, where each trait distribution from three geno-

types have equal variance. Panel B: Heteroskedasticity, where each trait distri-

bution from three genotypes have different variances. The data were

simulated with n¼1000 with minor allele frequency pmaf ¼ 0.2; each geno-

type group was plotted with x-axis jitter to show data density
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incorporate biologically appropriate and computationally tractable

forms of uncertainty in the test (Supplemental Materials).

Using this model, we computed Bayes factors (Kass and Raftery,

1995) (BFs) to compare the likelihood of the data under the null hy-

pothesis (H0, a¼1) with the likelihood of the data under the alter-

native hypothesis (HA, a 6¼1). In particular, for each application of

the model (e.g. one covariate x and one quantitative trait y across n

individuals), the BF has the form

BFðy; xÞ ¼ Prðyjx; ðHA; a 6¼ 1ÞÞ
Prðyjx; ðH0; a ¼ 1ÞÞ : (1)

We compute this BF by marginalizing over the mean effect size b

and evaluating the resulting multivariate integral using a multivari-

ate Laplace approximation similar to the integrated nested Laplace

approximation (INLA) method (Rue et al., 2009; Ruiz-Cárdenas

et al., 2012) (Supplemental Materials).

The BFs provide a measure of the heteroskedasticity of the asso-

ciation between a covariate and a phenotype of interest under cer-

tain assumptions, which we examine carefully in the simulations. To

quantify the global false discovery rate (FDR) of the quantified BFs,

we designed and performed permutations of the covariate-trait pair

such that any mean effects are maintained but variance effects are

removed (Methods, below). Furthermore, we generated a distribu-

tion of BFperm corresponding to data in which the variance of the

phenotype is independent of the covariate. Thus, we compute FDR

by considering, for any BF threshold t,

FDRðtÞ ¼ jfBFpermjBFperm > tgj
jfBFjBF > tgj ; (2)

which approximates the ratio of the number false positives versus

the number of false positives and true positives across all tests for BF

threshold t. We used the FDR-calibrated BF thresholds to discover

heteroskedastic associations in our data, and we compared our dis-

coveries to the discoveries from existing tests for heteroskedasticity.

2.2 Available tests of heteroskedasticity
We compared results from our BTH against four tests for heteroske-

dasticity: i) the Brown-Forsythe test (Brown and Forsythe, 1974); ii)

the Levene test (Schultz, 1985; Shen et al., 2012; Struchalin et al.,

2012); iii) the correlation least squares (CLS) test (Brown et al.,

2014); and iv) the double generalized linear model (dglm) test.

Each of these statistical tests makes assumptions about the

underlying data by design. The Levene test, which has been used in a

number of biological studies (Ayroles et al., 2015; Paré et al., 2010;

Soave and Sun, 2017; Yang et al., 2012), assumes that, in the data:

i) the noise is symmetric; ii) the groups are balanced; iii) the covari-

ate is a categorical variable; and iv) the categories are unordered, so

arbitrary functions are tested. By using median statistics instead of

mean statistics, the Brown-Forsythe test overcomes the assumption

of symmetric noise (Brown and Forsythe, 1974). The CLS test

assumes i) continuous or ordered covariates; ii) linear dosage effects

of the covariate; iii) sufficient minor allele frequency (MAF). When

MAF is low, as is often the case for functional variants (Nelson

et al., 2012), the maximum likelihood estimates from CLS will have

large standard error.

Our model for BTH makes the following assumptions: i) the

noise has a Gaussian distribution; ii) the covariate is a continuous or

ordered value; and iii) the functional form of the heteroskedasticity

is dosage or variant dependent, with monotone effects on the vari-

ance. We make these assumptions to gain statistical power in identi-

fying heteroskedastic effects in genomic studies, and to avoid

spurious results. Assumption iii) is illustrated through modelling the

variance as an exponential function r2a�xi which is monotone with

respect to the variant xi. This assumption becomes particularly

meaningful in the case where the variants considered are non-binary,

such as age. The dglm approach makes the same assumptions as

BTH. In contrast to the above methods, including dglm, our test

incorporates estimates of uncertainty, integrating over all possible

mean effects in both the null and the alternative hypothesis.

We show the value of BTH with respect to these related

approaches in extensive simulations and in three genomic data

applications. In the simulations, for data that violate the model

assumptions, we provide prescriptive tests and transformations to

enable a well-powered application of BTH. We then apply BTH to

methylation QTLs, gene expression QTLs and gene expression data

versus biological covariates to illustrate the promise of BTH for

identifying variance effects in diverse genomic data.

To compare results from BTH with state-of-the-art tests for vari-

ance QTLs, we simulated data across a range of possible scenarios

in genomic studies. We account for discrete and continuous covari-

ates, different parameter settings and a number of distributions of

the quantitative trait.

2.3 Simulating quantitative trait data
For discrete covariates, each simulated biallelic, diploid variant xi 2
{0, 1, 2} from individual i ¼ f1; . . . ; ng is sampled as two independ-

ent draws from a Bernoulli distribution with bias equal to the minor

allele frequency (pmaf): xi � Binð2; pmaf Þ. For imputed covariates,

for each individual i ¼ f1; . . . ng, discrete values zi 2 {0, 1, 2}

are sampled from a Bernoulli distribution: zi � Binð2; pmaf Þ.
Continuous data resembling imputed genotypes are then simulated

from a modified mixture of normal distributions: xi ¼
1mi¼0 � jc0j þ 1mi¼1 � c1 þ 1mi¼2 � ð2� jc2jÞ, where c0; c2 � Nð0; 0:5Þ
and c1 � Nð1;0:5Þ, and 1� is the indicator function. This process

ensures that the simulated imputed genotypes are bounded by 0 and

2, and they represent the expected value of the genotype, which is a

standard representation (Howie et al., 2009).

Then, given intercept b0, effect size b, and variance

parameters r2, a, we simulated the quantitative trait yi for

individual i from a Gaussian distribution, using a linear model:

yi � Nðb0 þ bxi; r2a�xi Þ. This is an ideal situation, with the hetero-

skedastic functional form matching that of our test. Across simula-

tions, we sampled covariates and quantitative traits across various

parameter settings: n ¼ f300; 500;1000g samples, minor allele fre-

quencies pmaf ¼ f0:05;0:2;0:3g, mean effect size b ¼ f0; 0:2; 0:5; 1g,
the level of heteroskedasticity log a ¼ f�0:2;�0:1;0;0:1; 0:2g, inter-

cept b0 ¼ f0;1g, and a fixed variance parameter r2 ¼ 1:0. These

simulations correspond well to current eQTL studies in sample size

(GTEx Consortium, 2017; Battle et al., 2014), minor allele frequen-

cies (Nelson et al., 2012) and effects (GTEx Consortium, 2017;

Savolainen et al., 2013).

For each parameter configuration, we generated 1000 simulated

datasets of covariates x and corresponding traits y. For each simula-

tion with heteroskedasticity, we performed a single permutation of

the quantitative trait sample labels and included for comparison this

null simulation with identical MAF and trait distribution (see

Online Methods). Thus, each simulation result contains 2000 tests,

half of which are from a null distribution constructed using permu-

tations, and the other of which are simulated to have variance

effects.
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3. Results

3.1 Simulation results: ideal model, discrete covariates
For discrete genotypes, we compared results from BTH against

results from the Brown-Forsythe test (Brown and Forsythe, 1974),

the Levene test (Levene, 1961), the correlation least square test

(CLS) (Brown et al., 2014) and the double generalized linear model

dglm. We compared performance using precision-recall curves,

which quantify the proportion of true associations discovered

(x-axis: recall or statistical power) versus the proportion of discov-

eries that are truly associated (y-axis: precision, or 1–FDR). When

the curves are close to precision ¼ 0.5 across most values of recall,

this means that the method cannot differentiate between

non-associations and true associations in this scenario with equal

numbers of true and null associations. The closer the curves are to

precision ¼ 1 across values of recall, the greater the area under the

curve (AUC) is (with a maximum of one), and the better the per-

formance of that method.

In the results of the simulations we found that, as the variance

effects in the simulated data grow, it becomes easier for the tests to

identify these effects (Fig. 2B—ii, iii); moreover, the permutation

appears to generate a true null (Fig. 2B—i) under these ideal simula-

tion assumptions. Here, the benefits of BTH and dglm are illus-

trated: when variance effect log (a) ¼ –0.2, we see at high levels of

recall as much as a 10% improvement in precision (Fig. 2B—iii).

Considering mean effects, across most recall values BTH and dglm

show consistently higher AUC than other methods (Fig. 2A). For

BTH, this trend illustrates the fact that a Gaussian prior on the

mean effect is robust as mean effects increase (O’Hagan, 1979).

Low MAF and small sample sizes affect the AUC of all methods

similarly (Fig. 2C—i, D—i). As MAF and sample size increase, the

AUC improves and BTH and dglm have a greater AUC relative to

the other methods (Fig. 2C—i, ii, iii, D—i, ii, iii). We note that CLS,

across these ideal simulations, appears to have generally worse

performance than Levene, Brown-Forsythe, BTH and dglm. In par-

ticular, the AUC for BTH and dglm are significantly greater than ei-

ther Levene, Brown-Forsythe or CLS (Mann-Whitney U-test:

P�2.2�10–16 for all three, Fig. 2D—i), with an average precision

5% higher. Similarly, for higher mean effects (Fig. 2A—i, ii, iii) and

large sample sizes (Fig. 2D—i, ii, iii), the relative performance of

CLS deteriorates, with the AUC of CLS � 0.036 smaller than the

AUC of either Levene or Brown-Forsythe, and � 0.12 smaller than

the AUC of BTH and dglm (Fig. 2B—i).

3.2 Simulation results: ideal model, continuous

covariates
When the covariate is continuous—such as age, BMI or the expected

number of minor alleles for imputed genotypes—the Levene and

Brown-Forsythe tests are no longer appropriate, as they assume cat-

egorical covariates. In this case, we compared our method with the

CLS method, which allows a general covariate in the original linear

regression and subsequent correlation test. We also applied Brown-

Forsythe and Levene tests to the simulated data by rounding the

continuous covariates to their nearest integer value. For imputed

genotypes, this rounding process corresponds to setting the value of

the variant to the most likely number of copies of the minor allele.

This is an idealized imputation scenario (results on imputed geno-

types below are much less straightforward), and we discourage this

rounding approach with real data (Marchini and Howie, 2010).

The results on the continuous covariate simulations echo the dis-

crete simulation results. In particular, both BTH and dglm show uni-

form improvement in AUC across all of the simulations, considering

increasing mean effects (Supplementary Fig. S1A), increasing vari-

ance effects (Supplementary Fig. S1B), increasing minor allele fre-

quency (Supplementary Fig. S1C) and increasing sample size

(Supplementary Fig. S1D). We note that, despite rounding the (ideal-

ized) imputed genotypes, Levene and Brown-Forsythe continue to

perform better than CLS across the simulations.

3.3 Simulation results: non-ideal model, discrete

covariates
Next, we explored quantitative traits simulated from four non-ideal

heteroskedastic models with discrete covariates that are motivated

by residual distributions often found in genomic analyses.

1. Additive variance term: a Gaussian distribution with an additive

form of heteroskedasticity:yi � Nðb0 þ bxi;r2 þ a � xiÞ. We gen-

erated data with additive variance effects to ensure that our test

is able to identify different functional forms of heteroskedastic-

ity. Note that, in this scenario, the null hypothesis corresponds

to a ¼ 0; parameters in this category of simulation reflect this

different null.

2. Log Gaussian: the log of the trait follows a Gaussian distribu-

tion: yi � exp fN ðb0 þ bxi; r2a�xi Þg. Microarray data are

believed to have a log Gaussian distribution within gene, which

motivates log transformations to those data (Irizarry et al.,

2003). Untransformed log normal data, however, will naturally

appear heteroskedastic because of the correlation of mean and

variance in the log Gaussian distribution.

3. Gamma distributed data: traits are generated from a gamma

generalized linear model: yi � Gammaðli;1Þ; li ¼ 1
b0þbxi

. While

the exponential distribution is the continuous form of the

Poisson distribution, the gamma distribution may be considered

the continuous form of the negative binomial distribution, which

is a discrete distribution with an additional variance parameter

above the discrete Poisson distribution. Hence, we generate con-

tinuous data from the gamma distribution to simulate the con-

tinuous trait form of overdispersed Poisson counts, as might be

found in mapped RNA-sequencing data (Marioni et al., 2008;

Pickrell et al., 2010).

4. Mixture of Gaussians: traits are generated from a mixture

of two Gaussian components, one heteroskedastic and

one homoskedastic, with mixture parameter k ¼ 0.4:

yi � kNð10;1Þ þ ð1� kÞN ðb0 þ bxi; r2a�xi Þ. We expect bi-

modal Gaussian traits when, for example, there is an epistatic

G�G or G�E interaction The presence of an epistatic term will

correspond to a new mode in the distribution of the quantitative

trait. For a binary interaction term this will correspond to a mix-

ture of two distributions. For example, if there is a mean effect

for female samples at a locus, but no corresponding mean effect

for male samples, the quantitative trait will appear bimodal

within genotype. We contrast this with the signature from a truly

heteroskedastic effect, where we see an association with the vari-

ance of the trait distribution but do not see a mixture of

distributions.

We quantified the relative performance of the tests using precision-

recall curves as above; however, caution must be used here in inter-

preting the relative AUC. We consider four possibilities for the simu-

lated mean and variance effects with respect to the statistical test we

perform perform (Table 1):

• Strong null: the simulated mean effects b ¼ 0 and the simulated

variance effects log (a) ¼ 0;
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• Weak null: the simulated mean effects b 6¼ 0 and the simulated

variance effects log (a) ¼ 0;
• Weak alternative: the simulated mean effects b ¼ 0 and the simu-

lated variance effects log (a) 6¼ 0;

• Strong alternative: the simulated mean effects b 6¼ 0 and the

simulated variance effects log (a) 6¼ 0.

These definitions become important when discussing the log

Gaussian and gamma simulations: for both, the variance is a

A

B

C

D

Fig. 2. Precision-recall curves comparing performance of BTH versus three other methods and example plots of underlying discrete simulated data. Panel A:

increasing mean effect size: pmaf ¼ 0.2, n¼300, b 2 f0; 0:2; 1g; logðaÞ ¼ 0:1; Panel B: increasing the variance effects: pmaf ¼ 0:2, n¼300,

b ¼ 0:5; logðaÞ 2 f0;�0:1;�0:2g; Panel C: increasing minor allele frequency: pmaf 2 f0:05; 0:2; 0:3g, n¼300, b ¼ 0:5; logðaÞ ¼ 0:1; Panel D: increasing sample size:

pmaf ¼ 0:2; n 2 f300; 500; 1000g; b ¼ 0:5; logðaÞ ¼ 0:1
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function of the mean, inducing an explicit relationship between the

two. In other words, when there are mean effects, b 6¼0, this will

present as variance effects in these tests. The BTH model integrates

over the mean effect size, b, testing the union of the weak and strong

alternative hypotheses against the union of the weak and strong null

hypotheses. Moreover, in the permutations, we specifically remove

variance effects while maintaining mean effects. These design deci-

sions lead to different behavior of the test on these simulations from

non-ideal scenarios.

For the non-ideal simulations, we simulated data both from the

strong alternative (b 6¼0, log (a) 6¼ 0; Supplementary Fig. S2, first

column) and the weak null (b 6¼0, log (a) ¼ 0; Supplementary Fig.

S2, second column). The weak null simulation ideally will look like

the null simulations; however, for the log Gaussian and gamma sim-

ulations, the tests differentiate the weak null and the strong null as

an artifact of the data distribution. This phenomenon may be seen in

the results by comparing the AUC of the strong alternative simula-

tions with the weak alternative simulations: for the gamma simula-

tions, the four tests have nearly identical AUCs regardless of the true

value of the variance effects a. This suggests that the performance in

the strong alternative simulations is due to mean effects. We verified

this by considering simulations from the weak alternative [i.e. log

(a) 6¼ 0, b¼0], finding that all of the tests fail to detect signs of het-

eroskedasticity in the gamma simulations (Supplementary Fig. S2C).

Similarly, in the untransformed log Gaussian simulations, test per-

formance on the weak alternative scenario is close to that for the

strong null (Supplementary Fig. S2B).

For the additive variance effects simulations and the bimodal dis-

tributed simulations, we find that the weak null simulations are ap-

propriately unable to differentiate the weak null from the true null

simulations (Supplementary Fig. S2—A i–iv; D i—iv). Moreover, for

the bimodal distributed simulations, BTH and dglm had the most

substantial gains in AUC relative to the other three methods, all of

which had noticeably worse performance than in the ideal unimodal

simulations. We further study departures from the ideal distribu-

tions below in the genomics applications.

To address the problem of distributional misspecification of the

model, we developed a statistical classifier that takes as input the x

and y vectors (covariates and traits, respectively) and returns the

probability of each of seven distributions within and across groups

for discrete covariates and across values for continuous covariates

(Supplementary Figs S11, S12 and Tables S5–S6). Given a distribu-

tion classification for a particular covariate-trait test, we then sug-

gest a specific data transformation to encourage a 0.5 recall for the

weak null simulations (i.e. mean effects but no explicit variance

effects). In particular, when the data appear to have a log Gaussian

distribution, we suggest a log transformation (Supplementary Fig.

S2B); when the data appear Gamma distributed, we suggest a mean-

centered square root transformation (Supplementary Fig. S2C). We

compared the transformed strong alternative simulations (b 6¼ 0,

log (a) 6¼ 0; Supplementary Fig. S2, third column), and found that

BTH and dglm uniformly had the largest AUC across the five

methods. We also compared results on the transformed weak null

simulations (b 6¼ 0, log (a) ¼ 0; Supplementary Fig. S2, fourth col-

umn). The transformation eliminates the mean effect discoveries in

all but the gamma simulations (Supplementary Fig. S2C); in gamma

simulations, variance effects are nearly removed across the five

methods. We explore gamma-distributed data in the methylation

analysis below.

3.4 1000 Genomes Project methylation study data
We applied BTH and the alternative tests for variance effects to a

genome scale differential DNA methylation study (Heyn et al.,

2013) to find variance methylation QTLs (meQTLs). These data

consist of DNA methylation levels at 485 577 CpG sites across

the human genome using the Infinium HumanMethylation450

BeadChip platform (Illumina) in lymphoblastoid cell lines (LCLs)

from 288 individuals—96 American with Northern and Western

European ancestry, 96 Han Chinese and 96 Yoruban.

Following previous work, we removed CpG probes of poor qual-

ity or with common mutations. We used the b values from the

methylation arrays at 406 021 CpG sites for analysis. Genotype in-

formation for these individuals are available from HumanHap550k

and HumanHap650k genotype arrays (Illumina) at the GEO

accession numbers GSE24260 (192 individuals) and GSE24274 (96

individuals). We removed eight individuals that did not have methy-

lation data, and combined the genotypes from 280 individuals with

170 063 SNPs common to both genotype platforms and without

missing data.

For each CpG site, we tested for association with cis-variants,

defined as variants within 10KB of the CpG site. We evaluated the

global FDR of our association results using a single permutation of

the methylation data. Significance was assessed using a global FDR

and FDR stratified by MAF. Using our distribution classifier, we

found that most of the methylation level traits were gamma distrib-

uted (Supplementary Tables S2 and S3).

BTH does not find any significant variant-mediated associations

between genetic variants and methylation levels at CpG sites at

a global FDR of 0.05 and a MAF-stratified FDR of 0.05

(Supplementary Table S1).

In contrast, dglm identified three significant associations, CLS

identified 549 significant associations, and the Levene test identified

878 significant associations (global FDR � 0.05, Supplementary

Table S1). However, in these discoveries, a large majority of the dis-

tribution of methylation levels were found to be either bimodal or

multimodal, with unimodal traits making up 8.95% of the discov-

eries from CLS and 0.38% of the discoveries from the Levene test

(Supplementary Figs S3–S6). We hypothesize that the general bi-

modal distribution of methylation values with respect to genotype is

due to ubiquitous epistatic effects. BTH and dglm, on the other

hand, are robust to bimodal deviations from the unimodal Gaussian

distribution, and do not detect these candidates for epistatic effects

at an FDR � 0.05.

We tested for variance meQTLs without transforming the

methylation data under the assumption that a single variant will not

have both mean and variance effects on methylation levels at a single

CpG site. BTH detected no variance associations, meaning that false

positives due to confounding effects were not apparent in the data.

Had there been discoveries for BTH, we would have repeated the

test with the appropriately transformed data using a square root

transform.

Table 1. Different hypotheses tested in various data scenarios

Hypothesis strong weak

Null b ¼ 0 and log (a) ¼ 0 b 6¼ 0 and log (a) ¼ 0

Alternative b 6¼ 0 and log (a) 6¼ 0 b ¼ 0 and log (a) 6¼ 0

Note: The BTH model integrates over the mean effect size, b, testing the

union of the weak and strong alternative hypotheses against the union of the

weak and strong null hypotheses.
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3.5 Cardiovascular and Pharmacogenetics (CAP) study
We applied BTH to test for variance effects between imputed geno-

types and gene expression levels from the Cardiovascular and

Pharmacogenetics (CAP) study.

Gene expression values for 10 195 genes in lymphoblastoid cell

lines (LCLs) from 480 Caucasian individuals were assayed on

human microarray platforms. Genotypes were assayed using geno-

typing arrays and subsequently imputed using IMPUTE2 to yield 33

386 856 total markers across the 22 autosomal chromosomes. We

removed variants with MAF below 0.05.

The preprocessing of gene expression data for testing of variance

eQTLs is somewhat different than the preprocessing for mean effect

eQTLs. To test for variance eQTLs, we log transform the microarray

gene expression data so they do not have a log normal distribution,

we control for outliers, and we control for known (directly measured)

and unknown (inferred) confounders (Methods). After preprocessing

the genotype and gene expression data, we performed association

mapping between each gene and the cis-SNPs local to that gene; here,

cis-SNPs are defined to be � 200 Kb from the gene transcription start

or end site. There were 9862 genes with at least one cis-SNP in these

data, and, on average, each gene had 847 cis-SNPs. We computed the

test statistic for the putative association between each cis-SNP gene

pair with these processed gene expression data.

As in the methylation study data, BTH finds no significant associa-

tions in our permutation-based testing method. While the dglm and

CLS tests report P-values for each association (it is therefore possible

to assign a P-value cutoff to identify significant results for each

method), we chose to base the significance of the dglm and CLS tests

on our previously described FDR method using permutations. We

calibrate the FDR for each test according to this same permutation

strategy for consistency. When subsetting the statistical tests by MAF

range, BTH uncovers six associations, including a locus regulating

variance of the gene DIS3L, recently identified as a possible risk factor

for myocardial infarction (Lee et al., 2017), and a locus regulating the

variance of the gene MAP2K1, involved in cardiac signaling (Krysiak

et al., 2018; Sheikh et al., 2008) (Supplementary Table S4, Fig. S8).

3.6 Variance effects of CAP study covariates
Next, we applied BTH to test for a heteroskedastic relationship be-

tween gene expression levels and known covariates collected on the

individuals enrolled in the CAP study. In particular, we considered

sample age, sex, BMI and smoking status. For non-binary covariates

(age and BMI), we normalized the values—dividing each covariate

by its maximum such that each covariate had a maximum value of

one—for stability of parameter estimation; this does not change the

interpretation of our results. Both sex and smoking status are binary

covariates, so the application of BTH is equivalent to testing for dif-

ferential variance across the binary covariate. Overall, these data

contain 46% females and 87% non-smokers.

In these data, we found four associations using BTH, six associ-

ations using dglm and 17 associations using CLS (FDR � 0.05; 3,

Supplementary Table S3). All four BTH associations corresponded

to sex specific variance control. Four of the five dglm associations

corresponded to age specific variance control, and one to BMI spe-

cific variance control. CLS identified 15 significant age associa-

tions and two significant sex associations (Fig. 3). In particular,

A B C D

E F G H

I J K L

Fig. 3. Variance controlling covariates uncovered by BTH and related tests in the CAP data (FDR � 0.05). Panels A–D: genes with sex-dependent significant vari-

ance association according to BTH; Panels E, F: genes with significant age-dependent variance association according to CLS; Panel G: top gene with age-depend-

ent variance association according to BTH; Panels H–K: genes with significant age-dependent variance association according to dglm; Panel L: gene with

significant BMI-dependent variance association according to dglm
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BTH discovers variance effects of sex in transmembrane protein

TMEM14B and in the protein coding genes DC2 (or OSTC),

C14orf166 and FRG1. Among these, of interest is the gene

C14orf166 which is involved in viral replication in the case of in-

fection with influenza virus A (Rodriguez et al., 2011). Similarly,

CLS discovers variance effects of age in the genes FERMT2 and

GALC. The gene FERMT2 or Kindlin-2 is particularly known to

interact with beta catenin and is associated with the integrin sig-

naling pathway, cell adhesion and mutagenesis (Meller et al.,

2015). Lastly, the genes discovered by dglm are protein coding

genes, among which ATOX1 is a known copper metallochaperone

protein, and B3GNTL1 is involved in transferase activity and in

the transfer of glycosyl groups. While further research is needed to

validate the role of these genes, their discovery is unsurprising

given the existing evidence across various species for genetic con-

trol of phenotypic variation in the context of the obesity, metabolic

or immune functions of evolutionary conserved targets (Ansel

et al., 2008; Hill and Mulder, 2010; Queitsch et al., 2002; Yang

et al., 2012).

4 Materials and methods

4.1 Bayesian test for heteroskedasticity (BTH)
The observed data are two vectors, y 2 R

n (quantitative trait) and x

2 R
n (covariate). For each sample i ¼ f1; . . . ng, we model the quan-

titative trait as yi � b0 þ bxi þNð0; r2a�xi Þ, with appropriate priors

(Results). We set the hyperparameters of the heteroskedastic

parameter as follows: x0 ¼ 0, centering the Cauchy distribution at 0,

� ¼ 5, h1 ¼ 1:; h2 ¼ 2 and c ¼ 1.

BTH computes the likelihood of the alternative hypothesis versus

the likelihood of the null hypothesis (Kass and Raftery, 1995):

• H0, the null hypothesis where a ¼ 1 or, equivalently, log (a) ¼ 0;
• HA, the alternative hypothesis where a 6¼ 1 or, equivalently, log

(a) 6¼ 0.

BFs are computed by integrating over uncertainty in each of the

model parameters b0, r2 and a after computing a closed-form inte-

gral over the effect size b using multivariate Laplace approximations

(Rue et al., 2009) (Supplementary Methods). As is common in

Bayesian analysis of genomic studies, we report the log10 trans-

formed BFs (Stephens and Balding, 2009).

4.2 FDR calibration
Global false discovery rate (FDR) of the log BFs was quantified

using permutations. To do this, we developed a permutation that

preserved the mean effects but removed any variance effects. In par-

ticular, for trait y 2 R
n, we computed a mean-effect-preserving

transformation as follows. We fit a linear regression model using

generalized least squares and computed residuals ri ¼ yi � bglsxi for

each sample i. We then randomly permuted the sample indices on ri,

rpðiÞ, checking that the mean effects of rpðiÞ versus xi are not statistic-

ally different than zero. Finally, we set the permuted value

~yi ¼ bglsxi þ rpðiÞ.

Global FDR calibration was performed after computing

the unpermuted and permuted BFs, BFð0Þ ¼ BFðx; yÞ and

BFðpÞ ¼ BFðx; ~yÞ. For a BF threshold d, true positives (TP) and false

positives (FP) are estimated using these BFs as cTP ¼ #fj : jBF
ð0Þ
j j > dg

and cFPðdÞ þ cFPðdÞ ¼ #fj : jBF
ðpÞ
j j > dg respectively. Thus, the esti-

mated FDR at threshold d is computed as dFDRðdÞ ¼ bFPðdÞ
bTPðdÞþ bFPðdÞ

. For a

specific FDR threshold, the calibrated threshold dFDR is computed

from the data, and the pairs (x, y) with BFðx; yÞ > dFDR are reported.

4.3 Levene, Brown-Forsythe, CLS and dglm
The Levene, Brown-Forsythe, dglm and CLS tests were implemented

and applied for comparison with BTH. The Brown-Forsythe and

Levene tests both belong to the general Levene family of tests for

equality of variance across k subgroups. For n samples correspond-

ing to categorical covariate x 2 f1; 2; . . . kgn, the trait y 2 R
n is

modeled as yi � Nðb0 þ bxi; r2
xi
Þ. The null hypothesis H0 corre-

sponds to equal variances across subgroups r2
j ¼ r2

‘ for all

j; ‘ 2 f1;2; . . . ; kg. The alternative hypothesis HA corresponds to un-

equal variances across subgroups r2
j 6¼ r2

‘ for at least one pair

j 6¼ ‘; j; ‘ 2 f1; 2; . . . ; kg. For each subgroup t 2 f1;2; . . . ; kg, let nt

be the number of samples in x. The corresponding vectors

xt 2 R
nt ; x ¼ fyijxi ¼ tg, are a partition of the trait values y. For

each t, let xt(s) be entry s of the x vector. The mean of the trait val-

ues within group t is the mean of the entries xtðsÞ; s 2 f1;2; . . . ; ntg,
which we denote by �xt. Then,

W ¼ ðn� kÞ
Pk

t¼1 ð�zt � �zÞ2

ðk� 1Þ
Pk

t¼1

Pnt

s¼1 ðzts � �ztÞ2
; (3)

where zts ¼ jxtðsÞ � �xtj; �zt ¼ 1
nt

Pnt

s¼1 zts is the mean over the values

zts, and �z ¼ 1
n

Pt¼k
t¼1

Pnt

s¼1 zts is the overall mean over the entries of

the vector trait y. When each �xt is the median of xt(s) values instead

of their mean, this becomes the Brown-Forsythe test. Significance

and global FDR were computed based on permutations as with

BTH, replacing BFs with P-values.

The CLS test was implemented by computing residuals

ri ¼ yi � bb0 � bbxi, where bb0 and bb were fit using generalized least

squares, modeling the trait yi conditional on the genotype xi for each

individual i using linear regression. The Spearman rank correlation

test between the squared residuals, r2
i ¼ ðyi � ðbb0 þ bb ixiÞÞ2 and the

genotypes, xi, correspond to a test for variance QTLs. This imple-

mentation of CLS followed the description in prior work (Brown

et al., 2014).

Finally, dglm is a statistical test in which both the mean and the

variance are estimated as generalized linear models (Dunn and

Smyth, 2012; Verbyla and Smyth, 1998), where the dispersion or

variance parameter is generally modeled through a gamma regres-

sion. The estimation of the mean and variance parameters is per-

formed iteratively, and P-values are computed using a v-square test

using R package dglm (Dunn and Smyth, 2012). Significance and

global FDR were computed using P-values based on permutations as

with the other methods. In particular, we applied dglm with appro-

priate overdispersion options and links from Gaussian and gamma

families when appropriate (gamma simulation). While dglm per-

forms similarly to BTH in simulation, its reliance on glm results in

convergence problems of the iteratively reweighted least squares

procedure, thus making it unreliable when scaling to large

applications.

4.4 Regression distribution classifier
We trained a random forest classifier [RandomForest in scikit-learn

(Pedregosa et al., 2011), version 0.16.1] to distinguish between six

possible departures from the ideal heteroskedastic model. For each

distribution class (the BTH model, additive variance model, expo-

nential mean model, exponential residual model, log Gaussian,

gamma and bimodal models; see Supplemental Methods for descrip-

tions) and for four parameter configurations (scenarios a 6¼ 0 and b
6¼ 0, a 6¼ 0 and b ¼ 0, a ¼ 0 and b 6¼ 0, and a ¼ 0 and b ¼ 0),
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we generated 50 samples of observed data from those six models.

We computed one-sided Kolmogorov-Smirnov (KS) statistics be-

tween each of these samples and 100 samples, with matched sample

sizes, generated from 79 distinct probability density functions with

matched mean and variance. Thus, every sample is represented as a

point in a 79-dimensional feature space. Performance of the RF clas-

sifier was evaluated using five-fold cross validation. The perform-

ance of the classifier was quantified using a precision recall curve on

cross-validated simulation data (Supplementary Fig. S11–S12).

4.5 HapMap phase 2 methylation study data
Genotype information for the HapMap phase 2 methylation study

data are available from HumanHap550k and HumanHap650k

genotype arrays (Illumina) at the GEO accession numbers

GSE24260 (Kalari et al., 2010) (192 individuals) and GSE24274

(Niu et al., 2010) (96 individuals). We removed eight individuals

that did not have methylation data, and combined the genotypes

from 280 individuals with 170 063 variants common to both geno-

type platforms and without missing data. For each CpG site, we

tested for association with cis-variants, defined as variants within

10Kb of the CpG site (Bell et al., 2011; Heyn et al., 2013). We eval-

uated the global FDR of our association results using a single permu-

tation of the methylation data. Significance was assessed using a

global FDR and FDR stratified by MAF (Sun et al., 2006)

(Supplementary Table S1). Using our distribution classifier, we

found that most of the methylation level traits were gamma distrib-

uted (Supplementary Tables S2 and S3).

Processed DNA methylation data using the Infinium

HumanMethylation450 BeadChip platform were downloaded from

the Gene Expression Omnibus (GEO), accession number GSE36369

(Heyn et al., 2013) on August 6, 2015. We used methylation data

for 280 individuals for whom genotypes were available. Genotypes

spanning 166 947 common genetic variants were obtained from

DNA array Human Variation Panel studies (Kalari et al., 2010; Niu

et al., 2010), accession numbers GSE24260 and GSE24274, which

assayed genotypes using Illumina 550K and Illumina 650K arrays,

respectively. We filtered poor quality CpG probes by removing

methylation sites where 90% of the samples at that site are hypo- or

hyper-methylated (<0.02 or >0.98 methylated, respectively). From

a total of 54 750 total CpG probes, we filter 2112 probes to yield 52

638 probes for association tests with genotypes.

4.6 Cardiovascular and Pharmacogenetics (CAP) study
Gene expression levels from 10 195 genes in lymphoblastoid cell

lines (LCLs) created from 480 genotyped individuals were down-

loaded from the Gene Expression Omnibus (GSE36868). Genotypes

for 387 514 variants and eight other covariates were available

through dbGaP (Study Accession phs000481.v1.p1) (Mangravite

et al., 2013). We processed the raw gene expression data as follows.

1. Log transform: A log 2 transformation was applied to each entry

of the gene expression matrix;

2. Control for latent population structure: We computed the first

two principal components xPC1, xPC2 of the genotype matrix via

singular value decomposition (SVD).

3. Control for known covariates; mean center: For each vector yj in

matrix Y, corresponding to single gene j across all n samples, a

linear model yj ¼ k0 þ kage � xage þ ksex � xsex þ kbatch � xbatch

þkPC1 � xPC1 þ kPC2 � xPC2 was fitted to account for variation in

gene expression due to sample age, sex, batch, two PCs from the

gene expression matrix, and two genotype PCs, using general-

ized least squares. Mean-centered residuals rj ¼ yj � bk0 � bkage

�xage � bksex � xsex � bkbatch � xbatch � bkPC1 � xPC1 � bkPC2 � xPC2 were

computed. Concatenating the rj vectors gives us the normalized

expression matrix.

4. Control for unknown covariates: We computed the first two PCs

of the normalized expression matrix using SVD. We used linear

regression as in the previous step to control for the linear effects

of these two PCs in the normalized gene expression matrix.

The resulting matrix is the processed gene expression matrix. After

empirical quantile normalization (Brown et al., 2014), each gene has

exactly the same distribution across all samples, and a visual ana-

lysis of a QQ-Plot confirms the empirical distribution deviates little

from a normal distribution (Supplementary Fig. S7).

After preprocessing the genotype and gene expression data, we

performed association mapping between each gene and the cis-

variants local to that gene; here, cis-variants are defined to be � 200

Kb from the gene transcription start or end site (Pickrell et al.,

2010). There were 9862 genes with at least one cis-variant in these

data, and, on average, each gene had 847 cis-variants. We computed

the test statistic for the putative association between each cis-variant

gene pair with these processed gene expression data (Pickrell et al.,

2010).

5 Discussion

We presented a Bayesian test for heteroskedasticity (BTH) that

allows for continuous covariates and incorporates uncertainty in

estimates of mean and variance effects of covariates to robustly test

for variance QTLs and QTCs. We evaluated our approach and com-

pared it to state-of-the-art methods on extensive simulated datasets

conforming to, and in violation of, the assumptions in our model.

We described a prescriptive procedure to ensure a well-powered ap-

plication of our model to diverse genomic and epigenetic study data.

Although we are mainly focused on variance effects of genotype on

quantitative traits, this approach may be used broadly in testing for

heteroskedastic associations, and we show this application by dis-

covering meaningful associations between non-genetic covariates

and gene expression data.

In the Results, we note that BTH and dglm are more conserva-

tive and less sensitive to multi-modal distributions than both CLS

and the Levene test, as we showed in the multi-modal simulation

studies and through spurious results from CLS and the Levene test

in the methylation data. In scenarios where the data are close in dis-

tributional form to the modeling assumptions, as in the gene expres-

sion data, BTH finds similar numbers of associations as CLS. While

our findings show that dglm outperforms the Levene, Brown-

Forsythe and CLS tests in multiple simulation settings, its iterative

approach to fitting often fails to converge because of sensitivity to

step size. This shortcoming makes dglm cumbersome for genome-

wide variance eQTL analysis, and we recommend BTH as a more re-

liable alternative. While BTH is three times slower than dglm, which

often converges in under 1s on a machine with Intel Core running at

2.2 GHz, BTH is easily parallelized for genome-wide associations.

The lack of results from BTH in the methylation data raise an

important discussion point. In particular, the signature of gene �
gene or gene � environment epistatic interactions may show up as a

bimodal distribution of the trait: consider the distribution of a trait

that has an eQTL with mean effect in women but not in men. We

note that our statistical test was robust to deviations from unimodal-

ity, but CLS and Levene were not, making the purpose of these tests

somewhat orthogonal. Thus, to identify candidate epistatic associa-

tions, CLS and Levene are the appropriate methods to use; on the
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other hand, to identify variance effects, our method is superior in

terms of statistical power. We also hypothesize that the permuta-

tions that are used for these tests, while appropriate, lead to conser-

vative estimates of FDR, which impacted all of the statistical tests

calibrated using permutations.

The lack of power in the variance QTL studies was clear: unlike

mean effects, we found no variance effects of genetic variants on

methylation, and six significant variance effects on gene expression

levels. We note that, if n samples are well powered to detect mean

effects of a certain size, to detect comparable variance effects at the

same precision, a sample of O(n2) is needed; thus additional samples

will facilitate finding these effects. We also propose that these meas-

urements of cellular traits are inappropriate candidates for variance

QTLs because the variance effects will not be across individuals but

instead across cells within an individual, as shown in previous stud-

ies (Wills et al., 2013). In particular, a variance QTL impacts the

variability of gene expression or methylation levels across the sam-

ple cells. The bulk measurement of these cellular traits, however, are

performed on tens of thousands of cells, and quantify the average

expression levels across those cells. Thus, in order to identify vari-

ance QTLs, different types of data must be considered such as single

cell RNA-sequencing data (Wills et al., 2013) or resampled RNA-

sequencing data to estimate within-sample variance (Auer and

Doerge, 2010).

Our BTH framework improves on existing methods with a flex-

ible modeling framework, integrating over uncertainty, and fast ro-

bust statistical inference, leading to improved power to detect

heteroskedastic associations. Identifying heteroskedastic associa-

tions in quantitative traits will augment our catalog of quantitative

trait regulation and lead to an improved understanding of the mech-

anisms of genetic control over phenotypes.
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