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Patients with no or limited hand function usually have difficulty in using conventional

input devices such as a mouse or a touch screen. Having the ability of manipulating

electronic devices can give patients full access to the digital world, thereby increasing

their independence and confidence, and enriching their lives. In this study, a hands-free

human-computer interface was developed in order to help patients manipulate

computers using facial movements. Five facial movement patterns were detected

by four electromyography (EMG) sensors, and classified using myoelectric pattern

recognition algorithms. Facial movement patterns were mapped to cursor actions

including movements in different directions and click. A typing task and a drawing task

were designed in order to assess the interaction performance of the interface in daily use.

Ten able-bodied subjects participated in the experiment. In the typing task, the median

path efficiency was 80.4%, and the median input rate was 5.9 letters per minute. In

the drawing task, the median time to accomplish was 239.9 s. Moreover, all the subjects

achieved high classification accuracy (median: 98.0%). The interface driven by facial EMG

achieved high performance, and will be assessed on patients with limited hand functions

in the future.

Keywords: human-machine interface, hands-free interaction, surface EMG, facial motion recognition, pattern

recognition

INTRODUCTION

Human facial movements have been established to be reliable input to a variety of machines
including electronic devices (1–6) and assistive devices (7, 8). Such kind of human-machine
interface provides an easy and intuitive approach to interacting with electronic devices for users
with limited hand function (9). As a result, they have improved accessibility to the digital world
and better user experience.

Facial movements can be detected by techniques such as electrophysiological and kinematic
recordings (5–7). Surface electromyography (EMG) is one of the electrophysiological techniques.
It records muscle activity using electrodes that are usually attached to the skin in various body
locations. EMG can be used to detect movement (10–12), and its robustness in the application of
human-machine interaction has been demonstrated in recent studies (13–15). The conventional
mapping scheme between facial movements detected by EMG signals and control commands
involves channel-based mapping. Often, one EMG channel is mapped to one control command,
or a group of EMG channels (typically two channels, one from an agonist muscle and the other
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from an antagonistic muscle) are mapped to a group of control
commands (usually two opposite commands). For example,
Williams et al. (1) recorded four EMG channels, and mapped
them to four different commands. Similarly, Cler et al. (2)
mapped five EMG channels to five control commands. In their
design, opposite commands such as moving the cursor up or
down were generated from two EMG channels recorded from
two facial muscles. For example, the cursor moved upward if
the EMG from the Frontalis was larger than from the Mentalis,
and downward if it was smaller. Such a conventional mapping
scheme requires the number of EMG channels to be the same
as the number of control commands, and each channel needs
to be placed on one muscle or muscle group that conducts
the movement. However, due to the limited degrees of freedom
of facial movements, it is challenging to find a large number
of muscles that can be individually activated. Moreover, EMG
amplitude or amplitude range of different muscles can be
different, even at the same force level. As a result, each channel
has to be individually calibrated (i.e., threshold, gain, etc.) (2).

To address these challenges, a pattern-based mapping scheme
was introduced. Such a scheme relies on myoelectric pattern
recognition, which is based on the assumption that each
movement pattern has a unique muscle activation pattern that
can be recorded by EMG. Different from conventional mapping,
a pattern-based scheme classifies movement patterns by applying
pattern recognition algorithms to comprehensively analyze all
EMG channels, and maps each movement pattern to a control
command. Pattern recognition algorithms can learn the user’s
movement patterns, so that there is no need to calibrate each
channel manually. In addition, both single-muscle movements
and complex movements (e.g., motions that are conducted
by temporal or spatial coordination of multiple muscles) can
be mapped by the algorithms as movement patterns. Thus,
the number of EMG channels can be fewer than the number
of control commands. This mapping scheme has been widely
applied in myoelectric human-machine interfaces (14), especially
when hand movements are mapped to control commands
(16–18). Although some recent studies have demonstrated the
feasibility of hand pattern recognition in amputees (19) and
patients with limited hand function (20, 21), there is still a large
patient population whose hand movement patterns cannot be
well detected or classified using limb EMG (22, 23). A human-
machine interface based on facial movements is particularly
useful for these patients to gain the ability of manipulating
electronic devices. Previous studies have shown that it is possible
to detect and classify facial movements at a high accuracy using
only a few EMG channels (24–26). However, few studies have
investigated a control scheme driven by myoelectric pattern
recognition of facial movements (3, 27), and its performance still
remains unclear.

This study aims to develop a facial movement-machine
interface (FMMI) that maps facial movements to cursor actions
including cursor movements in different directions and cursor
click, so that users with no or limited hand function can use
computers or other computer-controlled devices. To evaluate the
performance of the developed FMMI, the accuracy of the real-
time myoelectric facial movement recognition was determined.

The interaction performance based on the recognition results was
also measured in a typing task and a drawing task.

METHODS

System Architecture
The FMMI consists of EMG acquisition devices and a personal
computer that the user manipulates (Figure 1). A customized
computer program detects and classifies the user’s facial
movements using integrated pattern recognition algorithms, and
controls the system cursor to drive computer operations.

Interaction Design
The FMMI aims to provide users with the same experience as
using a regular mouse. Therefore, continuous mapping (2) is
applied in the design. In other words, the cursor moves when
the user’s facial muscles are activated, and vice versa. Five facial
movement patterns were defined (Figure 2) and mapped to five
cursor actions; cursor movements in four different directions and
left button click (Table 1). In order to accept the drag-and-drop
operation, a “long” bite-down motion, which lasts for more than
1.5 s, was mapped to drag (i.e., left button press and hold). A
“short” bite-down motion, which lasts for no more than 1.5s was
mapped to either left button release or click (left button press
and then release). As a result, the user can drag an object using a
“long” bite-down motion, and then move it anywhere using only
left/right Risorius or Mentalis muscles, and drop it by doing a
“short” bite-down.

EMG Acquisition
Four EMG channels were recorded, from Mentalis, left Risorius,
right Risorius, and left Temporalis muscles. The skin was first
cleaned using alcohol wipes, and EMG sensors (Delsys 2.1
single differential configuration, Delsys Inc., Boston, USA) were
placed over the muscles using double-sided adhesive tape. The

FIGURE 1 | Architecture of the facial movement-machine interface (FMMI).
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FIGURE 2 | Facial movements (a) Raise lower lip, (b) Close lips, (c) Left side smirk, (d) Right side smirk, (e) Bite down; electrodes were placed on Left & right

Risorius, Mentalis, and Temporalis muscles (a–f).

TABLE 1 | Mapping between Facial Movements and Cursor Actions.

Facial movement Cursor action Muscle

Left side smirk Move left Left risorius

Right side smirk Move right Right risorius

Raise lower lip Move up Mentalis

Close lips Move down Left & right risorius, mentalis

Bite down Left button a Temporalis

No movement No action None

aA “long” bite-down motion that lasts for more than 1.5s is mapped to drag (left button

press and hold). A “short” bite-down motion that lasts for no more than 1.5s is mapped

to either left button release or click (left button press and then release).

reference electrode was placed on right clavicle. The raw EMG
signals were filtered (20–450Hz band pass filter) and amplified
10,000 times by a Delsys Bagnoli-8 EMG System (Delsys Inc.,
Boston, USA). The EMG signals were digitized at a sampling
rate of 1,000Hz by a 16-bit analog-to-digital converter (USB-
6221, National Instruments Inc., Austin, USA), recorded on a
computer (Windows 7, Intel Celeron 1007U at 1.5 GHz with 4
GB RAM) via USB, and accessed using a National Instruments
programming interface (NI-DAQmx) for C++.

EMG Signal Processing
Segmentation
In order to implement continuous mapping, EMG signals were
segmented into 200ms analysis windows. All the processing
procedures including motion detection, feature extraction, and
classification were performed on each analysis window. In
our program, the processing is invoked every 100ms so the
classification result updates every 100ms based on the latest
200ms of EMG. It takes approximate 15ms to process the
data (from raw data to classification results, including motion
detection, feature calculation, and classification), and the lag
between the user’s motion and cursor action is<230ms including
the lag of data transfer.

Motion Detection
Motion detection aims to determine whether an analysis window
contains inactive muscle (i.e., baseline EMG) or active muscle.
An analysis window is considered to contain EMG signals from

user’s movements when the mean absolute value (MAV) of the
analysis window is greater than a given threshold, and vice versa.
The MAV is calculated as Equation 1, where EMG(c,w) is the
wth (from 1 to W, the duration of the analysis window) data in
the cth (from 1 to C, the total number of channels) channel, with
offset removed.

MAV =

∑C
c=1

∑W
w=1 |EMG (c,w)|

C ×W
(1)

The threshold is set to 3 times the MAV when the user
is totally relaxed. If the analysis window does not contain
EMG above threshold, the data processing terminates, and the
classification result is “no movement.” Otherwise, myoelectric
pattern recognition is applied to process the data.

EMG Features and Myoelectric Pattern Recognition
For each analysis window of each movement pattern (Mi, i =

1, 2, . . . , 5, listed in Table 1 but excluding “no movement”), the
root mean square (RMS) amplitude (24, 25) and the 4th-order
autoregressive (AR) model coefficients (18) of each channel were
calculated as features. One of the AR model coefficients that is
constant was removed, so that there was F = 5 features from
each channel each analysis window. Features from all channels
(a total of C = 4 channels) were then concatenated as a feature
vector with 1 row and F × C = 20 columns, denoted as
S1,F×C
Mi . A naive Gaussian Bayesian classifier (18) with equal-

prior-probability assumption was applied to classify the different
movement patterns. In our study, the classifier was trained using
NMi analysis windows of each movement patternMi before being
used for classification, aiming to set up a statistical model for
each pattern in the feature space. Specifically, feature vectors of

each movement pattern Mi formed a training dataset S
NMi ,F×C
Mi

in the form of a matrix with NMi rows and F × C columns. The
mean value of each training dataset was used as an estimation
of the center of each movement pattern (CMMi) in the feature
space, and the covariance was used as an estimation of the
distribution (DMMi).

Classification aims to determine the movement pattern (Mx)
of a new analysis window with a feature vector S1,F×C

Mx based
on its distance to each movement pattern. With the assumption
that the priori probability of each movement pattern was equal,
the distance D (Mx,Mi) was defined as Equation 2. The nearest
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movement pattern was the classification output. Therefore, the
classification result was one of the movements listed in Table 1

(excluding “no movement”).

ln (D (Mx,Mi)) = −
1

2
ln |DMMi| −

1

2

(

S1,F×C
Mx − CMMi

)

(DMMi)
−1

(

S1,F×C
Mx −CMMi

)T
(2)

Cursor Control
The FMMI controls the cursor by sending cursor control
commands using the Windows Programming Interface. At the
same time, the cursor can be controlled by a regular mouse. It
is therefore possible that the user can use a regular mouse for
general control, and the interface for precise control.

Each classification result was mapped to a cursor action
that was updated every 100ms. Two types of cursor control
commands were used in our customized program running on
Windows, i.e., cursor movement commands and left button
commands. Each cursor movement command moved the cursor
only a few pixels away from its original position, in order to make
the cursor movements continuous and smooth. The amount of
pixels was configured by the user, which determined the speed
and pointing resolution of cursor movement. For example, the
default setting (3 pixels per command) meant that the cursor
moved at a speed of 30 pixels per second (pps) with a pointing
resolution of 3 pixels. Left button commands include the Press
command and the Release command, which were triggered
only once when the user’s bite-down motion began and ended,
respectively. If a bite-down motion lasted for more than 1.5 s,
no Release command was sent, so that the user could perform
other facial movements while Windows performed as the button
was being pressed. In this case, a “ding” sound occurred when
the bite-down motion reached 1.5 s, in order to notify the user
that the button was pressed and held. A different “ding” sound
occurred when the button was released later.

Subjects
Ten able-bodied subjects (S1–S10, 37.7 ± 11.5 years old, 7 males
and 3 females) participated. All subjects gave written informed
consent before any experimental procedures. The experimental
protocols were approved by the Committee for the Protection
of Human Subjects (CPHS) of the University of Texas Health
Science Center at Houston and TIRR Memorial Hermann
Hospital (Houston, TX, USA).

Experimental Protocol
Each subject made one visit to the laboratory. The experiment
lasted about 2 h and consisted of four sessions (Figure 3). Before
the first session, each subject learned all the facial movements as
well as the mapping, and was given time to practice these facial
movements. The fourth session included two interactive tasks
that were randomly assigned. In each experiment, the subject was
seated comfortably on a chair and faced a computer screen for
real-time feedback. The cursor movement was set to 3 pixels per
command in all sessions.

A classifier was trained for each subject. In the first and
second sessions, EMG signals were recorded in order to train the

FIGURE 3 | Cascade of experimental procedures.

classifier. The classifier was trained using these data before the
third session, and then its classification accuracy was measured
by experiments in the third session. In the fourth session, the
subject was given two interactive tasks in order to measure the
FMMI performance.

Training Sessions #1 and #2
In the first session, the subject performed each facial movement
10 times, each lasting about 2 s, with a 2-second rest after each
motion. The subject repeated the same procedure in the second
session. Therefore, approximately 40 s of EMG for each facial
movement was recorded from these two sessions, and were used
to train a naive classifier. Each session lasted about 5min, and
there was a 2-min rest between the two sessions. The cursor was
not controlled by the subject in the first two sessions. However,
real-time visual feedback was available (including a red picture
box that appears when a facial movement is detected and being
recorded, as well as a chart showing the MAV calculated in
real time based on Equation 1 and the threshold), so that the
subject could know if his movement had been accepted, and
could also get a better understanding about the threshold of
motion detection.

Recognition Accuracy Test
The recognition accuracy test was conducted in the third session,
in which the subject’s facial movements were classified in real
time by the classifier trained using data recorded in the first
two sessions (about 400 analysis windows for each pattern). The
subject repeated each facial movement a few times until 100
classification results were obtained for each pattern (excluding
“no movement”). The recognition accuracy was then calculated
as the ratio of the number of correct classification results to
total classification results (e.g., accuracy of “left side smirk”= the
number of “left side smirk” that is correctly classified/100).

In order to compare pattern-based mapping and channel-
based mapping, EMG data recorded in this session were
processed using channel-based mapping after the experiment.
Similar to (1) and (2), RMS of each channel was first calibrated,
and then the channel with the maximal RMS was picked out to
represent the motion. For example, a motion will be mapped to
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“Moving up” when the leading RMS value comes from Mentalis.
The calibration parameter of each muscle are the mean RMS
value of that muscle in the first two sessions when the muscle
is the only activated muscle. The pattern “Moving down” was
excluded because only four patterns can be mapped to by using
four channels.

Interactive Tasks
In order to measure the interaction performance of the FMMI,
two interactive tasks were conducted in the fourth session. In this
session, the subject had full control of the system cursor, which
wasmapped from the classification results. Before performing the
tasks, the subject was given sufficient time to practice, in order
to get familiar with the facial movements, the mapping, and our
system. The subject needed to get used to misclassifications (i.e.,
the subject’s movement is classified incorrectly so that the cursor’s
action is different from the subject’s expectation). Besides, the
subject learned how to use Windows On-Screen Keyboard and
Windows Paint, the applications that were used in this session.
For each task, cursor actions (including trace) and time to
accomplish the task were recorded by our program. The clock
started when the subject first move the cursor, and stopped by
the experimenter when the task was done. The time between the
first and the last cursor action was calculated by the program as
the time to accomplish the task.

Typing task
In the typing task, the subject was asked to type a sentence “I’m
using facial control.” in a textbox using Windows On-Screen
Keyboard. The subject was allowed to use any way to type (e.g.,
use either the “Caps Lock” or “Shift” key to input the letter “I”),
and had to correct any error occurred during typing. The task
beganwith the cursor placed at the top left of the screen keyboard,
and ended when the typing was done. Each subject had up to
three chances to accomplish the task.

Path efficiency (PE) (2) was calculated based on the cursor
trace in the typing task. It was defined as the ratio of the
length of the optimal path to the length of the subject’s trace.
The difference between the lengths of the two paths is usually
caused by incorrect classification results or the subject’s mistakes.
Therefore, a higher path efficiency usually represents a better
interaction performance. In our design, the cursor can only
move in four directions. Manhattan Distance (MD) was therefore
applied to measure the length of the optimal path. Given
the position Posi =

(

xi, yi
)

where the user correctly clicked

the ith screen key, the length of the optimal path from the
previous screen key to the ith screen key can be calculated using
Equation 3.

MD (Posi−1, Posi) = |xi − xi−1| +
∣

∣yi − yi−1

∣

∣ (3)

Thus, path efficiency can be calculated using Equation 4, where
the length of the subject’s trace (LS) is the sum of each
cursor movement.

PE =

∑

iMD (Posi−1, Posi)

LS
(4)

TABLE 2 | Facial movement classification accuracy of each subject.

Subject S1 S2 S3 S4 S5

Accuracy (%) 98.2 ± 1.7 91.3 ± 7.0 98.2 ± 3.6 100.0 ± 0.0 94.0 ± 6.8

Subject S6 S7 S8 S9 S10

Accuracy (%) 99.0 ± 1.1 95.4 ± 6.7 94.1 ± 13.3 97.8 ± 2.7 100.0 ± 0.0

According to Fitts’s law (9), the time required to move the cursor
from one screen key to the target screen key is a function of
the task’s Index of Difficulty (ID). ID can be estimated using
the distance and the width of the target screen key (9). In
order to quantify the relation between movement time and ID,
four horizontal movements (e.g., from “f” to “a” on the screen
keyboard) were picked out as samples to perform a linear fitting.

Drawing task
In the drawing task, the subject was asked to draw a simplified
mushroom (a semi-circle on the top plus a rectangle on the
bottom) using Windows Paint. A sample picture was provided to
the subject. The subject was allowed to draw it at any place on the
canvas using any tool available in Windows Paint (e.g., straight
line, curve, and rectangle). The task began with the cursor placed
at the top left of theWindows Paint, and ended when the drawing
was done. Each subject had up to three chances to accomplish
the task.

RESULTS

Cursor Control Accuracy
Table 2 shows each subject’s facial movement classification
accuracy obtained in the third session, along with the standard
deviation of the five movement patterns. All subjects achieved
high accuracies (96.8 ± 0.9% with the median at 98.0%). Six
subjects achieved very high accuracies (above 97%), and the
lowest accuracy was 91.3%. Subject S8 had the largest standard
deviation because of a low accuracy during the “right side smirk”
movement. Table 3 shows the average confusion table with the
standard deviation among all the subjects when using pattern-
based mapping. All the 5 elements on the diagonal, which
correspond to the percent of correct classification, are>93%, and
their standard deviations are all below 10%. Thirteen out of the
20 off-diagonal elements, which correspond to misclassification,
are below 1%. Table 4 shows the average confusion table with
the standard deviation when using channel-based mapping. All
the 4 elements on the diagonal are smaller than 93%, and their
standard deviations are all above 10%. Three out of the 12
off-diagonal elements are below 1%. Non-negligible individual
differences in accuracy were observed when using channel-based
mapping. The average accuracy across all subjects was 88.2 ±

4.7%. Only six subjects achieved an accuracy about the same level
when using pattern-based mapping (i.e., above 90%), and the
lowest accuracy was 51.2%.

Typing Task Performance
Figure 4 shows the calculated path efficiency of each subject in
the typing task. The median path efficiency was 80.4% (with
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TABLE 3 | Confusion table of facial movement classification.

Facial movement Classification output (%)

Raise lower lip Close lips Left side smirk Right side smirk Bite down

Raise lower lip 97.7 ± 5.7 1.9 ± 5.0 0.2 ± 0.6 0.2 ± 0.6 0.0 ± 0.0

Close lips 2.1 ± 3.8 95.5 ± 5.9 1.1 ± 2.4 1.1 ± 2.6 0.2 ± 0.6

Left side smirk 0.2 ± 0.6 1.2 ± 2.0 98.0 ± 2.2 0.5 ± 1.6 0.1 ± 0.3

Right side smirk 1.8 ± 3.9 4.0 ± 8.0 0.1 ± 0.3 93.8 ± 9.6 0.3 ± 0.9

Bite down 0.1 ± 0.3 0.1 ± 0.3 0.1 ± 0.3 0.0 ± 0.0 99.7 ± 0.7

TABLE 4 | Confusion table of channel-based facial movement mapping.

Facial movement Mapping output (%)

Raise lower lip Close lips Left side smirk Right side smirk Bite down

Raise lower lip 89.3 ± 15.0 – 4.3 ± 6.4 5.1 ± 9.9 1.3 ± 4.1

Close lips – – – – –

Left side smirk 3.0 ± 5.1 – 88.8 ± 18.7 8.0 ± 19.1 0.2 ± 0.6

Right side smirk 6.8 ± 13.9 – 9.6 ± 27.9 83.4 ± 29.4 0.2 ± 0.6

Bite down 0.8 ± 1.5 – 1.5 ± 4.4 6.1 ± 13.5 91.6 ± 14.0

FIGURE 4 | Path efficiency in the typing task of each subject. The x axis is the

accuracy of classification results obtained from the third session.

quantiles 65.8 and 88.3%). Subjects with higher classification
accuracies (>97%) tended to achieve greater path efficiency, but
no significant correlation between classification accuracies and
path efficiency was observed (Pearson correlation coefficient r =
0.447, p = 0.195). Seven subjects achieved high path efficiencies
(75% and higher), six of whom achieved high classification
accuracies in the third session. The only exception was the
youngest subject (27 years), who achieved a high path efficiency
with a relatively low accuracy. Interestingly, the subject with the
lowest path efficiency was the oldest (65 years), who had more
mistakes when performing the task.

Figure 5 shows the relation between time and ID in the typing
task, which are defined in Fitts’s Law. The time was measured

FIGURE 5 | The relation between Time of Cursor Movements and Index of

Difficulty (ID) in the typing task. The dash line shows the median value at each

ID level, and the solid line shows the linear fitting result of the median values.

from the first cursor movement after the previous click to the
last cursor movement before another click. At each ID level, the
time needed to move the cursor appeared to be similar among
different subjects, except a few outliers (i.e., did not follow a
normal distribution). Therefore, the median value at each ID
level was used to represent all subjects. A linear relation (also a
significant correlation with r = 0.962, p = 0.038) between the
median time and ID level was found as Equation 5.

Time = −0.2044+ 1.7135× ID (5)
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FIGURE 6 | The time (blue circle) and number of cursor movements (orange cross) of each subject to accomplish the typing task. The x axis is the path efficiency in

the typing task. Samples with the same x-value are from the same subject.

FIGURE 7 | The time (blue circle) and number of cursor movements (orange cross) of each subject to accomplish the drawing task. The x axis is the accuracy of

classification results obtained from the third session. Samples with the same x-value are from the same subject.

Figure 6 shows the total time and number of cursor movements
that each subject used to accomplish the typing task. The median
time was 265.4 s (about 5.9 letters per minute, with quantiles
206.3 s and 400.5 s), and the median number of movements was
1,425 (with quantiles 1,192 and 2,044). It appears that subjects
with higher path efficiency used less time (r=−0.942, p= 0.000)
and fewer movements (r =−0.980, p= 0.000) to accomplish the
typing task.

Drawing Task Performance
Figure 7 shows the total time and number of cursor movements
that each subject used to accomplish the drawing task. The
median time was 239.9 s (with quantiles 194.2 and 271.9 s), and
the median number of movements was 966 (with quantiles 819

and 1,091). Subjects with higher classification accuracy spent less
time (r =−0.716, p= 0.020) and fewer movements (r =−0.663,
p= 0.036) to accomplish the drawing task. Figure 8 is an example
of a subject’s drawing with the cursor trace.

DISCUSSION

In this study, we demonstrated the performance of human-
computer interactions using a cursor controlled by facial
movements. Different from conventional mapping schemes,
facial movements were detected and classified using myoelectric
pattern recognition algorithms, and mapped to cursor actions
in our design. By using such a mapping scheme, only three
EMG channels were needed to control the cursor movement
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FIGURE 8 | An example of the drawing (black) with the subject’s cursor trace

(orange). Examples of correct motion transition (A), overshooting (B), and

misclassification (C) are marked in blue.

in four directions, compared with recent studies in which
four EMG channels were necessary (2, 3, 9). By using only
four EMG channels in our design, full control of a cursor
(including movement in four directions, click, and drag &
drop) was implemented. Furthermore, the algorithms were
able to learn the EMG patterns of each subject, so that there
was no need to calibrate or tune those channels manually.
Although it is possible to map these four channels to four
out of five movement patterns using a channel-based mapping
and manually determined thresholds, its mapping accuracy was
lower than that of pattern-based mapping. Only a portion of
subjects (60% in our experiments) achieved a relatively high
accuracy. Those subjects who achieved relatively low accuracies
would have many incorrect mappings in interaction tasks, which
bring down their interaction experience. Besides, interaction
task cannot be accomplished using only four patterns (i.e.,
without “move down”). In other words, an additional EMG
channel is necessary for interaction tasks if using channel-
based mapping. The subject with the lowest channel-based
mapping accuracy had non-negligible co-activation among three
out of four channels, which is a challenge for channel-based
mapping but not for pattern-based mapping. In our pattern-
based experiments, all subjects achieved high accuracies, half
of them achieved real-time classification accuracies above 98%,
which is very high for real-time classification. Among the five

movement patterns, the “Bite down” movement has the best
classification performance, because it is performed by a separate
muscle, compared with the other four mouth movements, which
are performed by three small muscles around the mouth. Besides,
the three muscles change shapes when performing mouth
movements, which affects the contact between our electrodes and
the skin, introducing noise and artifacts. However, these four
mouth movements also achieved good classification movements
with accuracies between 93.8 and 98.0%, indicating that the
myoelectric technique was accurate and reliable. Path efficiency
is an indicator that reflects the quality of interaction. High
path efficiency can only be achieved if the interaction system is
accurate (e.g., low misclassification rate) and easy to use (e.g.,
minimal overshooting). The path efficiencies in our experiment
were higher than a recent study on facial movement-based cursor
control systems, in which subjects’ path efficiencies ranged from
60 to 80% (2). Although we applied a different mapping scheme,
it is still feasible to compare path efficiency between our system
and existing systems. In (2) for example, the shortest path
from one position to another is the Euclidean distance, so that
their calculation is based on Euclidean distance. However, the
shortest path in our system is the Manhattan distance. Thus,
our path efficiency definition is based on Manhattan distance.
As a result, both systems have the same upper limit of 100% for
path efficiency, and the calculation will not be affected by the
position of start or end point of the path. Therefore, the layout of
the typing board does not necessarily change the path efficiency,
although it may change the interaction efficiency.

The speed of cursor movement is usually controlled by the
amplitude of the user’s EMG signals when conventional channel-
based mapping scheme is applied (2, 9). In our design, the speed
was constant, so that the user can pay more attention to the
movement pattern. Considering that the user has full control
of the system cursor, he or she can change the speed on our
application’s graphic interface at any time. Hence, the user can
use the FMMI in a variety of cases, from large-scalemovements to
precise operations. It is also believed that speed affects interaction
performance. For example, using high speed saves time of cursor
movement, but increases the chance of overshooting. Therefore,
it is meaningless to compare interaction performance of a
channel-basedmapping (EMG controlled speed) with our system
(constant speed). On the other hand, high mapping accuracy
or classification accuracy tends to provide better interaction
performance as shown in Figure 7. Therefore, we believe that
high interaction performance cannot be achieved by using
channel-based mapping on some subjects in our experiments
because of their relatively low accuracies. However, it does not
mean channel-based mapping is outperformed by pattern-based
mapping. Interface using channel-based mapping can provide
high input rate in some use case [e.g., moving left and up at the
same time (2)], while pattern-based mapping provides a more
flexible solution (e.g., fewer EMG channels are required, and the
algorithms can learn customized patterns) and performed better
in our use settings.

It is very common that the user has to use customized tools
for interactions when using a FMMI. For example, users used
a customized input panel for typing in previous studies (2) and
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(3). Such customized tools could have significantly increased the
interaction efficiency, so that the input speed of the typing task
(i.e., the number of letters per minute) in their experiments was
much higher than that in the present study, though we had higher
path efficiency. However, it is impractical to develop a tool or
an input panel for every interaction task. Therefore, our design,
which is taking over the system cursor, gives the user a universal
interface to manipulate the computer. Furthermore, the user’s
experience of using a regular mouse can be applied when using
our interface. It can accelerate the learning process, and more
importantly, it can make some operations much more efficient.
For example, if the user wants to delete a whole paragraph when
typing, he / she can easily select the text and click the delete
key on the screen keyboard when using our interface. However,
the user may have to delete one letter at a time when using the
aforementioned input panels.

As a pattern-based control scheme, only one pattern is
accepted at a time. As a result, the cursor can only move in
one of four directions, as shown in Figure 8. It sometimes
makes the path longer, but it is good in some cases as well
(e.g., drawing a horizontal line). It is noteworthy that almost
all the computer operations can be done with movements
in only four directions, including drawing a curve as in
our experiment. Moreover, movement transitions may affect
interaction performance because they are usually non-stationary
or in ambiguous states. Specifically, there are two types of
movement transitions, (1) transitions between a motion and
the rest state (i.e., the beginning or end of a motion), and
(2) transitions between two motions. Our motion detection
algorithm is designed to be able to filter out the beginning or end
of amotion based on two of our observations. First, the beginning
or end of a motion are usually small in the EMG amplitude.
Secondly, an analysis window that contains the beginning or end
of a movement usually contains a baseline before or after the
movement as well. Therefore, the MAV of an analysis window
that contains either beginning or end of a motion is usually too
small to reach the threshold of motion detection. Transitions
between two motions can happen in the case of overshooting
and making turns, and misclassifications caused by transitions
can be captured by the cursor trace such as Figure 8. For
example, a misclassification when making a turn can introduce
drift in other directions and usually makes jitters in the trace as
shown in Figure 8 (marked as “C”). However, this is the only
misclassification that happened in transitions in this experiment,
and it did not happen often in other experiments.We noticed that
in most cases the subject moved the cursor in one direction, and
then made a stop before moving in another direction, although
the subject was never commanded to make a stop between two
motions. As a result, movement transitions did not significantly
affect the performance of our system. However, all these results
and observations were under laboratory conditions. In daily use,
a voting strategy over two or more analysis windows that only
accepts the classification with the highest votes e.g., (26) can
be applied if movement transitions affect the user’s experience.
It can filter out occasional misclassifications as well. Additional

filters may be needed in real life settings to preprocess EMG dada
contain noise or artifacts.

Cler et al. (2) discovered that both discrete and continuous
mapping can achieve high performance. Typical pattern-based
discrete mapping generates one control command when one
motion is detected (13, 28), thus the update rate of control
commands is usually below 1Hz. If the cursor moves 3 pixels
each time, more than 300 motions are required in order to
move the cursor from far left to far right, which may take
several minutes. In contrast, control command can be updated at
10Hz or higher when using continuous mapping (29). Therefore,
continuous mapping with an update rate at 10Hz was applied in
our design.

Although high path efficiencies can be achieved when
compared with other facial movement-machine interaction
systems, there is still a large gap between our system and a regular
mouse. Our system has a low input rate, so that the user needs
a long time to accomplish the tasks. Our future work involves
developing advanced ways allowing the user to control the cursor
movement speed. Patients with limited hand function will be
recruited to assess the performance of the system.

CONCLUSION

A facial movement-machine interface was developed in this study
in order to help users with limited hand function manipulate
electronic devices. Facial movements were detected using four
EMG sensors, and five movement patterns were classified using
myoelectric pattern recognition algorithms. The results from 10
able-bodied subjects show that facial movements can be detected
and classified at high accuracies. The pattern-based continuous
mapping between facial movements and cursor actions achieved
high performance in both a typing task and a drawing task.
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