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Abstract

Biclustering is a technique of discovering local similarities within data. For many years the complexity of the methods and
parallelization issues limited its application to big data problems. With the development of novel scalable methods,
biclustering has finally started to close this gap. In this paper we discuss the caveats of biclustering and present its current
challenges and guidelines for practitioners. We also try to explain why biclustering may soon become one of the standards
for big data analytics.
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Background

The volume of data is rapidly growing, especially in the biomed-
ical domain. In recent years multiple scientific projects have
produced large-scale data. In the 100,000 Genomes Project
[https://www.genomicsengland.co.uk/about-genomics-engla
nd/the-100000-genomes-project], 100,000 whole genomes from
National Health Service patients were sequenced in the United
Kingdom with focus on rare diseases, infectious diseases, and
cancer. A similar effort is being taken all across the world
[https://www.clinicalomics.com/topics/biomarkers-topic/biob
anking/10-countries-in-100k-genome-club]. One million indi-
viduals are expected to participate in a recently launched ”All of
Us” initiative in the United States [https://allofus.nih.gov]. Their
genetic and health data will be gathered to foster collaborative
research on delivering precision medicine addressing different
lifestyles and a wide range of health conditions.

In the era of big data, information retrieval becomes key.
There is an emerging need for developing tools that could face

the challenge of large amounts of data. The methods are ex-
pected to be not only precise but also tolerant to noise, scalable,
and fast. The results are expected to be interpretable in order to
provide a better understanding of underlying structures in the
data. Moreover, the tools are required to capture local similari-
ties in the data, which reflect high heterogeneity.

One of the areas of research in which great progress has
been made in recent years to address the aforementioned big
data challenges is biclustering [1–4]. This analytical technique
of data mining, which is also known as subspace clustering, co-
clustering, block clustering, or 2-mode clustering, has already
become an essential tool for gene expression analysis because
it is capable of capturing similar gene expression profiles under
different subsets of experimental conditions [5]. It is not with-
out reason that biclustering has found hundreds of applications
in bioinformatics, and, as a result, there has been a call for in-
creased use of this approach [6]. The era of biclustering big data
has begun.
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What is Biclustering?

There are multiple formulations of the biclustering problem, so
as to meet multiple challenges. Generally, biclustering is the task
of identifying a single or many biclusters, where each of the bi-
clusters is a subset of rows with similar behavior across a subset
of columns (or vice versa). For a dataset A = [aij]m × n with rows
denoted as X = (x1, x2, . . . , xm) and columns as Y = (y1, y2, . . . ,
yn), biclustering is an identification of a single or a series of p
biclusters Bk = (Ik, Jk), where k = 1, 2, . . . , p; Ik ⊆ X are the rows
of the kth bicluster; and Jk ⊆ Y are the columns of the kth bi-
cluster, where each of the biclusters meets some homogeneity
criteria [7]. Biclustering could also be viewed from different an-
gles as detection of sub-matrices, cliques in a bipartite graph, or
communities.

Although biclustering is generally considered an unsuper-
vised machine learning technique, multiple semi-supervised or
supervised approaches have been proposed that are based on
related concepts. Biclustering is closely related to fuzzy clus-
tering and frequent itemset mining, as well as learning classi-
fiers systems. Depending on the field of application, the data for
the algorithms could be numerical (binary, discrete, or continu-
ous), categorical, or ordinal. The methods may attempt to detect
a single bicluster, exclusive biclusters (their rows, columns, or
both may belong to ≤1 bicluster), disjoint biclusters (i.e., non-
overlapping, e.g., checkerboard), inclusive biclusters (the only
overlap between biclusters could be inclusion), or arbitrary po-
sitioned biclusters. The patterns to be detected can also vary,
starting from classical biclustering problems (constant values,
upregulated values, constant values in rows, constant values
in columns, shift patterns, scale patterns, shift-scale patterns,
plaid patterns, order-preserving−coherent evolutions) [8]. Some
of the most popular data patterns for biclustering generated us-
ing BiBench [ http://tda.gatech.edu/software/bibench-v0.2] are
presented in Figure 1.

What is the application of biclustering?

Biclustering has been successfully applied to hundreds of prob-
lems in the biological and biomedical domain and has supported
detection of functional annotations (e.g., gene regulatory path-
ways), as well as biological interactions (e.g., transcriptional net-
works), the discovery of drugs and biomarkers, identification of
subtypes of diseases, and analysis of responses to treatments [6].
A biclustering method has also helped to identify novel human
microRNA regulatory modules [2]. Biclustering techniques have
been also been successfully used in graph analysis, text min-
ing, recommendation systems, marketing, economy (e.g., mar-
ket segmentation), analysis of sports data, and multiple other
domains [1]. Among multiple domains, gene expression data are
commonly considered a real data playground for measuring the
performance of biclustering methods.

Common myths about biclustering

Let us demystify some common views on biclustering.

Is biclustering a local equivalent of clustering?
This is correct. While clustering looks for global similarities
within data and takes into consideration all data dimensions, bi-
clustering captures patterns hidden locally and uses only some
of the data dimensions.

Is biclustering the same as 2-way clustering?
Not necessarily. Although some of the first biclustering methods
used to cluster first by rows, then by columns (or the other way
around), the field has progressed far since its emergence. Usu-
ally, biclustering techniques use information either from both
rows and columns at the same time, or alternately from rows
and columns to progress.

Biclustering = feature selection + clustering?
Although it seems likely, this is not true. Usually different fea-
tures contribute to different biclusters. There are some com-
mon aspects though, as for each bicluster certain features are
selected. The closest answer is that biclustering borrows from
both techniques but is certainly not a combination of both.

Is biclustering a dimensionality reduction technique?
The answer is no, but biclustering can be used as a technique
that reduces dimensionality because it finds patterns with sub-
sets of rows and columns with very similar characteristics.

Biclustering is neither generative nor predictive.
True. Biclustering algorithms are usually expected to retrieve ex-
isting (but hidden) information and thus provide insight into
data. The methods are not intended to generate the data, nor to
make predictions. Biclustering methods are intended to locate
specific patterns, which they were designed for.

Biclustering is much more complex than deep learning.
The majority of problems in biclustering are considered NP-
complete [7]. To better visualize the complexity of usual biclus-
tering problem, let us consider a task of detecting an object on an
image. The biclustering task would be formulated as finding the
same object, but in the image with randomly shuffled rows and
randomly shuffled columns. The assumption that neighboring
rows or columns belong to the same object, or that 2 related ob-
jects are next to each other (e.g., words creating context), greatly
simplifies the problem and makes deep learning methods much
more efficient for image analysis, or natural language processing
tasks.

Biclustering and Big Data

The biclustering field has largely evolved since its first applica-
tion to gene expression in 2000. Modern methods take advantage
of parallel computation or the map-reduce paradigm. The pop-
ular environments for launching large-scale biclustering anal-
yses are becoming Hadoop [https://hadoop.apache.org], Apache
Spark [https://spark.apache.org], and massively parallel systems
with multiple GPUs [5].

Recently, a very accurate and scalable method for bicluster-
ing big data called EBIC was proposed for multi-GPU environ-
ments [3,4]. This open source method [https://github.com/Epist
asisLab/ebic] manages to detect multiple patterns in the data
and scales very well for large datasets. Its latest release allows
missing values to be omitted, which makes the method ap-
plicable to RNA sequencing (RNA-seq) and single-cell RNA-seq
(scRNA-seq) data.

Scalable biclustering

With continuously increasing sizes of the data many traditional
biclustering approaches struggle to analyze the data within a
reasonable time frame. Large data volume and high problem
complexity, as well as poor memory management of some of
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Figure 1. Different patterns in biclustering. The original patterns were sorted first by rows and second by columns for visualization purposes. Biclusters with constant

or upregulated pattern have all values exact. Constant rows/columns patterns are characterized by the same value across all columns/rows of the bicluster. The values
between rows/columns may differ. In a bicluster with shift pattern the contribution of a given row is added to the contribution of a given column, whilst in the case
of scale pattern the contribution of a row is multiplied. In a shift-scale pattern each row contributes twice: by a factor that is multiplied by a column contribution
and by an additive further shifting the values. In plaid patterns, the data are modeled as a sum of multiple layers. Note that all the patterns could be considered

order-preserving.

the implementations, make a lot of approaches not feasible for
handling big data problems. Thus, one of the main focuses of
future algorithm design is their scalability. By ”scalability” we
understand the ability of the method to handle increasing sizes
of the data with additional resources (e.g., CPUs, GPUs, or TPUs)
in a reasonable time.

Considering the algorithm design, it is crucial to understand
where and how parallelization in the method may be exploited
to provide speedup, so desirable for analyzing large datasets [5].
Alternatively, the development of a new method could start with
understanding hardware limitations. From our experience, the
second option is more extendable (e.g., EBIC was designed from
scratch in compliance with GPU memory limitations and pro-
gramming constraints).

Challenges of biclustering

Apart from the ability to analyze big data, we would like to sum-
marize some of the major challenges that biclustering currently
faces.

How many biclusters?
The larger gets the volume of the data, the greater is the number
of potential solutions. Usually biclustering methods yield either
the requested number or (by default) up to 100 biclusters. Some
methods, however, may return even millions of patterns. From
the perspective of the end user, performing analysis or valida-
tion of that many candidates becomes extremely challenging.
Because each scenario varies, we believe this should be up to the
user to determine a reasonable number of biclusters that would
be suitable for their purpose. One of the unexplored caveats
of biclustering is that the number of expected biclusters actu-
ally influences which patterns should be indicated as biclusters,
which is especially visible in partially overlapping scenarios. If

the method does not account for the user indication, we recom-
mend reporting biclusters with the highest relevance before the
others (e.g., by maintaining a ranked list of the best solutions),
so that the most important solutions are not missed if the user
requests only a couple of biclusters, as well as filtering out highly
overlapping biclusters.

What should be the sizes of biclusters?
It is an open-ended question what sizes of the patterns (local or
global? narrow or wide?) are more relevant, and the answer prob-
ably depends on the specific domain of application. For some
scenarios (e.g. detection of cohorts), the larger sizes of biclus-
ters are preferable; for other (e.g. gene enrichment analysis) -
not necessarily. Big data is definitely not helping here—this task
may resemble looking for a needle in a haystack if the objective
is to find a small correlated pattern.

How should the performance be measured?
The most established measures in the field, called recovery and
relevance, are based on the Jaccard index and were shown to
be inadequate for objective assessment of the performance of
biclustering methods. Horta and Campello reviewed different
measures for biclustering and presented their desirable prop-
erties [9]. Biclustering measures should increasingly penalize
noisy entries or elements not found in both biclusterings. Not
covering all solutions, reporting elements not belonging to a
specific bicluster, as well as covering the same elements mul-
tiple times should also be penalized. Repetitively reporting a
very similar bicluster is also not desirable. Finally, the measure
should be symmetric and return score equal to 1 for a perfect
fit. Although the authors reported 2 measures that have the de-
sired properties, only CE [10] does not penalize heterogeneous
patterns, which are very common in genomics. Thus, we believe
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that CE should be considered as the most objective measure of
performance of biclustering methods for all synthetic scenarios.

Interpretability is the key

In the biomedical domain, interpretation is performed using
expert knowledge. Gene set enrichment analysis and pathway
analysis are common techniques of validation. One of the ma-
jor advantages of biclustering over many other methods (e.g.,
feature selection) is interpretability of the results. Biclusters are
much easier to interpret because they extract very specific pat-
terns, for detection of which the given method was designed [8].
Interpretability greatly increases understanding.

There exists a visible tendency to overinterpret the statisti-
cal significance and importance of P-values. It needs to be re-
membered that statistical significance does not imply clinical
relevance, no matter which significance threshold is used. Thus,
even if P-values associated with a bicluster in one method are
smaller than in the other, it does not necessarily mean that the
method is performing better. Similarly, a higher percentage of
significantly enriched biclusters does not imply superiority be-
cause this number might have been inflated by large overlapping
biclusters. It may be useful to perform filtering of the returned
results or to compare the results with a random detection sce-
nario.

Conclusions

Although some very powerful techniques have already been de-
veloped for big data, there is still a high demand for scalable
methods that can provide interpretable insights. One such tech-
nique is biclustering, which looks for local associations in data.
Biclustering has previously proven its usefulness, especially in
the biomedical sciences.

With the recent progress in the development of highly scal-
able solutions, biclustering is on a good track to become one of
the standards of big data analytics.
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