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Abstract 

Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated 
epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with 
DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations 
between DNA methylation and BMI through two different methods across 15 cancer types, at 
approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After 
comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially 
methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and 
uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or 
UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used 
as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) 
in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In 
UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. 
Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and 
UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC 
prognosis. 
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Introduction 
Body mass index (BMI) is the most widely used 

measurement of adiposity, which is an established 
risk factor for various diseases, including type 2 
diabetes, cardiovascular disease, metabolic disturban-
ces, and cancers 1-3. High BMI (25 kg/m2 or greater), 
including overweight and obesity, contribute to 
cancer incidence and death across a broad range of 
cancers 4,5. High BMI affects the majority of the adult 

population in most developed countries, and its 
prevalence is increasing rapidly in developing 
countries. If the current worldwide trends continue, 
the number of people with obesity will reach nearly 
2.0 billion by 2025 6. In addition, the prevalence of 
cancer has increased in parallel with obesity 7. In the 
period between 1982 and 2012, a quarter of the cancer 
cases could be attributed to high BMI 8. Overall, high 
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BMI is likely one of the drivers for the increasing 
incidences of cancer. 

Numerous genome-wide association studies 
between single nucleotide polymorphisms (SNPs) 
and BMI have allowed for a better understanding of 
the biological basis of high BMI resulting in diseases 
9,10. A study on pancreatic cancer found that the 
inflammatory NF-κB–mediated chemokine signaling 
pathway was associated with obesity, and contribute 
to a risk for pancreatic cancer 11. Another study 
revealed that 7 BMI-associated SNPs located in 8 
obesity-related genes were significantly associated 
with a risk for endometrial cancer 12. Similarly, SNPs 
in genes known to be associated with metabolism and 
obesity are relevant to prostate cancer 13. These 
findings suggest that high BMI associated with 
multiple genes and can influence various biological 
pathways, thus contributing to the susceptibility of 
complex human cancers. 

Further advances in genomic technologies have 
brought epigenome-wide association studies (EWAS) 
to focus on improving the understanding of 
epigenetic alterations that are associated with diseases 
14. DNA methylation modulation, a well-known and 
critical regulation level of epigenetic machinery, is 
easily susceptible to environmental factors 15-17. Unlike 
stable and conserved genetic variants, epigenetic 
processes are highly dynamic during an individual’s 
lifetime, which has attracted much attention to the 
study of DNA methylation 18. Increasing evidences for 
DNA methylation sites in relation to high BMI 
support the hypothesis that altered DNA methylation 
of metabolically important genes are mediated by 
adiposity in human blood 3,19,20. Moreover, alterations 
in DNA methylation are consequences of adiposity 
rather than the trigger 3. 

Changes in DNA methylation can indeed be 
implicated in the initiation and progression of 
neoplasm 21. Sirtuin 1, a gene related to epigenetic 
silencing, links obesity to cancer, and also plays a role 
in colorectal cancer development, suggesting that 
obesity-related epigenetic changes may be an 
important determinant in colorectal cancer 22. DNA 
methylation patterns that link high BMI to cancer 
development appear to be predictable, however, they 
are not well understood. Furthermore, a previous 
study that analyzed 345 breast tumor samples has also 
shown an association between BMI and DNA 
methylation in tumor tissues 23. The publicly available 
Cancer Genome Atlas (TCGA) has provided large- 
scale genome sequencing data alongside clinical 
features for over 30 human tumors, which allows 
researchers to systematically study possible interact-
ions between epigenetic changes induced by high BMI 
and cancer risk 24. In this study, we examined genome- 

wide DNA methylation profiles in tumor tissues to 
investigate whether BMI levels change and whether 
these changes were associated with a high BMI. 
Understanding the epigenetic molecular links may 
provide an avenue for diagnostic and therapeutic 
strategies. 

Materials and Methods  
The data from The Cancer Genome Atlas  

We downloaded patients’ clinical information 
from the Broad GDAC Firehose (http://gdac.broad 
institute.org/) and selected 15 types of cancers with 
the patients’ weight and height information at 
diagnosis to estimate individual BMI values as weight 
in kilograms divided by the square of height in 
meters. These cancers include bladder urothelial 
carcinoma (BLCA), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), cholangio-
carcinoma (CHOL), colon adenocarcinoma (COAD), 
lymphoid neoplasm diffuse large B-cell lymphoma 
(DLBC), esophageal adenocarcinoma (EAC), esopha-
geal squamous cell carcinoma (ESCC), kidney renal 
papillary cell carcinoma (KIRP), liver hepatocellular 
carcinoma (LIHC), rectum adenocarcinoma (READ), 
skin cutaneous melanoma (SKCM), thymoma 
(THYM), uterine corpus endometrial carcinoma 
(UCEC), uterine carcinosarcoma (UCS), and uveal 
Melanoma (UVM). Patients without definitive 
information of age or race were excluded. The Human 
methylation450 BeadChip datasets (level three) 25 
were also downloaded from the Broad GDAC 
Firehose.  

Identification of CpG probes associated with 
BMI 

For adults, BMI was classified according to 
World Health Organization (WHO) definitions as 
underweight (BMI < 18.5), normal weight (18.5 ≤ BMI 
< 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 
30). In the initial analysis, BMI was used as a 
categorical variable by dividing the samples into two 
groups: control BMI subjects (BMI < 25) and high BMI 
subjects (25 ≥ BMI). Since the four clinical indicators, 
including age, gender, race and tissue source site, 
were all provided in the 15 cancers, and three (age, 
gender and race) of them had been reported to be 
associated with BMI and DNA methylation 26-29, we 
included the four variables into linear models. After 
adjusting for age, gender, race, and tissue source site, 
differentially methylated CpG probes between two 
groups were identified using the linear models for 
microarray data (limma) package (default), which 
uses linear models to assess differential methylation, 
whereby information is shared across probes 30. 
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Differentially methylated CpG sites (DMSs) were 
identified if the resulting adjusted P-value was < 0.05. 
The Benjamini-Hochberg method 31 was used to adjust 
the P-values and ensure that the False Discovery Rate 
(FDR) was < 0.05. In the second analysis, BMI was not 
normally distributed in any cancers and therefore was 
transformed by rank normalization, which was 
performed using the rntransform function in the R 
GenABEL package 32. The Lillie test in nortest 
package, a modification of the Kolmogorov-Smirnov 
test, was used to determine whether the data were 
normally distributed. Multivariable linear regression 
of normalize-transformed BMI with methylation level 
at each CpG probe was adjusted for gender, age, race, 
and tissue source site. 

Pathway enrichment analysis  
To evaluate the functional relevance of DMSs, a 

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis for genes 
involved in DMSs was performed using the Database 
for Annotation, Visualization and Integrated 
Discovery (DAVID) software 33. The significant 
enrichment pathways were identified with P < 0.05. 

Statistical analysis 
Statistical analyses were performed using the R 

software. The survival difference between patient 

groups was analyzed using the Kaplan-Meier and 
log-rank test function in survival package. The 
methylation level was compared between two groups 
by the Wilcoxon rank test. Over- or under- 
representation of the CpGs were determined using 
the chi-square test. P values less than 0.05 were 
considered statistically significant. 

Results 
The characteristics of the TCGA samples 
analyzed 

To characterize the specific genome-wide DNA 
methylation profile that is associated with BMI in 
cancers, we chose 15 publically available cancer 
datasets from TCGA (Table 1 and Table S1). Totally, 
there are 2415 samples including 883 control BMI 
samples and 1532 high BMI samples. The average age 
ranged from 48.4 to 69.6 years old, and the average 
BMI ranged from 22.6 to 34.4 kg/m2. After adjusting 
for age, race, gender, and tissue source site, we firstly 
treated BMI as a categorical measure, and performed 
DMSs analyses between high and control BMIs for 
each cancer through limma package. Secondly, we 
treated BMI as a continuous measure, and identified 
BMI-associated methylated sites (BMSs) using the 
multivariable linear regression models (Fig. 1). 

 

 
Figure 1. Flow chart indicating study design. 
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Genome-wide methylation differences in high 
and control BMI 

High BMI has an increased risk for cancers 34. To 
gain insight into the association between high BMI 
and DNA methylation, we used 25 kg/m2 as a cutoff 
threshold to divide high BMI and control cases (Table 
1). We separately examined DNA methylation levels 
between the two groups across the 15 types of cancers. 
In COAD, the average global DNA methylation levels 
in high BMI cases (β value = 0.46) were significantly 
lower than the control cases (β value = 0.47) (P = 
0.0024). None of other cancers displayed a statistical 
significance (Fig. 2a). Using limma method and a FDR 
value of < 0.05 as the significance cut-off value for 
downstream analyses, we identified 3, 1169, and 394 
DMSs in CHOL, COAD (Table S2), and UCEC (Table 
S3), respectively. There were no DMSs in the other 12 
cancers. 3 DMSs in CHOL included cg26987376 that 
was located at an intergenic region, cg21515384 that 
was located at 200 bp upstream of the transcription 
start site (TSS200) of the 3-oxoacid CoA-transferase 1 
(OXCT1), and cg02725055 that was located at 1500 bp 
upstream of the transcriptional start site (TSS1500) of 
the transcription factor 4 (TCF4). Furthermore, 
OXCT1 plays important roles in ketone and fatty acid 
metabolism 35. TCF4 (also known as TCF7L2) is also 
identified to be a possible determinant of type 2 
diabetes mellitus and is a transcription factor of the 
Wnt signaling pathway, which also plays a crucial 

role in insulin secretion and proglucagon gene 
expression 36,37.  

 

Table 1. The characteristics of eligible TCGA samples 

Cancer 
types 

Age 
(years) 

Races Gender (% 
male) 

BMI 
(kg/m2) 

No. 
Control 
BMI  

No. 
High 
BMI 

BLCA 67.8 
(10.5) 

a(284); b(43); 
c(18) 

75% 27.1 (6.3) 142 203 

CESC 48.4 
(13.5) 

a(189);b(19); 
c(23); d(7); e(1) 

0% 28.4 (7.8) 89 150 

CHOL 63.4 
(12.8) 

a(30);b(3); 
c(2) 

45.7% 28.0 (5.3) 10 25 

COAD 64.4 
(13.1) 

a(164);b(8); 
c(51);d(1) 

54% 29.4 (17.4) 75 149 

DLBC 56.3 
(13.9) 

a(29);b(18); 
c(1) 

45.8% 25.9 (5.9) 25 23 

ESCC 58.7 
(10.5) 

a(41);b(44); 
c(3) 

85.2% 22.6 (3.4) 70 18 

EAC 66.6 
(11.8) 

a(66);b(1) 88.1% 28.6 (6.4) 16 51 

KIRP 61.7 
(12.0) 

a(152);b(4); 
c(39);d(1) 

74.5% 32.1 (32.8) 47 149 

LIHC 59.1 
(12.9) 

a(159);b(157) 
c(14);d(1) 

68.6% 26.1 (8.5) 175 156 

READ 61.1 
(11.5) 

a(62);c(5) 59.7% 27.2 (5.8) 18 49 

SKCM 59.4 
(15.3) 

a(227);b(11); 
c(1) 

59.0% 28.0 (6.1) 79 160 

THYM 58.8 
(12.9) 

a(83);b(12); 
c(3) 

52.0% 27.2 (6.03) 38 60 

UCEC 64.0 
(11.0) 

a(275);b(87); 
c(8);d(2);e(7) 

0% 34.4 (13.0) 65 314 

UCS 69.6 
(9.22) 

a(40);b(3); 
c(8) 

0% 29.6 (9.03) 17 34 

UVM 61.3 
(13.7) 

a(53) 52.8% 28.7 (8.9) 17 36 

Abbreviations: a, White; b, Asian; c, Black or African American; d, American 
indian or Alaska native; e, Native hawaiian or other pacific islander. For age and 
BMI, data are mean (Standard Error). For race, data are race names (number).  

 

 
Figure 2. Analysis of differences in genomic DNA methylation levels in cases of high body mass index (BMI) and controls. (A) The differences in genomic DNA methylation levels 
in 15 cancer types. (B) Volcano plot showing the distribution of CpG sites from the site-level test assessed by methylation differences and FDR values. CpGs in blue indicate a FDR 
< 0.05. (C) Significant differences in the genomic distributions of the differentially methylated CpGs regarding the CpG context and the gene region, compared with all analyzed 
sites on the Infinium HumanMethylation450 BeadChip, by chi-square test. (* p < 0.05; ** p < 0.01; *** p < 0.001; N_Shelf, North Shelf; S_Shelf, South Shelf; N_Shore, North 
Shore; S_ Shore, South Shore). 
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 Among the 1169 DMSs identified in COAD, 
1168 DMSs exhibited low methylation levels, and a 
single DMS exhibited high methylation level in 
patients with high BMIs (Fig. 2b). Compared to all of 
the analyzed sites, the DMSs were underrepresented 
in the promoter regions, including the TSS1500, 
TSS200, 5’ untranslated regions (5’ UTR), and 1st 
exons, but were overrepresented in the gene body and 
intergenic regions (Fig. 2c). Regarding the CpG 
context, the 1169 DMSs were significantly 
overrepresented in the CpG islands and DNA regions 
within 2 kb of the CpG islands (North Shore and 
South Shore). Additionally, the genomic regions 
outside the CpG islands and their 2 kb flanking 
regions were underrepresented. The 394 DMSs 
identified in samples of high BMI in UCEC consisted 
of 128 hypomethylated CpGs and 266 
hypermethylated CpGs. These DMSs were 
significantly overrepresented in the gene body 
regions and underrepresented in the TSS200 and 1st 
exons. Regarding the CpG context, the DNA regions 2 
kb outside of the CpG islands were overrepresented 
and the North Shore and CpG island regions were 
observed to be underrepresented (Fig. 2c), suggesting 
that altered methylated regions for high BMI are 
clearly tumor- or tissue-specific. 

Biological pathways analysis 
To understand the functions of DMSs-containing 

genes, we performed a functional enrichment analysis 
using the DAVID software 33. In COAD, 1168 DMSs 
corresponded to 449 unique genes. KEGG pathway 
analysis provided significant enrichment in 20 
pathways (P < 0.05), including numerous biological 
processes pertinent to cancer, such as the 
phosphatidylinositol 3-kinase (PI3K)/Akt and hippo 
signaling pathways (Fig. 3a). Interestingly, type II 
diabetes mellitus which has been reported to be 
associated with an excess risk of colorectal cancer 38, 
was also included. Tenascin XB, encoding a member 
of the tenascin family of extracellular matrix (ECM) 
glycoproteins 39, had 23 CpGs with high methylation 
and was involved in pathways of PI3K-Akt signaling, 
focal adhesion, and ECM-receptor interaction. 
Collagen type genes of the three pathways were also 
subject to methylation in certain CpGs. It is clear that 
the ECM plays an important role in adipocyte 
development and function and as such in lipid 
metabolism, weight regulation, and obesity 39. 116 
DMSs enriched in pathways mostly located at the 
gene body regions of their genes (Table S4). We did 
not identify any significant correlation between these 
DMSs and their genes in COAD, probably due to that 
there were 19 overlapping samples between 
transcriptome and methylome. In UCEC, 394 DMSs 

corresponded to 253 unique genes, which were 
involved in focal adhesion, rap 1 signaling pathway, 
bladder cancer, platelet activation, GnRH signaling 
pathway, estrogen signaling pathway, proteoglycans 
in cancer, and endocytosis (P < 0.05) (Fig. 3b). Nearly 
all of these pathways included the epidermal growth 
factor receptor (EGFR), SRC proto-oncogene, and 
non-receptor tyrosine kinase, were reported to be 
drivers of tumorigenesis 40,41. 31 DMSs enriched in 
pathways mostly located at the gene body regions of 
their genes (Table S5). Among them, 4 DMSs 
(cg01222719, cg17307474, cg22187246, cg11209289) in 
gene body regions and 4 DMSs (cg00130530, 
cg23410129, cg12726213, cg26033529) in promoter 
regions, were negatively correlated with their 
corresponding genes (Table S5).  

Epigenome-wide association study through 
multivariable linear regression model 

Next, to investigate whether or not there was a 
correlation between BMI and DNA methylation in 
cancers, BMI was used as a continuous measure, and 
EWASs were performed between CpG sites and BMI 
using FDR < 0.05 as the cutoff threshold. We 
identified 1 BMS in CHOL and COAD, respectively, 
whereas we found 113 BMSs in UCEC (Table S6). 
However, we were unable to identify any significant 
BMSs in the other 12 cancers that were investigated. 
The identified BMSs included cg04545963 (β = 0.680, 
FDR = 0.024) located in NF-κB inhibitor alpha 
(NFKBIA) in CHOL and cg15542880 (β = -0.082, FDR 
= 0.020) located in dual serine/threonine and tyrosine 
protein kinase (DSTYK) in COAD. Moreover, the 
identified 113 BMSs in UCEC were annotated to 84 
unique genes, and approximately 32% of the BMSs 
showed a positive correlation to BMI (Table S6). The 
genomic location revealed that 113 BMSs were 
distributed among 19 chromosomes except for 
chromosomes 9, 14, and 20 (Fig. 4). Some BMSs were 
located at genes involved with metabolically relevant 
events. For example, UDP glucuronosyltransferase 
family 2 member B15 (UGT2B15) was known as a 
member of the UDP-glucuronosyltransferases 
superfamily catalyzing the conjugation of various 
lipid-soluble endogenous substances and xenobiotics 
with the glucuronic acid moiety UDP-glucuronic acid 
42. SRY-box 6 (SOX6), a transcription factor, has been 
linked to the regulation of the expressions of key 
adipogenic regulators as well as synergy with 
epigenetic pathways involving mesoderm-specific 
transcript genes that are associated with adipocyte 
size 43. Meanwhile, a SNP in SOX6 gene, rs297325, 
located 0.22 Mb downstream of cg21992400 (β = 
-0.088, FDR < 0.05), has been identified to associate 
with the risk of both BMI and endometrial cancer 12. 
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Among the 84 genes, tumor-related genes were also 
found, such as T-box 2 44, discoidin domain receptor 
tyrosine kinase 1 45, and lysine acetyltransferase 6A 46. 

These results further supported the findings that BMI 
is associated with DNA methylation profiles in 
CHOL, COAD, and UCEC. 

 

 
Figure 3. Bar graph showing significant KEGG pathways of genes involving with differentially methylated CpGs. (A) Biological pathways in COAD; (B) Biological pathways in 
UCEC. 

 
Figure 4. Circos plot of the epigenome-wide association of DNA methylation in UCEC with body mass index (BMI). Results are presented as CpG-specific association test 
results (-log10 (FDR)) ordered by genomic position. Green symbols, CpGs positively associated with BMI; Red symbols, CpGs negatively associated with BMI; Chromosome 
numbers are shown on the inner ring. Tick marks on the outer ring identify the genomic locis reaching epigenome-wide significance. The genes located by the 113 locis are listed 
around the circos plot. 
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Figure 5. Analysis of body mass index (BMI)-associated CpGs during the survival initiation, stage, and progression of CHOL, COAD, and UCEC. (A) Kaplan-Meier survival 
analysis. The patients were divided into low and high groups using the median cutoff value of DNA methylated levels for the 6 BMI-associated CpGs, respectively. HR, hazard 
ratio. (B) The methylation levels of BMI-associated CpGs in the initiation and progression of the three cancers (* p < 0.05, ** p < 0.01, *** p < 0.001, no represents statistically 
insignificant). 

 

BMSs in UCEC implicated to tumor 
progression and patient survival 

Using the more stringent Bonferroni correction 
for multiple testing (Bonferroni-corrected P < 0.05) in 
the analyses of multivariable linear regression 
models, cg04545963 in CHOL and cg15542880 in 
COAD were still significantly associated with BMI. 
However, in UCEC, the number of significant BMSs 
was markedly reduced, and only 4 BMSs remained, 
including cg12645852 (β = -0.107, Bonferroni- 
corrected P = 5.85E-04) located in an intergenic region, 
cg09621472 (β = -0.107, Bonferroni-corrected P = 0.018) 
located in NatE catalytic subunit of N (alpha)- 
acetyltransferase 50 (NAA50), cg27131667 (β = -0.198, 
Bonferroni-corrected P = 0.028) located in spastic 
paraplegia 7 (SPG7), and cg14044785 (β = -0.116, 
Bonferroni-corrected P = 0.041) located in thyroid 
adenoma associated (THADA). Of these 4 BMSs, 
cg12645852, cg09621472, and cg14044785 in patients 
with high BMI in UCEC had significant hypomethyl-
ation when compared to controls.  

BMI is a prognostic factor in patients with 
cancer. Bladder cancer and colorectal cancer show 
lower mortality in patients with higher BMI values 47. 
However, the increase of BMI at an older age is 

associated with a lower overall survival time in 
patients with pancreatic cancer 48. To explore whether 
BMS can also predict tumor survival outcome, based 
on these stringent BMSs, we therefore respectively 
categorized the study cases into low and high levels 
according to the median of methylation levels of these 
6 BMSs and subsequently performed Kaplan-Meier 
and Log-rank test. With regards to methylation status, 
cg04545963 in CHOL, cg15542880 in COAD, and 
cg12645852 in UCEC did not significantly affect the 
patient survival rates (Fig. 5a). For cg09621472, 
cg27131667, cg14044785, patients with UCEC with 
low methylated levels had improved survival rates 
when compared with those who had high methylated 
levels (P = 0.0008, 0.0248, 0.0109, respectively, Fig. 5a), 
suggesting that cg09621472, cg27131667, and 
cg14044785 could be used as potential biomarkers for 
predicting survival outcomes of patients with UCEC. 

Furthermore, analyses were performed to 
investigate whether these BMSs had implications in 
tumor initiation and progression. The methylation 
status of cg04545963 was not significantly associated 
with the initiation and grade of CHOL, and neither 
was cg15542880 in COAD (Fig. 5b). We found that, in 
adjacent tissue, the methylation levels of cg12645852 
and cg27131667 were significantly higher than tumor 
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tissue of the early stages (grade 1) from UCEC. 
However, for cg09621472, cg27131667, and 
cg14044785, the methylation levels in adjacent tissues 
were lower than those of tumor tissues (Fig. 5b). 
Interestingly, with advancing tumor grade, the 
methylation levels of the 4 BMSs in UCEC 
significantly increased and displayed the most 
notable increase from grade 2 to grade 3 (all P < 
0.0001, the different β values between the two grades 
are 0.1598, 0.2135, 0.0883, 0.1447, respectively). 
Furthermore, their high methylation levels were also 
associated with other advanced clinical tumor 
parameters, including tumor invasion percentage, 
clinical stage, and histologic diagnosis type (Table S7). 
The dataset of GSE67116 49 from the GEO database 
showed higher methylation levels of cg09621472 (P < 
0.001) and cg27131667 (P = 0.014) in 33 patients with 
endometrial metastasis cancer relative to 53 patients 
with endometrial primary cancer. These data 
suggested that cg12645852, cg09621472, cg27131667, 
and cg14044785 may be associated with the effect of 
BMI on UCEC advancement. 

Discussions 
In this study, we characterized the genome-wide 

DNA methylation profiles associated with BMI in 15 
cancer types by modeling BMI first as a categorical 
variable and then as a continuous variable. The two 
analyses consistently showed that the dynamic 
features of DNA methylation in the three known 
obesity-related cancers (CHOL, COAD, and UCEC) 

50,51 associated with BMI, but not in the other 12 major 
cancers.  

The observed hypomethylation patterns in 
COAD with high BMI is predominant, indicating that 
high BMI cases with COAD may regulate gene 
expression through the attenuation of DNA 
methylation. These genes containing DMSs play roles 
in the pathogenesis of colorectal cancer (e.g. DCC 
netrin 1 receptor; netrin 1; Wnt family member 3A; 
Wnt family member 5A; receptor tyrosine kinase like 
orphan receptor 2; RAR related orphan receptor A) 
52-57. Most genes with DMSs enrichment were in the 
PI3K-AKT signaling pathway, an intercellular 
signaling pathway responsible for carcinogenesis and 
metastasis of many cancers 58. This finding is 
consistent with a previous report showing that the 
PI3K-AKT signaling pathway links obesity risk factors 
and colon carcinogenesis processes 59. In obesity cases, 
increased levels of blood insulin, insulin-like growth 
factor I, leptin, tumor necrosis factor, and interleukin 
6, and decreased levels of adiponectin activate the 
PI3K-AKT signal pathway, further activating 
downstream signals for cell survival, cell growth and 
cell cycle, and ultimately resulting in cancer 

development. Alterations in DNA methylation also 
respond to adiposity 3, therefore, in COAD, high BMI 
inhibits methylation of PI3K-AKT signaling pathway 
genes, which in turn may activate the pathway and 
the development of COAD. Another noteworthy 
pathway is that for type II diabetes. Adipose tissue of 
obesity cases releases various factors, such as 
non-esterified fatty acids and pro-inflammatory 
cytokines, which could contribute to development of 
insulin resistance and perturb β-cell function, thus 
resulting in type II diabetes 2. This disease plays an 
important role in the pathogenesis of colon 
adenocarcinoma. Moreover, epidemiologic studies 
were directed at providing a consistent association 
and several shared genetic factors between type II 
diabetes and subsequent risk of colon cancer 38,60,61. 
We identified, in patients with COAD and high BMI, 
significant hypomethylation of type II diabetes 
pathway genes, thus supporting the possibility that 
an alteration in this pathway may result in the 
induction of DNA methylation, and that a high BMI 
may have an important role in some of the 
downstream effects of COAD development. Even 
though the other 18 biological pathways in COAD 
linking obesity to cancer have not been reported, these 
pathways allow us to examine whether DNA 
methylation alterations due to high BMI have effects 
on colon cancer, particularly in case of cancer-related 
pathways such as the Hippo signaling pathway and 
cAMP signaling pathway and in ECM-receptor 
interaction. High BMI cases in UCEC also present 
methylation differences in comparison with controls. 
Some DMSs were located at genes involved in the 
development of UCEC (e.g. EGFR; kinase suppressor 
of ras 1; metastasis associated 1; syndecan 1; secreted 
protein acidic and cysteine rich) 62-66. Increased 
platelet activity is mainly related to reactive oxygen 
species and inflammation adipokines as well as a 
reduced sensitivity to insulin 67. Obesity drives 
adipose inflammation, leading to induction of 
aromatase and increased estrogen signaling in 
adipose depots 68. These results indicated that high 
BMI may contributes to modulation of two pathways 
involved in platelet activation and estrogen signaling 
as a result of DNA methylation in UCEC. These 
pathways could provide guidance for further 
understanding the effects of high BMI on the 
development of cancer.  

When BMI was used as a continuous measure in 
the EWAS with a strict Bonferroni correction (P < 0.05), 
methylation alterations were identified in the genes 
including NFKBIA, DSTYK, NAA50, SPG7, and 
THADA. These genes are highly associated with 
human disease susceptibility 69-81, but associations of 
DNA methylation among them have not been 
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reported. Additionally, BMI-associated CpGs located 
in NAA50, SPG7, and THADA among UCEC tumor 
tissues are significantly associated with the survival 
time and tumor progression of this cancer, indicating 
that BMI may encourage the role of tumor mechanism 
through controlling DNA methylation. Intensive 
epigenetic studies have demonstrated a causal 
relationship between high BMI or obesity and altered 
epigenetic regulation in a great deal of metabolically 
important genes or regions 3,19,20,82. Although results of 
this study reveal that there are no major changes in 
metabolic processes, the discordance may be 
interpreted by tissue heterogeneity and tissue-specific 
patterns of DNA methylation. This deduction is 
consistent with previous reports showing that DNA 
methylation in HIF3A was associated with BMI in 
white blood cells and adipose tissue, but not in breast 
tumor tissue 20,23,83. Furthermore, most studies have 
previously focused on blood or adipose tissue that are 
metabolically active; however, this cannot be used to 
reflect epigenetic patterns of other tissues. In another 
study using breast tumor tissue, obesity was shown to 
influence the methylation of some cancer-relevant 
genes and pathways involved in carcinogenesis 23. 
The use of human primary tumor tissues in our study 
from 15 tumor types exclusive of the breast cancer 
significantly revealed new information. Thus, we 
demonstrated that high BMI may induce metabolic 
perturbations, leading to alterations in DNA 
methylation in cancer development-related and 
obesity-induced pathways in primary tumor tissues of 
CHOL, COAD, and UCEC.  

Excluding the overweight group, we also 
analyzed the methylation differences between obese 
and control BMI of cancer patients (Table S8). The 
result suggested that the cutoff values of BMI 
influence the methylation differences. Removal of the 
overweight group resulted in detections of DMSs 
(Table S8). TCGA dataset is heterogeneous and lack of 
unified information parameters (e.g., the history of 
smoking and drinking, etc.) in the subjects examined. 
This may be the reason why BMI-associated 
methylation patterns were not determined in the 
other 12 tumors. We further analyzed regression 
association analysis between BMI and DNA 
methylation in adjacent tissues from CHOL, COAD, 
UCEC, but failed to identify any significant BMSs. 
Further investigations may be needed when more 
samples become available in the future. In addition, 
DMS outcomes might be inadequately estimated in 
gene expression because the number of the 
overlapping samples between transcriptome and 
methylome was low. BMI grouping is possible and it 
can minimize the possible bias due to an 
underestimation of weight. However, BMI grouping 

obscures detection of possible correlations at 
within-group level. Instead, the BMI is a continuous 
variable in TCGA dataset, allowing the identifications 
of significant CpGs with the considerations of 
common confounders (age, gender, race, tissue source 
site) via multiple linear regression. With larger 
datasets in the future, improvement may be made on 
specifying how independent variables are entered 
into a given linear regression modeling. More 
sophisticated models may be deployed to improve the 
analytical power too, because possibilities of lacking 
normal and/or random distributions of independent 
variables, as well as the linear validity between 
independent variables and BMI could reduce the 
statistical power of the linear regression model. 
Therefore, these BMI-associated methylation pattern 
still need to be validated by a large-scale clinical 
samples. 

Collectively, we systemically analyzed the 
association of BMI with genomic DNA methylation in 
tumor tissues. This study supports the view that 
changes in DNA methylation represent an 
intermediate step between the BMI and CHOL, 
COAD, or UCEC, which may in turn provide 
information for guiding treatment options for patients 
with CHOL, COAD, and UCEC with high BMIs. 
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