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A B S T R A C T   

Preprocessing choices present a particular challenge for researchers working with functional magnetic resonance 
imaging (fMRI) data from young children. Steps which have been shown to be important for mitigating head 
motion, such as censoring and global signal regression (GSR), remain controversial, and benchmarking studies 
comparing preprocessing pipelines have been conducted using resting data from older participants who tend to 
move less than young children. Here, we conducted benchmarking of fMRI preprocessing steps in a population 
with high head-motion, children aged 4–8 years, leveraging a unique longitudinal, passive viewing fMRI dataset. 
We systematically investigated combinations of global signal regression (GSR), volume censoring, and ICA- 
AROMA. Pipelines were compared using previously established metrics of noise removal as well as metrics 
sensitive to recovery of individual differences (i.e., connectome fingerprinting), and stimulus-evoked responses 
(i.e., intersubject correlations; ISC). We found that: 1) the most efficacious pipeline for both noise removal and 
information recovery included censoring, GSR, bandpass filtering, and head motion parameter (HMP) regression, 
2) ICA-AROMA performed similarly to HMP regression and did not obviate the need for censoring, 3) GSR had a 
minimal impact on connectome fingerprinting but improved ISC, and 4) the strictest censoring approaches 
reduced motion correlated edges but negatively impacted identifiability.   

1. Introduction 

Functional connectivity magnetic resonance imaging (FC-MRI) has 
become a popular tool for investigating functional brain development 
(Grayson and Fair, 2017; Ball et al., 2014; Marek et al., 2015) and 
brain-behavior associations in children (Rohr et al., 2017; Vanderwal 
et al., 2021; Fair et al., 2013). While FC-MRI identifies consistent FC 
patterns across individuals (Fox et al., 2005; Damoiseaux et al., 2006), it 
is highly sensitive to artifacts from physiological sources, such as heart 
rate and respiration, and head motion (Power et al., 2012; Satterthwaite 
et al., 2012; Van Dijk et al., 2012). This presents a particular challenge in 
fMRI studies that include young children as they have increased head 
motion in the scanner (Greene et al., 2018; Dosenbach et al., 2017) 

leading to systematic artifacts (Power et al., 2012; Fair et al., 2013). For 
this reason, developmental fMRI studies have struggled to collect usable 
resting state data from young children, and consequently have often 
excluded participants younger than seven (Vanderwal et al., 2019), with 
at least one large study revising their study protocol to omit the resting 
scan from children younger than six years of age due to difficulty in 
obtaining high-quality data (Alexander et al., 2017). 

To reduce head motion and increase compliance, early childhood FC- 
MRI studies are increasingly conducted using passive viewing tasks such 
as movies (Rohr et al., 2017; Vanderwal et al., 2019; Moraczewski et al., 
2018; Alexander et al., 2017; Reynolds et al., 2020). Movie watching 
significantly reduces head motion in participants younger than 10 years 
of age, with Greene et al. (2018) reporting a more than 70% reduction in 
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mean framewise displacement (FD). Importantly, FC networks derived 
from passive viewing paradigms have been shown to be globally similar 
to those derived from resting-state data (Bray et al., 2015; Greene et al., 
2018; Vanderwal et al., 2019). Despite these improvements, as in all 
FC-MRI studies, head motion noise remains a major concern, and noise 
mitigating preprocessing steps are essential to prepare data for analysis. 
Such steps involve tradeoffs, however, and remain widely debated 
(Murphy and Fox, 2017; Satterthwaite et al., 2019); there is currently no 
gold-standard preprocessing pipeline, for early childhood studies or 
otherwise. 

In response to the proliferation of preprocessing approaches (Carp, 
2012), several studies have compared the effectiveness of different 
pipelines (Churchill et al., 2017; Ciric et al., 2017; Parkes et al., 2018; 
Taymourtash et al., 2020; Kassinopoulos and Mitsis, 2021), but no study 
has specifically considered the impact of preprocessing steps on data 
from young children, which is important for several reasons. First, 
children move more than adults, even when implementing strategies 
such as passive viewing (Greene et al., 2018; Dosenbach et al., 2017), 
meaning that child datasets may be particularly sensitive to the impact 
of preprocessing choices. Further, smaller head size could alter the 
impact of rotational motion, and because GSR shows 
distance-dependent effects, this step warrants investigation in young 
children. Children also have faster respiratory and heart rates than 
adults (Fleming et al., 2011), which may alter the temporal character-
istics of physiological noise. Notably, physiological noise is not 
accounted for with quality control – functional connectivity (QC-FC), a 
widely used benchmarking metric that is specific to head motion (Sat-
terthwaite et al., 2013; Power et al., 2012). Impacts of physiological 
noise may be better assessed using metrics sensitive to information 
recovery. 

Common motion-correction strategies include regression of motion 
estimates, independent component analysis (ICA)-based approaches, 
regression of the global signal, censoring volumes of high FD, and 
temporal filtering. Regressing out motion estimates remains one of the 
most common denoising approaches (Satterthwaite et al., 2019). How-
ever, based on QC-FC benchmarks, Ciric et al. (2017) suggest that this 
approach is insufficient on its own and leads to concerns about losses in 
degrees of freedom. An alternative approach is to remove effects of head 
motion through ICA-based approaches, such as ICA-AROMA (Pruim 
et al., 2015), which decomposes data into components that reflect either 
brain activity or structured noise. ICA-AROMA automatically classifies 
components as noise using both temporal features (high frequency 
content, correlation with realignment parameters) and spatial features 
(near CSF or the edge of the brain) (Pruim et al., 2015). These structured 
noise components can then be regressed from the data (Thomas et al., 
2002). 

Global signal regression (GSR) is an often used but widely debated 
preprocessing step (Murphy and Fox, 2017; Chai et al., 2012; Gotts et al., 
2013). GSR is a simple and arguably effective (Ciric et al., 2017; Parkes 
et al., 2018) denoising technique, improving the specificity of positive 
correlations and showing results that are more consistent with 
anatomical connectivity (Fox et al., 2009). However, the use of GSR 
tends to increase the apparent strength of short-range connections while 
decreasing the apparent strength of long-range connections (Saad et al., 
2012; Ciric et al., 2017; Parkes et al., 2018), and creates 
anti-correlations which may not exist by effectively centering the con-
nectome (Aguirre et al., 1998). The global signal has been shown to 
temporally resemble established networks and significantly associates 
with behavioral data (Li et al., 2019), suggesting GSR should be used 
with caution as it may remove signal of interest in addition to noise. 

To mitigate the effect of specific motion contaminated volumes, it 
has become common to either remove, or interpolate over, specific time 
points by censoring or ‘scrubbing’ (Power et al., 2012). Despite efficacy 
in removing noise (Ciric et al., 2017) there are concerns with censoring, 
such as disrupting temporal autocorrelations, and leaving variable 
amounts of scan data between participants. Further, even if the number 

of censored volumes is matched across individuals, not all volumes are 
equally rich in information (Power et al., 2015). Censoring strategies 
vary widely across early childhood studies (Vanderwal et al., 2021; 
Miranda-Dominguez et al., 2018; Rohr et al., 2019; Fair et al., 2013) and 
it is unclear which level of censoring optimizes the recovery of 
individual-specific FC information. 

A further step to consider is temporal filtering, as fMRI signals at both 
very low frequencies (under 0.01 Hz) and high frequencies (above 0.1 
Hz) are variably filtered out to remove noise (Satterthwaite et al., 2013). 
It has been suggested that filtering above 0.1 Hz may also be removing 
connectivity information (Niazy et al., 2011), or artificially increasing 
correlations by introducing sample dependence (Davey et al., 2013), 
leading to concerns regarding the appropriateness of a bandpass filter 
compared to a highpass filter (Satterthwaite et al., 2019). 

Ciric et al. (2017) speculated that aggressive preprocessing choices 
could be removing both signal and noise, improving outcomes on met-
rics sensitive to noise removed, such as QC-FC, but in the process 
reducing sensitivity to individual differences. Intra-class correlation 
(ICC; Shrout and Fleiss, 1979) is a commonly used measure of test-retest 
reliability, and has been used as a preprocessing benchmark of signal 
retention after preprocessing (Parkes et al., 2018; Kassinopoulos and 
Mitsis, 2021). However, both Parkes et al. (2018) and Kassinopoulos and 
Mitsis (2021) counter intuitively found that pipelines with poor 
denoising had higher ICC, suggesting higher reliability with less 
denoising. An alternative metric that provides information about 
individual-specific information remaining or recovered following pre-
processing is functional connectome fingerprinting (Finn et al., 2015; 
subsequently referred to simply as “fingerprinting”), which aims to 
match scans from the same participant based on connectome similarity. 
Analysis of connectome individuality through fingerprinting has 
become popular in recent years, though how preprocessing affects FC 
information necessary for individual identifiability is not yet well 
understood. 

As there is no ground-truth in resting FC-MRI analyses, it has been 
suggested that preprocessing benchmark studies should ideally consider 
task-evoked effects to ensure that while noise is mitigated signal varia-
tion of interest is preserved (Bijsterbosch et al., 2021). Here we leverage 
the passive viewing task to assess how preprocessing choices impact 
functional responses to the video using temporal intersubject correlation 
(ISC; Hasson et al., 2004). ISC is calculated as the temporal signal cor-
relation between a given brain region across individuals during passive 
viewing of the same video stimulus. 

The aim of the present study is to extend previous pipeline bench-
marking studies (Ciric et al., 2017; Parkes et al., 2018) to passive 
viewing fMRI data from young children, while extending benchmarks 
beyond metrics sensitive to head motion, namely with the inclusion of 
ICC, fingerprinting, and ISC. As preprocessing steps likely have a larger 
impact in noisier samples, we also investigate whether preprocessing 
strategies are particularly efficacious depending on quantity of head 
motion by dividing scans into lower- and higher- motion groups. Our 
findings can support researchers conducting fMRI in early childhood 
samples to consider the tradeoffs and effectiveness of common pre-
processing steps. 

2. Methods 

2.1. Participants 

Data were collected as part of a longitudinal study of early childhood 
brain development (Dimond et al., 2020a, 2020b; Rohr et al., 2019, 
2017). Participants were recruited from the local community through 
advertisements and existing databases. All procedures were approved by 
the University of Calgary Conjoint Health Research Ethics Board. Par-
ents provided informed consent and children provided assent to 
participate. Participants were children between 4 and 7 years of age at 
baseline without any major health concerns. Children were excluded if 
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they had full-scale IQ more than 2 standard deviations below the stan-
dardized population mean of 100 on the Wechsler Preschool and Pri-
mary Scale of Intelligence – Fourth Edition, a history of 
neurodevelopmental or psychiatric disorders, or any neurological di-
agnoses. At the time the analyses for this study were initiated, 168 
participants had completed a baseline scan and of these 59 (15 male) 
had completed a 12-month follow-up scan. From the sample of partici-
pants with both baseline and follow-up data, participants were included 
if after volume-wise censoring of the fMRI data (described in more detail 
below), both scans retained at least 11 min of uncensored data. 56 of the 
59 children (14 male) reached this threshold, for a total of 112 scans 
used in the present study. 

2.2. Data collection 

MRI data were acquired on a 3 T GE MR750w MRI (Waukesha, WI) 
scanner using a 32-channel head coil, at the Alberta Children’s Hospital. 
fMRI was acquired during a passive-viewing task, where participants 
watched clips from a children’s television show (Elmo’s World) for 
1100 s. Prior to scans, children underwent a practice scan in an MRI 
simulator during which they watched the same video and practiced 
staying still. fMRI scans were collected using a gradient-echo EPI 
sequence (TR = 2.5 s, TE = 30 ms, FA = 70◦, voxel size 3.5 ×3.5 ×3.5 
mm3). An anatomical scan was acquired using a T1w 3D BRAVO 
sequence (TR = 6.764 ms, TE = 2.908 ms, FA = 10◦, voxel size 0.8 ×0.8 
×0.8 mm3). 

2.3. Higher- vs. lower-motion subgroups 

Preprocessing steps may impact data differently depending on the 
amount of contamination from motion or other sources. Low motion 
samples may see only modest improvements with more aggressive 
strategies such as censoring or GSR, whereas metrics derived from high 
motion samples will likely change more if, for example, a greater 
number of volumes are censored. Therefore, we consider here how 
preprocessing may differentially impact lower- and higher- motion 
scans. Towards this goal, after preprocessing pipelines were first 
compared using the whole sample of 112 scans, the 112 scans were 
median-split into two groups of 56 scans, based on average FD. The 
preprocessing pipelines were then separately compared for the higher- 
and lower-motion subgroups, using the metrics described below. 

2.4. First-stage preprocessing steps common across pipelines  

The following first-stage preprocessing steps were run on all scans, 
ahead of the specific pipeline variations tested here (described below). 
All preprocessing was carried out with custom Python scripts integrating 
Nipype functionality (version 1.1.5; Gorgolewski et al., 2011) using FSL 
version 6.0.0 (Smith et al., 2004), ANTs version 3.0.0.0 (Avants et al., 
2011), and AFNI version 18.3.03 (Cox, 1996). Scans from the same in-
dividual were preprocessed separately. Structural (T1w) images were 
preprocessed using ANTs, including bias field correction, brain extrac-
tion, and tissue segmentation. For generation of WM and CSF time 
courses for regression, tissue masks were eroded using AFNI (CSF eroded 
twice, WM eroded 7 times). 

Basic preprocessing for EPI data was as follows, largely following the 
procedure described by Ciric et al. (2018): a) FSL MCFLIRT to estimate 
head motion parameters (HMPs) and FD (Jenkinson et al., 2002). b) FSL 
slicetimer for slice time correction. c) FSL MCFLIRT for rigid body 
realignment. We followed the recommendation in Power et al. (2017) to 
estimate HMP on raw data but carry out slice time correction prior to 
rigid body realignment, necessitating two FSL MCFLIRT steps. d) FSL 
BET to skull-strip EPI images (Smith, 2002). e) ANTs Registration (Avants 
et al., 2011) to generate a transformation matrix to warp the EPI image 
to a study-specific EPI template. This template was produced based on 
the procedure described by Huang et al. (2010). Specifically, a 3D EPI 

reference image was taken from each fMRI scan, chosen as a volume of 
low motion approximately in the middle of the scan. These references 
were warped to MNI space, then averaged together and smoothed to 
create the final study-specific template. f) FSL FLIRT boundary-based 
registration (Jenkinson et al., 2002) was used to generate a trans-
formation matrix to warp the EPI image to the T1w image, then the 
inverse transformation matrix was used to warp tissue segmentations to 
functional image space. All preprocessing and confound mitigation steps 
were carried out in native space. g) A linear regression to remove the 
mean, linear trends, and quadratic trends from each voxel was con-
ducted. For pipelines that include censoring, time points marked for 
censoring were excluded from the model to calculate linear and 
quadratic trends. In pipelines that did not include censoring, all time 
points were included. 

2.5. Preprocessing pipelines 

After first-stage preprocessing, pipelines varied systematically in 
whether they used GSR, censoring, and ICA-AROMA, as shown in  
Table 1. For comparison, we also tested two minimal pipelines: M1, 
which included first-stage preprocessing and temporal filtering, but no 
nuisance regression, and M2, which included first-stage preprocessing, 
temporal filtering, and regression of the WM and the CSF time series. 

2.6. Additional preprocessing 

2.6.1. ICA-AROMA 
For pipelines I1 through I4, ICA-AROMA was applied immediately 

following the first-stage preprocessing steps described above. Given that 
this was a relatively high motion sample, we used ICA-AROMA’s 
aggressive denoising feature, where all variance associated with noise 
components are removed (Pruim et al., 2015), but otherwise default 
options. The ICA-AROMA code was modified to warp to MNI space via 
the ANTs transformation matrix rather than a FNIRT transformation. 

2.6.2. Temporal filtering 
For all pipelines, data were temporal bandpass filtered (0.01 – 0.08 

Hz) using a fast Fourier transform. For pipelines I1 through 14, this 
occurred following ICA-AROMA. For all other pipelines, this occurred 
immediately after first-stage preprocessing. In follow-up comparisons 
we tested the effect of a highpass filter; see Section 2.9.1. Filtering. To 
avoid reintroducing artifacts, HMPs were also filtered, and WM, CSF, 
and the global signal were calculated following temporal filtering 
(Lindquist et al., 2019). 

2.6.3. Nuisance regression 
Following filtering, nuisance regression was applied as part of all 

pipelines, with the exception of M1, which did not undergo further 
preprocessing. Excepting M1, all pipelines included WM + CSF regres-
sion. In pipelines R1 through R4 the six HMPs were regressed. Pipelines 

Table 1 
Preprocessing pipelines tested to compare effects of ICA-AROMA, global signal 
regression and censoring.  

Pipeline Primary motion 
artifact removal 

WM + CSF 
regression 

Global signal 
regression (GSR) 

Censoring 

M1 None    
M2 Yes   
R1 Regress head 

motion parameters 
(HMPs) 

Yes   
R2 Yes Yes  
R3 Yes  Yes 
R4 Yes Yes Yes 
I1 ICA-AROMA Yes   
I2 Yes Yes  
I3 Yes  Yes 
I4 Yes Yes Yes  
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R2, R4, I2 and I4 included GSR. For all nuisance parameters, both linear 
and quadratic terms, along with the first temporal derivative of those 
terms were regressed (i.e., 4 regressors per parameter). Censoring was 
carried out as part of the regression step for pipelines R3, R4, I3 and I4. 
As a default, we censored volumes above a FD threshold of 0.25 mm 
(based on FSL MCFLIRT, i.e., FDJenkinson as described in Ciric et al., 
2018), and censored only the identified frames. Varied censoring 
schemes were tested separately as described below. Pipelines are sum-
marized in Table 1. 

2.7. Connectome generation 

Following preprocessing, each scan was registered to the study spe-
cific template using the ANTs transformation matrix. Each voxel was 
then assigned to one of 325 nodes (regions) within the MIST 325 par-
cellation (Urchs et al., 2019). The mean time course was calculated for 
each node by averaging the time courses for all voxels within the node. 
The Pearson correlation between each pair of nodes was then calculated, 
generating 52,650 edges. Correlation values were Fisher z- transformed 
to better approximate a normal distribution. 

2.8. Pipeline comparison metrics 

2.8.1. Motion correlated edges (QC-FC) 
QC-FC was calculated using the approach described in Satterthwaite 

et al. (2013). Specifically, for each edge the correlation was calculated 
between average FD (as estimated from the first FSL MCFLIRT step) and 
edge strength, across all 112 scans. Due to the concern that pre-
processing steps such as GSR affect edges differently depending on the 
inter-node distance, we also assessed distance-dependent effects by 
plotting the edge strength-motion correlation vs. Euclidian inter-node 
distance for each edge (Satterthwaite et al., 2013). Inter-node distance 
was calculated as the Euclidian distance between the center of mass of 
the two nodes linked by a given edge, as defined by the MIST parcel-
lation. Three QC-FC metrics were extracted: (1) the percentage of edges 
correlated with head motion at a p-value < 0.05 uncorrected; (2) the 
mean of the absolute value of the correlation between head motion and 
edge strength; absolute value was used to assess the magnitude of the 
motion-effect, rather than the direction; and (3) QC-FC distance 
dependence as the correlation between edge strength-motion correla-
tion and Euclidian edge length. In theory, more effective preprocessing 
pipelines will lead to fewer edges significantly associating with head 
motion, and ideally this relationship would not depend on distance, such 
that across these three metrics, smaller values are considered better. 

2.8.2. Fingerprinting 
Pipelines that aggressively remove noise may also have the unde-

sirable side-effect of removing signal of interest (Ciric et al., 2017). We 
used functional connectome fingerprinting to determine whether in-
formation unique to an individual is reduced or amplified by 
noise-mitigation steps. Following the approach used by Finn et al. 
(2015) and related work (Byrge and Kennedy, 2019; Kaufmann et al., 
2017; Miranda-Dominguez et al., 2018), connectomes were vectorized, 
then correlated for each pair of scans. The fingerprinting match rate was 
calculated by determining how often a scan correlated most strongly 
with the second scan from the same individual, and dividing by the total 
number of scans (112). We expressed this as a percentage. For each scan 
we also calculated 1) group similarity, i.e., the mean correlation to a 
scan from another individual, 2) stability, i.e., the correlation between 
scans from the same person, and 3) individualization, the difference 
between stability and the highest correlation to a scan from another 
individual (nearest miss). Negative individualization scores reflect scans 
that did not successfully match. To assess whether pipelines affected 
associations with head motion, for each pipeline we regressed stability 
and individualization against head motion, calculating R2, the slope, 
and the intercept. For each individual, we used the higher of their scans’ 

two motion values for this analysis. 

2.8.3. Intra-class correlation (ICC) 
For each pipeline, we calculated the intra-class correlation (ICC; 

Shrout and Fleiss, 1979) of each edge as a measure of test-retest reli-
ability. ICC was calculated in two ways: 1) a between session ICC, where 
we used the two scans from each individual to calculate the 
within-subject mean square, and 2) a within-session (split-half) ICC for 
each participant’s first session, where each scan’s time series was split in 
two in order to calculate the within-subject mean square. For pipelines 
that included censoring, split-half time series were generated based on 
volumes retained after censoring. 

2.8.4. Intersubject correlation (ISC) 
We used intersubject correlation (ISC; Hasson et al., 2004) to assess 

whether stimulus-evoked activity is amplified or suppressed by 
noise-mitigation. Preprocessing pipelines that fail to adequately remove 
noise, or remove task-evoked signal, will have lower ISC values. ISC 
values were calculated as the temporal correlation between pairs of 
individuals for each node, and averaged across pairs. For pipelines that 
included censoring, we did not include time points that were censored 
for either scan in a given pair. ISC calculated on passive viewing fMRI 
are typically highest in visual and auditory regions (Hasson et al., 2004; 
Kauppi et al., 2010). For pipeline comparisons, we identified the 10 
nodes with the highest average ISC across all pipelines and averaged 
these generate a single ISC score for each scan for each pipeline. In 
addition to group-level ISC, we calculated the "intra-subject correlation", 
or the time series correlation between scans from the same participant. 

As noted above, scans were median-split into higher- and lower- 
motion subgroups. For ISC, when both of a participant’s scans were in 
the same subgroup, we only retained the more representative scan, i.e., 
the lower motion scan in the lower-motion subgroup, or the higher 
motion scan in the higher-motion subgroup. 

2.8.5. Intra-scan inter-pipeline correlation 
Preprocessing choices may have relatively large or relatively small 

effects on connectomes, and these may influence downstream analyses 
and convergence across studies. To assess the impact of preprocessing 
choices on FC estimates, for each scan we calculated the correlation 
between edge strengths across pipelines. These were Fisher z-trans-
formed, averaged across the 112 scans, then converted back to corre-
lations for ease of comparison. 

2.9. Follow-up comparisons 

2.9.1. Filtering 
In addition to the highpass filter applied as part of nearly all fMRI 

analyses, the use of a lowpass filter has become common as a noise 
mitigation step in FC-FMRI due to frequencies above approximately 0.1 
Hz being more highly associated with noise than signal of interest 
(Satterthwaite et al., 2019). However, this remains controversial, as 
connectivity information at higher frequencies will be lost (Niazy et al., 
2011). We therefore repeated benchmark comparisons using a highpass 
(>0.01 Hz) rather than a bandpass filter. All other preprocessing steps 
were identical. 

2.9.2. Varying censoring parameters 
We conducted an additional comparison focusing specifically on the 

effect of different censoring strategies. There is variation in thresholds 
used in the literature, with older studies generally using more lenient 
censoring relative to more recent work (Satterthwaite et al., 2019). 
There is also variation in the literature as to whether censoring a single 
volume per motion artifact (Satterthwaite et al., 2013) or censoring 
multiple volumes per motion artifact (Power et al., 2012) is preferred. 
Thresholding decisions are challenging because there is limited guid-
ance in early childhood samples. 
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We used pipeline R4 above, which performed well on all metrics, and 
modified the approach to censoring using 11 additional pipelines that 
varied in the censoring threshold and the volumes censored per motion 
artifact (Table 2). In pipelines that censored 3 volumes per motion 
artifact, we censored volumes immediately before and after any volume 
or series of volumes flagged for censoring. Similarly, for pipelines that 
censored 4 volumes per motion artifact, 1 vol prior and 2 volumes after 
the motion-contaminated volume(s) were censored. All 112 scans were 
included for these comparisons, even if stricter censoring caused scans to 
fall below the threshold of 11 min of uncensored data. 

2.10. Statistical Comparisons 

To statistically assess the impact of specific preprocessing steps, we 
compared pairs of pipelines that differed in their use of GSR, censoring, 
ICA-AROMA, or temporal filtering. For most analyses, pipelines were 
compared using paired samples t-tests with uncorrected p-values and 
Cohen’s d (mean difference ÷ standard deviation of the difference) re-
ported. For correlation-based metrics – namely QC-FC distance depen-
dence, individualization by motion, and stability by motion – we used 
Steiger’s test to assess whether correlations were statistically different. 
We note that because QC-FC and ICC analyses are edgewise comparisons 
(n = 52,650), while fingerprinting and ISC analyses are scanwise com-
parisons (n = 112), p-values are not directly comparable across metrics. 

3. Results 

3.1. Participant characteristics 

The mean age of participants at baseline was 5.47 years old (standard 
deviation: 0.76 years), and 6.52 for the second scan. Time from initial to 
follow up scan ranged from 0.88 to 1.19 years (mean: = 1.05 years, SD =
0.069 years). The average motion of our sample was high, with a mean 
average FD of 0.126 mm across all 112 scans (median average FD 0.095 
mm). For comparison, in a study of adolescents aged 8–23, the whole 
sample had a mean average FD of 0.062 mm, with lower- and higher- 
motion subgroups having a mean average FD of 0.029 mm and 0.097 
mm respectively (Satterthwaite et al., 2013). 

The correlation in average FD between scans from the same partic-
ipant was r = 0.18 (p = 0.19). While other studies found comparatively 
large within-subject FD correlation (Zeng et al., 2014), we attribute a 
smaller correlation to the long period of time between scans in a 
developing sample, where motion may be less trait-like. We used a linear 
mixed model to assess the correlation between age and mean FD and 
found a non-significant negative relationship (p = 0.186; Supplemental 
Fig. 1). 

For analyses in which scans were divided into two groups based on 

median head motion, the 56 low motion scans had a mean average FD of 
0.062 mm (range: 0.035–0.094 mm, std = 0.016 mm). The 56 high 
motion scans had a mean average FD of 0.191 mm (range: 0.097–0.506 
mm, std = 0.088 mm). Mean age at scan was similar across groups 
(lower-motion: 6.01 years, std = 0.920 years; higher-motion: 5.98 years, 
std = 0.935 years). For the higher- and lower-motion group ISC analysis, 
scans were divided into two groups based on median head motion, such 
that only one scan per individual was included in each group, resulting 
in a total of 40 scans per group. The lower-motion scans had a mean 
average FD of 0.059 mm (range: 0.035–0.092 mm, std = 0.016 mm). The 
higher-motion scans had a mean average FD of 0.202 mm (range: 
0.097–0.506 mm, std = 0.096 mm). Mean age at scan remained similar 
across groups (lower-motion: 6.13 years, std = 0.888 years; higher- 
motion: 6.03 years, std = 0.934 years). 

3.2. QC-FC 

Fig. 1a shows the percentage of edges significantly correlated with 
motion, ranging from 19% to 79%. In the minimally processed M1 
pipeline, the vast majority of edges were correlated with motion (79%). 
Regressing only WM and CSF (M2) reduced this to 44%. Both GSR and 
censoring further reduced the number of edges correlated with motion, 
and pipelines that paired these two steps had the smallest number of 
motion-associated edges (e.g., R1: 44% vs. R4: 19%). In general, ICA- 
AROMA pipelines fared better than comparable pipelines that 
regressed HMP, though the pipeline with the fewest QC-FC associated 
edges (R4 – regress HMP+GSR+censoring) did not use ICA-AROMA. 

Fig. 1b (Supplemental Table 1) shows the mean absolute correlation 
with motion for all edges. Here the same trends are observed, with a 
large motion effect in minimally processed data (M1) greatly reduced 
with the inclusion of regressing WM and CSF (M1: z = 0.375 vs. M2: 
z = 0.189, p ≈ 0, d = 0.88). Again, GSR and censoring further reduced 
the effect of motion when paired (e.g., R1: z = 0.189 vs. R4: z = 0.115). 
Intermediate improvements, with smaller effect sizes, were seen when 
using only one of GSR or censoring (Supplemental Table 1). 

Fig. 1c shows an example from pipeline R4 of edge correlation with 
motion vs. edge distance with a linear fit. Fig. 1d (Supplemental Table 2) 
shows the QC-FC distance dependence for each pipeline. All differences 
in correlation between pipelines were significant (p ≈ 10-49 or smaller). 
Pipelines that include GSR were associated with a more negative cor-
relation (e.g., R1: r = − 0.305 vs. R2: r = − 0.421), suggesting that GSR 
affects shorter edges differently than longer edges, with shorter edges 
having more remaining motion influence and longer edges more likely 
to be negatively correlated with motion. However, censoring reduced 
this correlation, partially compensating for the effect of GSR. 

When scans were split into lower- and higher- motion subgroups, the 
higher-motion scans fared worse on all metrics (Fig. 2a vs 2b, 2c vs 2d, 
2e vs 2f). Both the lower- and higher-motion groups had fewer edges 
significantly correlated with motion than the entire group (Fig. 2a and b 
vs 1a), and differences between pipelines on mean absolute correlation 
with motion showed smaller effect sizes (Supplemental Tables 3 and 4 vs 
Supplemental Table 1). We attribute these changes to a smaller sample 
size and a narrower range of motion values. In the lower- motion group, 
with the exception of the poor-performing minimal pipelines, choice of 
pipeline had a minimal effect on the percent of edges correlated with 
motion (ranging from 6.1% to 8.3% in pipelines R1-R4, I1-I4; Fig. 2a). 
We saw a similar lack of impact on the mean absolute correlation with 
motion, ranging from z = 0.11 to z = 0.12 in pipelines R1-R4 and I1-I4 
(Fig. 2c), and effect sizes comparing pipelines smaller than 0.15 (Sup-
plemental Table 3). Small improvements were seen with censoring, and 
pipelines that included GSR fared slightly worse. Most of the effects 
noted in the entire sample (Fig. 1) were only seen in the higher-motion 
group (Fig. 2b and d, Supplemental Table 4), where censoring and GSR 
used together improved the percentage of edges significantly correlated 
with motion (e.g., R1: 22% vs. R4: 11%) and the mean absolute corre-
lation with motion (e.g., R1: z = 0.17 vs. R4: z = 0.13, though effect 

Table 2 
Preprocessing pipelines tested to compare effects of censoring at different 
thresholds and volumes censored per motion artifact. Note that the pipeline with 
1 vol censored at a threshold of 0.25 mm is equivalent to pipeline R4 described 
in Table 1.  

Volumes censored per 
artifact 

Censoring threshold 
(mm FD) 

Mean and std of number of 
volumes censored 

1  0.3 31.8 ± 35.0  
0.25 39.3 ± 41.1  
0.2 51.0 ± 49.8  
0.15 72.2 ± 62.2 

3  0.3 57.6 ± 59.4  
0.25 69.7 ± 67.6  
0.2 88.6 ± 77.7  
0.15 121.9 ± 91.0 

4  0.3 67.6 ± 68.2  
0.25 81.3 ± 76.6  
0.2 102.5 ± 86.5  
0.15 139.3 ± 98.5  
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sizes remained small). For inter-pipeline distance dependence, trends 
were similar to the entire sample in lower- and higher-motion groups (2e 
and 2 f vs 1d, Supplemental Tables 5 and 6), with GSR making the as-
sociation stronger, but censoring mitigating this effect. 

3.3. Fingerprinting 

Fingerprinting match-rate was assessed for each pipeline (Fig. 3a). 
Overall, except for the two minimally processed pipelines (M1 and M2), 
both with under 50% success, the match rate was high for all pipelines 
tested, ranging from 71% to 90% (chance <1%). GSR had a minimal 

effect on the overall match rate (e.g., R1: 75.0% vs. R2: 76.8%), but 
pipelines that included censoring were more successful, especially when 
regressing HMP rather than using ICA-AROMA (e.g., R3: 88.4% and R4: 
90.2%). 

While group similarity varied minimally in terms of absolute 
numbers across pipelines (Fig. 3b), effect sizes comparing pipelines were 
large, suggesting consistent effects across participants (e.g., R1: 
z = 0.565 vs. R2: z = 0.572, p ≈ 10-31, d = 1.57; Supplemental Table 7). 
The two pipelines with the highest stability were R3 (z = 0.81) and R4 
(z = 0.79; Fig. 3c), though interestingly pipeline I4 (ICA-ARO-
MA+GSR+censoring) had a comparably high stability (z = 0.79), but a 

Fig. 1. Quality control-functional connectivity 
(QC-FC) across pipelines. a) Percentage of edges 
with a significant correlation between edge 
value and head motion across all 112 scans 
(uncorrected p < 0.05). b) Mean and 99% 
confidence interval of the absolute correlation 
between edge strength and subject motion 
across all 112 scans. c) Example QC-FC distance 
dependence plot, from pipeline R4 (regress 
HMP + WM/CSF + GSR + censor). Each point 
is an edge in the connectome, plotted based on 
the length between its nodes (edge distance) 
and correlation between edge strength and 
subject motion. Overlapping points are repre-
sented by brighter colors. d) QC-FC distance 
dependence for each pipeline. This is the cor-
relation between edge length and the associa-
tion between edge strength and subject motion.   

Fig. 2. Quality control-functional connectivity 
(QC-FC) across pipelines, separately for lower 
or higher motion scans. Higher and lower mo-
tion scans were identified as above or below 
median average framewise displacement. a, b) 
Percentage of edges that have a significant 
correlation between edge strength and head 
motion (uncorrected p < 0.05). c, d) Mean and 
99% confidence interval of absolute correlation 
between edge strength and subject motion. e, f) 
QC-FC distance dependence. The correlation 
between edge distance and association between 
edge strength and head motion.   
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smaller gap between stability and group similarity. Effect sizes between 
pipelines were large for stability (e.g., R1 vs. R3: d = 1.41, p ≈ 10-14; 
Supplemental Table 8). 

Fig. 3d (Supplemental Table 9) shows individualization (i.e., the 
fingerprinting margin) for each of the 112 scans. As expected, pipelines 
with a higher match-rate (Fig. 3a) had a higher average individualiza-
tion, which ranged from z = 0.040 to z = 0.081 for less successful 
pipelines (R1, R2, I1 through I4), while reaching z = 0.12 for R3 and R4 
(d > 1.6 when comparing other pipelines to R3 or R4). There was no 
significant difference between R3 and R4. The similar distributions and 
large effect sizes between pipelines suggests that in more successful 
pipelines, scans that fail to match nonetheless see greater recovery of 
individual information via a reduced margin of failure. 

Fig. 4 (Supplemental Table 10) shows individualization plotted 
against head motion; a higher r2 value indicates greater sensitivity to 
motion noise. Censoring was the most impactful option on reducing this 
metric (e.g., R1: r2 = 0.40 vs. R3: r2 = 0.27, p = 6.9 ×10-3), suggesting 
greater impact of censoring on higher motion scans. The participant 
with the most motion (mean FD of 0.51 mm for one of their two scans) 
could be considered an outlier – repeating the analysis with that 
participant removed reduces the r2 and makes the slopes less negative, 
but trends between pipelines remain (Supplementary Fig. 2; Supple-
mental Table 11). We repeated the analysis using stability rather than 
individualization (Supplementary Fig. 3; Supplemental Table 12). Here 
we did not find significant differences between pipelines differing in 
GSR or censoring, but ICA-AROMA pipelines tended to have modestly 
higher r2 values on this metric (e.g., R2: r2 = 0.36 vs. I2: r2 0.41, 
p = 0.038). 

3.4. Intra-class correlation (ICC) 

For between-session ICC (Fig. 5a; Supplemental Table 13), pipelines 
that regressed HMP had higher average ICC than corresponding pipe-
lines using ICA-AROMA (e.g., R1: 0.278 vs. I1: 0.228, p ≈ 0, d = 0.32). 
Across pipelines, the use of GSR lowered ICC coefficients (e.g., R1: 0.278 
vs. R2: 0.239, p ≈ 0, d = 0.34). Meanwhile, the use of censoring raised 
ICC coefficients (e.g., R1: 0.278 vs. R3: 0.303, p ≈ 0, d = 0.27). The two 
minimal preprocessing pipelines (M1 and M2) had low average ICC 
coefficients, of 0.163 and 0.216 respectively. 

Within-session ICC showed a much smaller range across pipelines, 
ranging from 0.46 to 0.537 (Fig. 5b; Supplemental Table 14). M1, the 
pipeline with no regressors, had the third highest mean ICC (0.513). 
Both GSR and censoring resulted in lower ICC coefficients, with the 
value dropping from 0.537 for R1 (regress HMP+no GSR+no censor) to 
0.479 for R4 (regress HMP+GSR+censor). Pipelines differing in 
censoring and regressing HMP vs ICA-AROMA had small effect sizes 
(p ≈ 0 for all comparisons, d < 0.27), while pipelines differing in use of 
GSR had larger effect sizes (p < 10-25, d > 0.37). 

3.5. Intersubject correlation (ISC) 

Fig. 6a (Supplemental Table 15) shows each scan’s mean ISC across 
pipelines, averaged across the 10 nodes with the highest values (See 
Supplemental Fig. 4 for location of these nodes; Xia et al., 2013). Both 
GSR and censoring improved ISC, with large effect sizes (d > 2). Fig. 6b 
(Supplemental Table 16) shows each participant’s "intrasubject corre-
lation" across their two scans. While intrasubject correlations showed a 
greater range than mean ISC, this is likely related to being a comparison 
between only two scans, rather than an average across many scans. 
Average intrasubject correlations were higher than inter-SC, but trends 
between pipelines were the same, with GSR and censoring raising the 
correlation (p < 10-7, d > 0.89). 

When only lower- motion scans were compared using ISC (Fig. 6c; 
Supplemental Table 17) the benefits of censoring were reduced, with or 
without GSR. GSR itself increased ISC (e.g., R1: z = 0.19 vs. R2: 
z = 0.22, p ≈ 10-22, d = 3.14). However, when only higher- motion 
scans were compared (Fig. 6d; Supplemental Table 18), the benefits of 
censoring were more apparent, especially in combination with GSR (e. 
g., R2: z = 0.17 vs. R4: z = 0.19, p ≈ 10-24, d = 3.77). 

3.6. Intrascan inter-pipeline correlation 

With the exception of the two minimally preprocessed pipelines, 
correlations between connectomes from different pipelines were high 
overall, ranging from 0.67 to 0.97 (Fig. 7a). A correlation as low as 0.67 
for the same scans preprocessed in two different ways – in this case 
between pipelines R3 (regress HMP+no GSR+censor) and I2 (ICA- 

AROMA+GSR+no censor) – highlights concerns about replicability 

Fig. 3. Functional connectome fingerprinting 
across pipelines. a) Match rate across pipelines. 
A scan matched if its highest correlation was to 
the other scan from the same individual. b) 
Group similarity across pipelines. Each dot 
represents an individual scan. Group similarity 
was assessed as the average correlation to scans 
from other participants. Lines represent mean 
values. c) Stability across pipelines. Each dot 
represents one individual. Stability was 
assessed as the correlation between scans from 
the same individual. Solid lines represent mean 
values, dashed lines represent the average 
group similarity (from 3b) for comparison. d) 
Individualization across pipelines. Each dot 
represents one scan. Individualization was 
assessed as the difference between stability and 
the highest correlation to a scan from another 
participant. Any point below 0 fails to success-
fully match. Lines represent mean values.   
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Fig. 4. Individualization as a function of head motion. The difference between each scan’s stability (self-correlation) and the highest correlation to a scan from 
another participant, plotted by motion. Motion was calculated by taking the worse of each participant’s two scans’ mean relative framewise displacement; each 
participant has two points for their two scans. Any point below 0 on the y axis fails to successfully match. 
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given the influence of preprocessing choices. Fig. 7 also highlights how 
each preprocessing choice progressively alters functional connectivity 
estimates. Pipelines that differed only in the use of one of GSR or 
censoring were similar (e.g., R1 vs. R3: r = 0.97) while pipelines that 
differed in multiple preprocessing steps showed incremental differences 
(e.g., R1 vs. R4: r = 0.82). The choice to use ICA-AROMA vs. regressing 
HMP had a relatively larger effect, with correlations ranging from 0.73 
to 0.83. Again, these correlations decreased further if the pipelines also 
differed in use of GSR or censoring. Unsurprisingly, preprocessing 
choices had a smaller effect on lower-motion scans (Fig. 7b), with cor-
relations between pipelines ranging from 0.72 to 0.99 for pipelines R1- 
R4, I1-I4, though were as low as 0.61 between M1 (regress nothing) and 
I2. For higher-motion scans (Fig. 7c), correlations ranged from 0.61 to 
0.93 for pipelines R1-R4, I1-I4, dropping as low as 0.48 between M1 and 
I4. 

3.7. Filtering comparison 

For highpass relative to bandpass filtering, overall trends between 
pipelines were quite similar (see Supplemental Figs. 5–7). With a 
highpass filter, the number of edges significantly correlated with motion 
ranged from 25% to 50% for pipelines R1-R4, I1-I4 (Supplemental 
Fig. 5a). Other than for pipeline I1 (which fared poorly on this metric 
regardless), bandpass filtering resulted in fewer edges significantly 
correlated with motion than highpass filtering (e.g., R4: 19% for band-
pass vs. 26% for highpass). Similarly, pipelines that used bandpass 
filtering had a smaller mean absolute correlation with motion (e.g., R4: 
z = 0.12 for bandpass vs. z = 0.13 for highpass, p ≈ 0, d = 0.24; Sup-
plemental Fig. 5b; Supplemental Table 19). Highpass filtering resulted in 
more negative motion vs. edge distance correlations than bandpass 
filtering (e.g., R4: r = − 0.304 for highpass vs r = − 0.175 for bandpass, 
p ≈ 0; Supplemental Fig. 5c; Supplemental Table 20), suggesting a 
bandpass filter leads to reduced distance dependent effects. 

For fingerprinting, running the analysis with a highpass filter usually 
led to a lower fingerprinting match rate (Supplemental Fig. 6a), such as 
67% vs 77% for pipeline R2 (regress HMP+GSR+no censor). However, 
pipeline R4 (regress HMP+GSR+censor; 90% match rate) was equally 
successful using either style of filter. Pipelines that used highpass 
filtering showed increased stability and group similarity (e.g., for mean 
stability, R4: z = 0.87 for highpass, z = 0.79 for bandpass, p ≈ 10-128, 
d = 11.22; Supplemental Fig. 6b; Supplemental Tables 21 and 22), 
suggesting a highpass filter makes all scans’ FC estimates more similar to 
each other, relative to bandpass. Filtering choice had a variable effect on 
individualization (Supplemental Fig. 6c; Supplemental Table 23). For 
some pipelines, using a highpass filter led to a lower fingerprinting 
margin (e.g., R2: z = 0.057 for highpass, z = 0.077 for bandpass, 
p ≈ 10-7, d = 0.051), but for pipelines R3 and R4 this margin of 
fingerprinting success improved with a highpass filter (e.g., R4: z = 0.13 
for highpass, z = 0.12 for bandpass, p ≈ 10-10, d = 0.27). Bandpass 
filtering increased ISC and intrasubject correlations for all pipelines 
compared to highpass filtering (e.g., for ISC, R4: z = 0.18 for highpass, 
z = 0.20 for bandpass, p ≈ 10-74, d = 3.74; Supplemental Fig. 7; Sup-
plemental Tables 24 and 25). 

Fig. 5. Intra-class correlation (ICC). a) Mean and 99% confidence interval for 
between-session ICC across pipelines. b) Mean and 99% confidence interval for 
the within session (split-half) ICC by pipeline. 

Fig. 6. Mean intersubject correlation (ISC) 
values. Each point represents the mean ISC for a 
scan to all other scans, averaged across the 10 
nodes with the highest ISCs. Lines represent 
mean values. a) Mean ISCs for all 112 scans, 
each compared to all other scans. b) Each par-
ticipant’s intrasubject correlation, the correla-
tion between time series from the two scans’ 
time series. c) Mean ISCs for each of the 40 
below-median-motion scans. d) Mean ISCs for 
each of the 40 above-median-motion scans, 
compared to the other 39.   
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3.8. Censoring comparison 

Starting from the pipeline that performed best on most metrics (R4), 
we repeated our analyses with variable censoring. When one volume 
was censored per motion artifact, a lower (more stringent) threshold for 
censoring resulted in fewer edges correlating with motion, lowering 
from 20% of edges at a threshold of 0.30 mm, to 17% of edges at a 

threshold of 0.15 mm (Fig. 8a). However, the censoring threshold had a 
minimal effect on the number of edges significantly correlated with 
motion when 3 or 4 volumes were censored per artifact, ranging from 
13% to 15%. Effects were similar in the mean absolute correlation with 
motion (Fig. 8b; Supplemental Table 26), with a lower threshold at one 
volume per artifact reducing the correlation from z = 0.116 at 0.30 mm 
to z = 0.108 at 0.15 mm, but having minimal effect at 3 or 4 volumes 
(ranging from z = 0.099–0.104 mm). However, effect sizes between 
pipelines were comparatively small (d < 0.37) for this analysis. 

The fingerprinting match-rate decreased as censoring became more 
stringent (Fig. 8c), suggesting that although censoring can help with 
identifiability, there is an optimal range, above which individual in-
formation is reduced. At 1 vol censored per motion artifact, the decrease 
was from 90% to 88% across thresholds (0.3–0.15 mm), but at 4 vol-
umes censored per artifact the match-rate fell from 88% to 80%. With 
stricter censoring, both stability and group similarity decreased (Fig. 8d; 
Supplemental Tables 27 and 28), for example at 3 volumes per motion 
artifact the mean stability dropped from z = 0.778 to z = 0.720 across 
thresholds (p ≈ 10-20, d = 1.40). Mean individualization was less 
affected by censoring (Fig. 8e; Supplemental Table 29), though effect 
sizes remained large for most comparisons between pipelines. Censoring 
had a minimal effect on mean ISC (Fig. 8f; Supplemental Table 30), 
except for the strictest censoring. With ISC, effect sizes remained large 
for most comparisons between pipelines. 

4. Discussion 

This study extended preprocessing benchmark comparisons, which 
have previously been performed in youth and adult resting data, to an 
early childhood passive viewing sample. Our results support and extend 
previous findings, suggesting that the highest performing pipelines 
include both GSR and censoring and that these steps have greater impact 
in higher-motion data, but remained beneficial in lower-motion data. 
Further extending previous work, we used connectome fingerprinting to 
estimate how individual-specific information was retained, or enhanced, 
by preprocessing steps. In fingerprinting, we found that volume 
censoring conferred more benefit than GSR, and pipelines with HMP 
regression outperformed pipelines with ICA-AROMA. When examining 
ISC, GSR offered the greatest improvement, with censoring showing a 
specific benefit for high motion scans. Censoring multiple volumes per 
motion artifact improved QC-FC metrics but had minimal or even a 
negative effect on other metrics, suggesting an important tradeoff be-
tween removal of noise and signal of interest. When examining overall 
effects of preprocessing choices on connectomes, we found that con-
nectomes differed substantially depending on preprocessing choices, 
particularly in our higher motion subgroup, which is a concern for cross- 
study replicability in early childhood fMRI. Overall, our work suggests 
that for relatively high motion data from early childhood the best pre-
processing pipeline includes a bandpass filter, GSR, regressing HMP 
rather than using ICA-AROMA, and moderate censoring. 

When comparing ICA-AROMA pipelines to pipelines that regressed 
HMPs, we found ICA-AROMA to be less effective on most metrics. This is 
somewhat surprising, given that ICA-AROMA primarily works by 
removing independent components strongly associated with motion 
estimates (Pruim et al., 2015). Previous benchmarking studies found 
that ICA-AROMA pipelines were among the most effective of pipelines 
that did not include censoring in terms of reducing the quantity of edges 
correlated with motion – more effective than regressing HMP – though 
the difference was small between ICA-AROMA+GSR and HMP+GSR 
(Ciric et al., 2017; Parkes et al., 2018). While our QC-FC results are 
consistent with previous findings, we found that ICA-AROMA performed 
relatively poorly on individualization metrics. Even when ICA-AROMA 
fared comparably well on stability (as in pipeline I4), a necessary 
component for individualization, it had an elevated similarity to others, 
decreasing individual identifiability relative to pipelines that regressed 
HMP. However, ICA-AROMA pipelines showed no obvious difference 

Fig. 7. Intrascan inter-pipeline correlations. For each pair of pipelines, the 
correlation between connectomes from the same individual across the two 
pipelines was calculated, Fisher z-transformed, averaged across scans, then 
converted back to correlations. Pipelines are listed in Table 1, briefly: M1 – no 
regression; M2 – regress WM/CSF; R1 – regress HMP + WM/CSF; R2 – regress 
HMP + WM/CSF + GSR; R3 – regress HMP + WM/CSF + censor; R4 – regress 
HMP + WM/CSF + GSR + censor; I1 – ICA-AROMA + WM/CSF; I2- ICA- 
AROMA + WM/CSF + GSR; I3 – ICA-AROMA + WM/CSF + censor; I4 – ICA- 
AROMA + WM/CSF + GSR + censor. a) Average correlation based on all 112 
scans. b) Average correlation using the 56 scans below the median average 
framewise displacement. c) Average correlation using the 56 scans above the 
median average framewise displacement. 
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from regressing HMP on ISC metrics, which measure the evoked 
response common across participants. One interpretation could be that 
ICA-AROMA removes both noise and individual-specific information 
although retaining signal common across participants. Further work is 
needed to clarify whether ICA-AROMA is less effective in samples of 
young children or high-motion samples, or whether connectome iden-
tifiability is generally poorer in ICA-AROMA relative to HMP pipelines. 
Other implementations of ICA-based preprocessing exist and are worth 
systematically investigating. ICA-AROMA is often used in conjunction 
with ICA-FIX, another ICA-based denoising strategy (Salimi-Khorshidi 
et al., 2014), and ICA-AROMA can also be run without their aggressive 
denoising option. Some studies have combined ICA-based denoising 
with regressing HMPs (Kaufmann et al., 2017; Jalbrzikowski et al., 
2020), which may have advantages, though effectively removes aspects 
of the signal related to motion twice, contrary to the original intent of 
ICA-AROMA (Pruim et al., 2015). 

While GSR remains contentious in the field, our results suggest there 
are advantages to using GSR in a high-motion dataset such as the early 
childhood sample used here. GSR reduced the number of edges signifi-
cantly correlated with motion, especially when applied with censoring. 
Similarly, while there are distance-dependent effects when GSR is used, 
this effect was largely mitigated in pipelines that also included 
censoring, consistent with QC-FC results from previous studies. Ciric 
et al. (2017) found that their 6 best pipelines, based on fewest edges 
correlated with motion, all included GSR, while Parkes et al. (2018) 
found that all 6 pipeline-pairs that differed in the use of GSR benefited 
from its inclusion. Both studies found that GSR introduced 
distance-dependent effects but that censoring diminished the impact. 

Ciric et al. (2017) suggests that GSR introduces these effects by more 
effectively denoising long range connections; we speculate that 
censoring mitigates this by removing the worst motion damage that may 
be missed by GSR. While these aforementioned studies both considered 
resting state data from adults, a benchmarking paper on fetal fMRI 
(Taymourtash et al., 2020) found similar benefits to GSR, suggesting 
that GSR has benefits regardless of age range or scan protocol. 

Notably, however, GSR had no obvious impact on connectome 
individualization metrics. This suggests that while GSR alters FC esti-
mates, most notably via distance-dependent effects, these changes may 
have a more global and less regionally specific impact compared to 
censoring (Power et al., 2015). The finding that GSR had a minimal 
impact on fingerprinting, our metric of individual information, may 
alleviate concerns about its use when comparing healthy controls and 
clinical populations, or in developmental research, even in light of 
research that suggests the global signal is significantly related to life 
outcomes and psychological function (Li et al., 2019). We also found 
benefits to the use of GSR in improving signal-to-noise in ISC metrics, 
suggesting that the benefits in terms of motion and physiological noise 
removal in an early childhood sample may outweigh the cost of 
removing some signal of interest (Behzadi et al., 2007). 

We found relatively small effects of a bandpass filter compared to a 
highpass filter, with the main advantage of bandpass filtering on QC-FC 
metrics. In connectome fingerprinting, while stability was higher in 
pipelines that used a highpass filter, so too was group similarity by 
comparable levels. This suggests that any resulting changes to the 
functional connectome by including higher frequencies are consistent 
across individuals and are unlikely to reflect individual-specific 

Fig. 8. Pipeline benchmarks with different censoring thresholds. Colored bars depict four threshold levels and across the x-axis a different number of volumes is 
censored around the high motion frame. a) Percentage of edges with a significant correlation between edge strength and head motion across all 112 scans (un-
corrected p < 0.05). b) Mean and 99% confidence interval for absolute correlation between edge strength and motion across all 112 scans. c) Fingerprinting match 
rate across pipelines. d) Each scan’s stability (darker points) and group similarity (lighter points), for each pipeline. Group similarity was assessed as the average 
correlation to scans from other participants; stability was assessed as the correlation between scans from the same individual. Lines represent mean values. e) 
Individualization across pipelines. Each dot represents one scan. Individualization was assessed as the difference between stability and the highest correlation to a 
scan from another participant. Lines represent mean values. f) Mean ISCs for all 112 scans. 
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information. Bandpass filtering also increased ISC metrics; this may 
suggest that bandpass filtering is effective for removing noise while 
retaining task signal, but this improvement may also be explained in part 
by signals composed of a narrower range of frequencies being inherently 
more similar across individuals. 

We found benefits to volume censoring across metrics. On QC-FC 
benchmarks, we found that censoring improved both the quantity of 
edges associated with motion and distance-dependent effects. These 
effects are in line with Ciric et al. (2017) and Parkes et al. (2018) who 
both found that censoring pipelines outperformed alternatives on edges 
associated with motion, with both studies finding that the most effective 
pipelines included censoring. Our work extends these findings to early 
childhood passive viewing fMRI as well as to other benchmarks. In 
connectome fingerprinting, censoring increased accuracy more than any 
of the other preprocessing steps compared here, with censoring also 
conferring additional benefits to pipelines that used ICA-AROMA, 
despite ICA-AROMA being intended partially as an alternative to 
censoring (Pruim et al., 2015). Censoring had only a small effect on 
lower-motion scans for ISC comparisons, but censoring increased ISC 
between higher-motion scans. 

When only one volume was censored per motion artifact, the more 
stringent the censoring threshold, the fewer edges significantly corre-
lated with motion, dropping from 20% to 17% of edges. While this 
pattern was less appreciable when censoring multiple volumes per mo-
tion artifact, even at the most lenient threshold tested multivolume 
censoring outperformed single volume censoring on this metric. Stricter 
censoring tended to decrease both stability and group similarity. This 
suggests that removing data points removes information that is common 
across participants. Interestingly, the distribution of individualization 
values was relatively unaffected by the censoring threshold, except 
when very strict censoring was used, even though the overall match rate 
decreased when censoring became stricter. This suggests not all scans 
are affected in the same way by changes in censoring parameters. While 
censoring had a minimal effect on mean ISC, except for the strictest 
censoring, it should be noted that for the purposes of ISC, censoring one 
scan necessarily censors the scan it is being compared to, since the same 
time points need to be compared. A stricter censoring protocol will lead 
to a disproportionate reduction in shared time points, so benefits in the 
removal of noise may be balanced by the decrease in data being 
compared. Altogether, while we found censoring to be beneficial, and 
can advise against overly strict censoring, the exact implementation of 
censoring seems to involve tradeoffs, making it challenging to advocate 
a one-size-fits-all approach. Future work may further consider how 
censoring is implemented, with the possibility of utilizing a scan-specific 
approach. 

Previous work has found that ICC values are generally higher in more 
minimal pipelines that perform worse on other benchmarks (Parkes 
et al., 2018; Kassinopoulos and Mitsis, 2021), suggesting a trade-off 
between reliability and validity (Noble et al., 2021) due to correlated 
noise across sessions. Here, we show that within-session ICC scores are 
consistent with previous work, but between-session ICC values (with 
~12 months between sessions) were generally higher in pipelines with 
more aggressive denoising. Our interpretation of differences across 
studies is that greater time between scans in a developmental sample 
reduces the shared influence of motion and physiological artifacts. 
Indeed, in our sample the correlation between initial and follow-up scan 
head motion was non-significant. This interpretation is supported by 
analyses in Parkes et al. (2018), who similarly found that while poorer 
performing pipelines had higher ICC, this effect was reduced when scans 
were collected on average 90 days apart, rather than within the same 
session. Given the conceptual difficulty of separating reproducible head 
motion from its biological confounds (Engelhardt et al., 2017; Hodgson 
et al., 2016), our data presents an advantage. We further note that ICC or 
other measures of test-retest reliability may be imperfect benchmarks 
for addressing head motion, and a broader collection of benchmarks, 
such as those included here, may be more appropriate to best understand 

how preprocessing choices affect signal changes (Kassinopoulos and 
Mitsis, 2021). 

Our findings on the intrascan interpipeline correlations are con-
cerning towards the goal of replicable results in FC-MRI studies. While 
preprocessing choices have a smaller impact on lower-motion data, our 
work suggests that when analyzing high motion data, such as data from 
young children, each preprocessing choice has a measurable and cu-
mulative effect on FC estimates (Li et al., 2021). While broader meth-
odological differences or group-level participant differences are often 
cited as reasons for different findings among studies, we suggest that 
differences in preprocessing are likely to also play a role. Preprocessing 
choices should be both closely considered and accurately reported. 
While we compared the correlation between the entire functional con-
nectome, future work should explore regionally-specific effects in more 
detail. 

There are several limitations to our work. Our study was done in 
young children who were participating in a passive viewing task, and 
our results may not be directly applicable to other populations or other 
study protocols. Likewise, the benefits of any step we tested may not be 
transferable to a more traditional task-based fMRI study, especially 
censoring data points during the task. We note that several of the steps 
implemented here could have been applied in alternative forms, which 
also restricts generalizability. For example, we used a 24 HMP model 
rather than 6 or 12 HMP (Friston et al., 1996). Similarly, there are many 
other thresholds that can be used for temporal filtering or censoring, or 
conceptually similar strategies such as despiking (Patel et al., 2014). 
There are also other possible approaches to noise mitigation, such as 
CompCor (Behzadi et al., 2007) or ANATICOR (Jo et al., 2010), that 
warrant further investigation. 

We also acknowledge that choices such as registration and parcel-
lation may have impacted our findings. Previous studies using functional 
connectome fingerprinting have used a similar number or fewer nodes; 
for example, Finn et al. (2015) used a 268-node atlas while Mir-
anda-Dominguez et al. (2018) used a 333-node atlas. Finn et al. (2015) 
also found lower fingerprinting success using a 68-node atlas; it is un-
known if a higher number of nodes may offset the difference between 
preprocessing strategies on fingerprinting metrics, especially if consid-
ering a specific subset of edges rather than the full connectome (Byrge 
and Kennedy, 2019). While we chose metrics that we believe are 
meaningful to gauge the effect of preprocessing, other metrics could 
have instead been chosen. For example, we did not consider the effect 
preprocessing has on the magnitude of FC edges, and we also did not 
consider the effect preprocessing might have on individual networks 
within the broader connectome (Kassinopoulos and Mitsis, 2021), or 
other changes in functional organization. 

This study implemented ISC by comparing nodes across scans, rather 
than a voxel-based approach (Hasson et al., 2004). This has the potential 
to average out the effect of the task, as not all voxels within a parcel will 
respond to the passive viewing task in a similar way. We also chose to 
focus on the nodes with the highest average ISC values. These choices 
limit the extent our findings can be generalized across the whole brain or 
to voxel-specific changes. Our analysis has assumed that a higher ISC 
value reflects greater recovery of true signal, based on the assumption 
that unremoved noise will lower the temporal correlation between 
scans. Parkes et al. (2018) suggest that reproducible, individual-specific 
noise can increase FC test-retest reliability. It is unknown whether noise 
has a similar effect between subjects in the context of ISC, though there 
is the potential for head movements to be more likely at specific times in 
a video (e.g., due to laughter). Future work is needed that specifically 
investigates the effect of preprocessing choices on ISC values across the 
brain, especially in high noise scans. 

5. Conclusions 

Due to the impact that both head motion and preprocessing choices 
have on FC estimates, benchmarking preprocessing steps in high-motion 
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early childhood samples is critical to support researchers in making 
informed choices. While in different datasets the optimal preprocessing 
choices may vary, our results suggest that GSR, censoring, a bandpass 
filter, and HMP regression are preferable in high motion datasets from 
early childhood populations engaging in a passive viewing task. In 
particular, GSR and censoring showed few disadvantages across our 
metrics, and ICA-AROMA showed no major improvement compared to 
regressing out HMPs, especially when used without censoring. 

All preprocessing choices have unintended effects on data; in light of 
the major effect that preprocessing choices has on FC estimates, we urge 
awareness of the effect of preprocessing choices within any given 
research protocol. Ideally, studies should aim to reduce head motion at 
the time of scan, for instance through the use of passive viewing, and 
new preprocessing strategies should aim to improve the signal-to-noise 
ratio with fewer tradeoffs. 
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