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Abstract
Affective states underlie daily decision-making and pathological behaviours relevant to obsessive–compulsive
disorders (OCD), mood disorders and addictions. Deep brain stimulation targeting the motor and associative-limbic
subthalamic nucleus (STN) has been shown to be effective for Parkinson’s disease (PD) and OCD, respectively.
Cognitive and electrophysiological studies in PD showed responses of the motor STN to emotional stimuli,
impairments in recognition of negative affective states and modulation of the intensity of subjective emotion. Here we
studied whether the stimulation of the associative-limbic STN in OCD influences the subjective emotion to low-
intensity positive and negative images and how this relates to clinical symptoms. We assessed 10 OCD patients with
on and off STN DBS in a double-blind randomized manner by recording ratings of valence and arousal to low- and
high-intensity positive and negative emotional images. STN stimulation increased positive ratings and decreased
negative ratings to low-intensity positive and negative stimuli, respectively, relative to off stimulation. We also show
that the change in severity of obsessive–compulsive symptoms pre- versus post-operatively interacts with both DBS
and valence ratings. We show that stimulation of the associative-limbic STN might influence the negative cognitive
bias in OCD and decreasing the negative appraisal of emotional stimuli with a possible relationship with clinical
outcomes. That the effect is specific to low intensity might suggest a role of uncertainty or conflict related to
competing interpretations of image intensity. These findings may have implications for the therapeutic efficacy of DBS.

Introduction
Affective states underlie daily decision-making and

pathological behaviours relevant to obsessive–compulsive
disorders (OCDs), mood disorders and addictions. Deep
brain stimulation (DBS) is effective in Parkinson disease
(PD)1 and OCD2 and critically offers the opportunity to
investigate the neural underpinnings of cognitive and
affective processes. DBS in OCD has shown efficacy in the
anterior limb of the internal capsule (ALIC), the nucleus

accumbens (NAcc) and ventral capsule/ventral striatum,
and the subthalamic nucleus (STN)2–4. Effects on mood
and anxiety are the most frequent stimulation-related
reported side effects5–7. Thus, understanding the role of
DBS on emotional processing may contribute to under-
standing the circuits underlying human emotional reg-
ulation and the mechanism of DBS in OCD.
Depressive reactions have been observed with acute

stimulation in PD within different regions of the basal
ganglia including the left8 or right substantia nigra9 and
globus pallidus internus10. Acute induction of a positive
emotional reaction (smile, laughter) intraoperatively
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during ALIC-NAcc DBS in OCD was suggested to predict
DBS outcome11.
The STN is a small nucleus within the indirect pathway

and receives significant hyper-direct prefrontal cortex
connections highlighting its role as a nexus for integra-
tion12,13. The posterior dorsal motor STN is an effective
target for PD and the anterior ventral limbic-associative
STN1 is effective for OCD2. DBS targeting the motor STN
in PD have reported acute positive emotion such as
laughter/hilarity14 or euphoric manic behaviour13,15 and
acute depressive reactions16,17, anger18, pathological cry-
ing19 and pseudo-bulbar crying20. These presumed acute
stimulation effects of the STN have been suggested to be
related to disinhibition of behaviour5 and may also be
dependent upon baseline diagnoses21.
With chronic stimulation, STN DBS may be associated

with frequent major depressive episodes (for review, see5)
or apathy22, but reduction in dopaminergic pharma-
cotherapy is an important confounder. However, in con-
trast to discrete major depressive episodes, STN DBS in
PD consistently improves overall depression23 and anxiety
scores5. Post-operative hypomania/mania is the most
consistently reported post-operative psychiatric
stimulation-induced effect reported in PD (4%)6, which
may be linked to antero-ventral STN stimulation13 and
can be clinically addressed by decreasing voltage, dopa-
minergic dose or changing stimulation contacts dorsally24.
Similarly, in OCD, mood effects of antero-ventral STN
DBS have involved hypomania rather than depressive
symptoms2. Stimulation duration may also be relevant:
acute effects may involve euphoric feelings and improved
motivation, which are less likely with chronic STN sti-
mulation in PD16,22,25,26. Thus, the short-term2 and sug-
gested long-term27 clinical benefit of antero-ventral STN
DBS in OCD may not be dependent on mood impact
although may influence quality of life28.
OCD is characterized by obsessions or repetitive

intrusive thoughts and urges leading to compulsions or
behaviours, which subjects feel driven to perform.
Impairments in the processing of emotional stimuli in
OCD with a more negative (or less positive) appraisal of
emotional stimuli have been reported29,30, suggested to be
related to a generalized negative appraisal bias. Studies on
STN stimulation-locked emotional processing have
focused on the motor STN in PD (for a review, see5); how
DBS alters limbic function in OCD patients targeting the
associative-limbic STN remains an open question. Here
we sought to assess the role of the antero-ventral asso-
ciative-limbic STN in limbic processing. We assessed the
intensity of valence and arousal ratings in both pleasant
and unpleasant imagery and divided the International
Affective Picture System (IAPS)31 images into low and
high valence intensity presuming that low valence images
may have less ceiling effect and hence more sensitive to

subjective interpretation and capacity for change. We
hypothesized that STN DBS would increase subjective
pleasant and decrease subjective unpleasant scores parti-
cularly with lower valence images.

Methods
Participants
Twelve OCD subjects were recruited from Grenoble

University Hospital, tested On and Off DBS and compared
with 24 healthy volunteers (HVs). OCD patients (eight
females; mean age: 41.75 ± 7.94 years) had undergone
bilateral STN DBS for mean 38.1 ± 18.8 months prior to
testing (duration of the stimulation range prior to the
study: 5–71 months). Patient characteristics are shown in
Table 1. Disease duration before surgery was 18 ± 9.2
years, and Yale Brown Obsessive–Compulsive Scale
(YBOCS) score (assessing OCD severity32) before surgery
was 34.3 ± 3.2. At the time of the study, YBOCS baseline
score was 20 ± 9.1 with a clinical improvement (compared
with pre-surgery state) of 41 ± 28%. Patients had at least 5
years of treatment-resistant, severe, disabling OCD before
DBS surgery. Several patients had some neuropsychiatric
comorbidities (obsessive–compulsive spectra): one subject
have comorbid Tourette’s syndrome; another subject have
comorbid skin picking and another subject had a pre-
morbid history of an eating disorder that was in remission
20 years before surgery. One patient had hypersomnia. All
subjects were right handed and had normal or corrected to
normal vision.
The OCD subjects were implanted bilaterally with two

electrodes 3389 connected to a Kinetra stimulator
(Medtronic, Minneapolis, Minnesota, USA), accordingly
to the STN DBS protocol already published elsewhere2,4.
The surgical procedure targeted the antero-ventral non-
motor part of the STN. Indirect targeting was defined as
1 mm anterior to the mid-commissural point, 10 mm
lateral from the midline and 4mm below the AC-PC line.
The final target was adapted laterally according to the
visualization of the medial border of the STN. The
antero–posterior coordinates were defined 2mm anterior
to the anterior border of the red nucleus. Stimulation
frequency and pulse width were set at 130 Hz and 60 µs,
respectively; stimulation voltage and activated contacts
were adjusted individually to obtain the best clinical
response.
The 24 age-matched (± 5y) and gender-matched HVs

(16 females; 42.67 ± 8.34 years old) were recruited from
the University and community in Grenoble. Subjects were
screened by a psychiatrist with the Structured Clinical
Interview (SCID) for DSM IV in order to check the
exclusion criteria. Exclusion criteria for HVs were past or
present serious psychiatric or medical disorders, as well as
any psychotropic medications. The research protocol was
approved by the Ethics Committee of Grenoble University
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Hospital (ancillary study to protocol N° ID RCB: 2012-
A00490-43). All participants volunteered to participate in
the study and gave written informed consent.

Procedure
DBS has the advantage of reversibility, which enables

studying its effects within DBS On/Off paradigms. Thus,
the patients performed the tasks with STN-DBS On and
with STN-DBS Off, in a randomized double-blind within-
subject design over 2 successive days to allow a suffi-
ciently long washout of DBS effects (Table 2). All patients
were under STN DBS On when included in the study.

Table 1 Clinical and demographical characteristics of the OCD patients

Patient

number/age

(years)/gender

(F/M)

Age at

surgery

(years)

Duration of

disease before

surgery (years)

Age at

onset of

OCD (years)

Duration of

DBS (months)

YBOCS

before

surgery

YBOCS

Baseline at

time of study

Medications at the time of

the study

1/46/M 39 18 21 71 37 25 Fluvoxamine 200mg/day;

Lorazepam 4mg/day

2/49/F 42 25 17 64 30 28 Aripiprazole 30 mg/day;

Olanzapine 5mg/day;

Escitalopram 20mg/day;

Clomipramine 75 mg/day

3/39/M 36 17 19 32 32 28 Paroxetine 60 mg/day

4/53/F 49 39 10 51 35 29 Fluoxetine 20 mg/day;

Clomipramine 25 mg/day

5/37/M 34 13 21 22 32 27 Clomipramine 150mg/day;

Oxazepam 175mg/day;

Alimemazine 50 mg/day

6/41/F 38 11 27 35 36 6 None

7/43/F 40 15 25 32 36 23 Fluvoxamine 200mg/day;

Hydroxyzine 50 mg/day;

Clomipramine 25 mg/day

8/41/F 37 5 32 44 32 2 Venlafaxine 37.5 mg/day;

Clotiazepam1.5 mg/day

9/30/M 27 10 17 25 38 24 Sertraline 50 mg/day;

Aripiprazole 20 mg/day;

Methylphenidate 60 mg/day;

Pitolisant 20 mg/day

10/56/F 52 25 27 51 40 18 Zopiclone 7.5 mg/day;

Aripiprazole 2.5 mg/day;

Hydroxyzine 100 mg/day

11/33/F 33 21 12 5 30 11 Venlafaxine 150 mg/day

12/33/F 33 26 7 25 34 19 Fluoxetine 20 mg/day;

Levothyroxine 125 µg/day

M male, F female, YBOCS Yale Brown Obsessive–Compulsive Scale, DBS deep brain stimulation, OCD obsessive–compulsive disorder

Table 2 Study design for OCD subjects

Day 1 Day 2

9 a.m.: YBOCS (baseline) 9 a.m.: YBOCS

10 a.m.: DBS device control 10 a.m.: DBS device control

A. On A. Switch Off

B. Switch Off B. Switch On

2 p.m.: IAPS testing 2 p.m.: IAPS testing

YBOCS Yale Brown Obsessive–Compulsive Scale, DBS deep brain stimulation,
OCD obsessive–compulsive disorder, IAPS International Affective Picture System
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Patients were randomized (stratification by gender) to
one of two arms: (1) DBS was switched off in the
morning of Day 1 and patient tested 4 h later; DBS was
kept off overnight and in the morning of Day 2 the DBS
was switched on and the patient was tested again 4 h
later (after 4 h DBS on). (2) Alternatively, in the other
arm, DBS was kept On on Day 1 and patient tested
similarly at the same moment of the day, 4 h after the
blind control of his DBS device; the DBS was kept on
overnight and, in the morning of Day 2, the DBS was
switched off and patient tested 4 h later. Both the tester
and patient were blinded to the condition of stimulation
(the control of the DBS device and the DBS switches
were performed by another investigator). The blind was
maintained during the study as patients were unable to
identify properly the stimulation condition (On/Off).
The patients continued their usual medication during
the study. HVs were tested once.

Tasks
Affect task
Subjects were shown 20 visual stimuli out of a dataset

from the International Affective Picture System (IAPS31).
Subjects were shown neutral (four images) and high
pleasant and unpleasant images (four images of each
condition) and low pleasant and unpleasant images (four
images of each condition). All the images were balanced
between emotional categories (human, animals, objects,
scenery) and were presented on a computer screen in a
pseudorandomized order with no time limitation for
responding. The image ceased when the subject respon-
ded with an interstimulus interval of 2 s during which a
fixation-cross was presented in the screen’s centre. Each
image was presented once. Subjects were instructed to
look at the picture and rate the degree of pleasantness and
unpleasantness (emotional valence) by moving the mouse
cursor along a line anchored at 0 (unpleasant emotion) to
5 (neutral) and 10 (pleasant emotion) (visual analogue
scale). A similar procedure was conducted for degree of
arousal. The arousal referred to the intensity of the
emotional activation: from calm (score 0) to very excited
(score 10). We focused on the outcome measure of ratings
of pleasantness and arousal.

Statistical analysis
The behavioural scores were first assessed for outliers

and normality of distribution using Shapiro–Wilkes test.
We first compared the effects of On and Off DBS on the
neutral stimuli to assess the influence of stimulation on
neutral images using a paired t-test prior to focusing on
the affective stimuli. We then compared the scores for
affective ratings (emotional valence) and arousal ratings
separately using a repeated-measures analysis of variance
(ANOVA with a within-subject On-Off factor and within-

subject Affect factor (Pleasant and Unpleasant). This was
separately conducted for the high valence and low valence
stimuli. The p < 0.05 was considered significant for the
main hypothesis of a DBS effect focusing on low valence
stimuli (Bonferroni correction for multiple corrections p
< 0.0125). We then used a repeated-measures ANOVA to
compare OCD patients On and Off DBS and HV with a
within-subject Affect factor (Pleasant and Unpleasant)
separately conducted for high and low valence stimuli. We
further asked if the effect on valence was related to clinical
parameters by including YBOCS change (pre–post) as a
covariate in the repeated-measures ANOVA.

Results
As two subjects did not complete the low valence

component of the task due to an examiner error during
testing, we restricted our analyses to the 10 OCD subjects
who had completed the full task. The data were normally
distributed. There were no effects of DBS on neutral sti-
muli (valence: t= –0.84, df= 9, p= 0.43; arousal: t= 0.14,
df= 9, p= 0.89). In the critical within-subjects compar-
ison of low valence stimuli, there was a main effect of
valence (F(1, 9)= 63.11, p < 0.0001) and of DBS (F(1, 9)=
11.84, p= 0.007) but no interaction effect (F(1, 9)= 0.04,
p= 0.85) (Fig. 1). OCD subjects On DBS had more
positive ratings across both positive and negative valences
relative to Off DBS. Although we had a hypothesis specific
to the low valence stimuli, the findings were also sig-
nificant after Bonferroni correction for multiple compar-
isons. This effect of STN DBS was specific to the low
valence condition as in the comparison of high valence
stimuli, there was a main effect of valence (F(1, 9)= 49.16,
p < 0.0001) but no effect of DBS (F(1, 9)= 0.39, p= 0.55)
or DBS × valence interaction (F(1, 9)= 2.79, p= 0.13)
(Fig. 1).
In the assessment of arousal in the low valence condi-

tion, there was no effect of arousal (F(1, 9)= 0.69, p=
0.43), DBS (F(1, 9)= 2.26, p= 0.17) or DBS × arousal
interaction (F(1, 9)= 0.71, p= 0.42) (Fig. 1). In the high
valence condition, there was an effect of arousal (F(1, 9)=
5.96, p= 0.04), and no effect of DBS (F(1, 9)= 0.04,
p= 0.84) or DBS × arousal interaction (F(1, 9)= 0.25, p=
0.63). We conducted a further assessment demonstrating
using paired t-tests that there were no differences in
subjective arousal between positive and negative stimuli
Off stimulation (positive: 400.88 (80.95); negative: 431.47
(50.38), t= –1.30, df= 9, p= 0.23) as expected but the
difference in arousal arose On stimulation (positive:
388.77 (60.20); negative: 433.42 (70.41), t= –2.49, df= 9,
p= 0.03). We confirm that the subjective assessment of
arousal in this patient group Off stimulation was no dif-
ferent as a function of valence consistent with IAPS
arousal ratings. The effects On stimulation suggest a
potential effect of stimulation on decreasing arousal of
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positive images; however, the DBS effects and interaction
effects were both not significant.
To assess the effects of order of stimulation in the low

valence condition, we conducted a separate analysis
comparing low valence with Order (On-Off N= 5; Off-
On N= 5) as a between-subjects factor. There were no
effects of Order (F(1, 8)= 4.41, p= 0.07) and the DBS
effects remained significant (F(1, 8)= 10.94, p= 0.01).
We then asked if there was a relationship between the

low valence condition and change in YBOCS scores pre-
and post-STN DBS by including the change in YBOCS
scores (YBOCS change= pre–post) as a covariate. There
was a main effect of DBS (F(1, 8)= 23.31, p= 0.001) and
of valence (F(1, 8)= 8.07, p= 0.02) and no DBS × valence
interaction (F(1, 8)= 0.54, p= 0.48). There was also an
interaction between DBS × YBOCS change (F(1, 8)= 8.40,
p= 0.02) and a valence × YBOCS change interaction (F(1,
8)= 9.02, p= 0.02). Given these interactions with YBOCS
change, we conducted exploratory Pearson correlation
analyses with YBOCS change. The change in YBOCS with
stimulation (YBOCS at the time of experiment – YBOCS
pre-op), the more pleasant the subjective ratings of the
low pleasant stimuli Off DBS (Pearson correlation coef-
ficient R2= 0.67, p= 0.03) (Fig. 1) with no significant
correlation observed On DBS or with low unpleasant
(p > 0.05).

The repeated-measures ANOVAs comparing valence or
arousal for all groups including healthy controls were not
significant (p > 0.05).
We further assessed any relationship between the dif-

ference between On and Off in the current findings with
risk taking choices to reward and loss, K-values of delay
discounting and reflection impulsivity measures pre-
viously reported in this same population. As the risk
choices were not normally distributed, Spearman rank
correlation was used. No significant findings were noted.

Discussion
We showed that STN DBS enhances positive (or

decreases negative) subjective ratings of low-intensity
stimuli irrespective of valence. This effect was not
observed with high valence or arousal ratings. These
findings may be related to greater variability and capacity
for change in low valence ratings (rated subjectively more
negative in the Off state with greater positive shift in the
On state) with the high valence conditions demonstrating
ceiling effects. We also show that the change in YBOCS or
severity of OCD pre- versus post-op interacts with both
DBS and valence ratings. On exploratory analysis, the
greater the YBOCS improvement, the higher the valence
ratings Off DBS in the low pleasant condition with no
correlation observed On DBS. This is the first study to

Fig. 1 Subthalamic deep brain stimulation effects on affective valence and relationship to clinical outcomes. a Valence ratings for emotional
images in obsessive-compulsive disorder (OCD) subjects On and Off deep brain stimulation (DBS) targeting the subthalamic nucleus. Top: low
intensity. Bottom: high intensity. b Arousal ratings for low pleasant and low unpleasant emotional images. c Valence ratings for low pleasant and
unpleasant images Off DBS as a function of change in pre-operative and post-operative Yale Brown Obsessive–Compulsive Scale (YBOCS). Error bars
represent standard error of the mean
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suggest a role for emotional processing of the antero-
ventral STN with DBS in OCD patients with previous
studies focusing on the STN in PD patients. These find-
ings are consistent with our previous confirmation that
the clinically optimal coordinates in this same OCD
population converge within the antero-ventral associa-
tive-limbic STN with resting state functional connectivity
with limbic and associative prefrontal regions33,34.
OCD is associated with impaired processing of emo-

tional stimuli with a more negative (or less positive)
appraisal of emotional stimuli. In response to both
unpleasant and pleasant odours, OCD subjects showed
both enhanced disgust sensitivity and intensity and
greater insular activity correlating with severity and
anxiety35. A perception bias towards negative facial
emotion (disgust) was also observed in OCD36. Similarly,
OCD subjects overestimate the valence of negative/
unpleasant stimuli30, whereas pleasant stimuli were rated
as less pleasant/more unpleasant. Along these lines,
enhanced functional connectivity of a salience network
was observed during early conditioning to a fearful
threatening stimulus37 with impairments in ventromedial
prefrontal cortex activity to conditioning to the safety
signal. Together, these observations in OCD suggest that
this negative cognitive bias underlying emotional apprai-
sal and processing may be a generalized impairment that
might underlie impairments in associative learning pro-
cesses to negative, threatening or fearful stimuli35. Thus,
targeting this negative cognitive bias and decreasing the
negative (or less positive) appraisal of emotional stimuli
irrespective of the valence may have therapeutic efficacy.
Here we showed that stimulation of the anterior limbic-
associative STN in OCD enhances the positive appraisal
of low-intensity stimuli irrespective of valence, consistent
with an improvement in negative cognitive bias.
That the effects were shown in the low valence stimuli,

which may have greater range for subjective interpretation
of intensity and capacity for change rather than the high
valence stimuli with likely greater ceiling effects, may also
implicate a role for uncertainty. Here uncertainty is
defined as greater variance or alternative outcomes in
subjective interpretation of intensity. Uncertainty has also
been suggested to be relevant in OCD: greater accumu-
lation of evidence has been reported to greater perceptual
and probabilistic uncertainty in OCD38–40, although these
findings are not always consistent41 or only significant
after controlling for neuroticism42. Uncertainty (e.g., the
possibility of alternative outcomes) has been suggested to
increase the gathering excessive evidence to support their
decision with some43,44 but not all studies38,45. Using a
delayed matching-to-sample task with choice verification,
poor insight triggered checking behaviours in OCD
patients, which indexed uncertainty46,47. OCD subjects
have also shown greater explicit subjective ratings of

uncertainty for low but not higher uncertainty evidence in
a probabilistic reasoning task44.

Emotion processing and STN
Many but not all studies in PD patients have shown an

effect of DBS targeting the motor STN on emotion
recognition, particularly with negative emotions. In PD
patients, tested 3 months before and after STN DBS,
recognition of facial emotions was impaired48,49, particu-
larly with fearful50 and angry faces51 and also with emo-
tional prosody48. Disgust recognition was impaired on
STN DBS and off Levodopa, whereas fear recognition was
impaired in the off state in both therapies52. Combined
DBS and Levodopa also improved general emotion
recognition53. However, some studies reported no differ-
ences on emotion recognition as a function of DBS in
both late54 and early PD55. The decoding of prosody was
also impaired in patients irrespective of stimulator status;
however, STN DBS was associated with more rapid
responses to highly conflicting contradictory emotional
stimuli suggested to reflect impaired inhibition of irrele-
vant stimulus dimensions with competing response
alternatives56. This latter observation is consistent with
the common observation of hastened responding and a
decrease in the decision-making threshold with conflict
with STN DBS33,57,58.
STN DBS also influences subjective intensity of valence

mostly by decreasing the intensity of negative and
enhancing positive stimuli. STN DBS in PD have been
reported to enhance emotional intensity of prosody48,
lower intensity to aversive stimuli59,60 and with ventral
STN stimulation, enhance ratings of positive stimuli61.
Our findings suggest a generalized effect irrespective of
valence focusing particularly on low-intensity stimuli. We
suggest that these may be more ecologically valid as much
emotional stimuli in the environment are of low intensity
and perhaps more amenable to shifts in subjective
perception.
PD patients showed decreased alpha event-related

desynchronization (ERD) to pleasant and unpleasant sti-
muli 1–2 s after stimuli onset62,63 with ERD correlating
with individual subjective ratings. Alpha band (8–12 Hz)
activity has been suggested to represent a marker of
limbic activity in non-STN regions including the bed
nucleus of stria terminalis or subgenual cingulate area, or
pathologies such as major depressive disorder and OCD64.
Beta oscillations have also been used to map dorsal
oscillatory and ventral non-oscillatory STN activity12.
Emotive auditory stimuli evoked ventral right STN
activity suggesting both regional specialization and
hemispheric asymmetry65. Similarly, enhanced activity to
both angry and happy auditory stimuli was observed in
the right STN with differential timing of activity66. Using
perioperative micro-recordings, 17% of single STN
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neurons responded in the alpha band activity
(500–2000ms) to emotional stimuli67, a measure analo-
gous to alpha band local field potential activity62,63.
Affective neurons were recorded in the sensorimotor
regions consistent with integration of functional STN
territories with no evidence of laterality, but with a pos-
terior valence and anterior arousal segregation67.
Neuroimaging studies in STN DBS PD patients have

identified a neural network implicated in emotional pro-
cessing. Decreased fear recognition correlated with
decreased glucose metabolism of the right orbitofrontal
cortex68. STN DBS increases anterior cingulate activity
and decreases putaminal activity to emotional imagery69.
DBS diminished frontal polar oxy-haemoglobin to posi-
tive stimuli and diminished frontopolar and right lateral
prefrontal cortex and increased bilateral inferior ven-
trolateral prefrontal cortex oxy-haemoglobin to negative
stimuli70. Finally, a fluorodeoxyglucose-positron emission
tomography (FDG-PET) study showed that the decrease
in intensity to disgust ratings after STN DBS in PD cor-
related with prefrontal–insular–cerebellar activity71.

Limitations
This study is not without limitations. The sample size is

low; however, we note that this population is very difficult
to recruit and further, the randomized controlled trial
study of STN DBS in OCD consisted of only 16 subjects.
Notably, the within-subject design of this current study
reduces inter-individual variability and tends to minimize
the heterogeneity potentially related to the different types
of OCD. Medication status can also interfere with emo-
tional state, but this has not been modified during the
study. Healthy controls were only tested once, which
limits comparisons due to an order effect in the experi-
mental condition.

Conclusions
We suggest two plausible main mechanisms that might

underlie these and our previous observations. We have
previously shown that STN DBS enhances reflection
impulsivity and delay discounting and decreases risk
taking to rewards in the same population, an effect we
suggested may be related to enhanced evidence accumu-
lation in the context of conflict33,34. We did not show any
relationship in our current findings with our previous
findings on decisional impulsivity or risk taking33,34.
However, since we observed a change only in low valence
stimuli, our findings may similarly be related to a specific
effect of STN DBS on greater competing interpretation
alternatives and hence greater conflict56. That the direc-
tion of effect is an enhancement in positive intensity is in
keeping with previous reports of STN DBS impairing
negative emotion recognition and enhancing positive or
decreasing negative intensity ratings. We have also

previously reported dissociable findings on risk taking to
rewards and losses with STN DBS influencing decreased
risk taking to rewards and impairing discrimination of
loss magnitude. In the latter, we suggested that impaired
discrimination of loss magnitude may be specifically
related to STN DBS influencing the indirect NoGo
pathway mediated via low affinity D2 receptors34. Thus,
STN DBS may impair subjective discrimination of nega-
tive value and recognition of negative affect and here we
show a specific shift towards more subjective positive
valence attribution away from negative. Whether the
impairment may be specific to negative valence and value,
or have an additional separate effect on positive valence is
not clear. In either case, this will shift the cost–benefit
analysis.
In conclusion, our findings support the ‘tuner' role of

STN in emotional processing by decreasing the negative
appraisal of low valence stimuli in OCD. These findings
highlight potential mechanisms involved in the ther-
apeutic benefit of STN DBS in OCD and suggesting its
putative application in resistant major depression
disorder.
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