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Abstract: Smallmouth bass Micropterus dolomieu is an economically important sportfish and within
the Chesapeake Bay watershed has experienced a high prevalence of external lesions, infectious
disease, mortality events, reproductive endocrine disruption and population declines. To date,
no clear or consistent associations with contaminants measured in fish tissue or surface water
have been found. Therefore, plasma samples from two sites in the Potomac River and two in the
Susquehanna River drainage basins, differing in land-use characteristics, were utilized to determine
if perfluoroalkyl substances were present. Four compounds, perfluorooctane sulphonic acid (PFOS),
perfluoroundecanoic acid (PFUnA), perfluorodecanoic acid (PFDA) and perfluorododecanoic acid
(PFDoA), were detected in every fish. Two additional compounds, perfluorooctane sulphonamide
(PFOSA) and perfluorononanoic acid (PFNA), were less commonly detected at lower concentrations,
depending on the site. Concentrations of PFOS (up to 574 ng/mL) were the highest detected and
varied significantly among sites. No seasonal differences (spring versus fall) in plasma concentrations
were observed. Concentrations of PFOS were not significantly different between the sexes. However,
PFUnA and PFDoA concentrations were higher in males than females. Both agricultural and
developed land-use appeared to be associated with exposure. Further research is needed to determine
if these compounds could be affecting the health of smallmouth bass and identify sources.

Keywords: perfluoroalkyl compounds; smallmouth bass; plasma; Potomac River; Susquehanna River

1. Introduction

Per and poly-fluoroalkyl substances (PFAS) have emerged as a global contaminant
issue, associated with both human and ecosystem health concerns. These substances have
been widely manufactured and used in numerous industrial, agricultural and household
products since the 1940s [1,2]. Aqueous film forming foam used at military and civilian
airports, train yards, fire training areas, and chemical refineries are common sources of
these compounds in the aquatic environment [3]. However, because of their hydropho-
bic and non-stick properties, they are also widely used in consumer products such as
food packaging, cookware, furniture, carpets and outdoor gear [4] and can be present in
wastewater treatment plant (WWTP) effluent and sludge/biosolids [5–7].

Smallmouth bass Micropterus dolomieu is an economically important sportfish in many
rivers and streams of North America. While not a major food fish, they may be eaten by
anglers. Within the Chesapeake Bay watershed, adult smallmouth bass have experienced
disease and mortality events [8] and signs of reproductive endocrine disruption such as
testicular oocytes and vitellogenin in males [9–11]. Lesions and mortalities of young-of-
year smallmouth bass [12,13] are also observed. These disease issues are associated with
a variety of pathogens including multiple bacterial, viral and parasitic species [8,13–15],
suggesting immunomodulation may be occurring.

Int. J. Environ. Res. Public Health 2021, 18, 5881. https://doi.org/10.3390/ijerph18115881 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-6292-2612
https://orcid.org/0000-0001-6392-4604
https://www.mdpi.com/article/10.3390/ijerph18115881?type=check_update&version=1
https://doi.org/10.3390/ijerph18115881
https://doi.org/10.3390/ijerph18115881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18115881
https://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2021, 18, 5881 2 of 13

These observed health issues in smallmouth bass and other fishes led to a multi-site
collaborative monitoring program conducted by the U.S. Geological Survey and state
agencies in West Virginia, Maryland and Pennsylvania, integrating monthly or biweekly
analyses of surface water chemicals with adult smallmouth bass fish health assessments
in spring (pre-spawn) and fall (recrudescence) and young-of-year in late spring/early
summer from 2013–2019. The data collected are being used to better understand fish health
in association with climatic changes, environmental stressors, parasites and pathogens,
chemical contaminant exposure and land-use/land management practices. Due to early
findings associating testicular oocytes and the total estrogenicity of water samples with
agricultural land-use [16–18], the chemical monitoring of water focused on pesticides,
hormones and phytoestrogens [19]. One contaminant group that has not been addressed
in terms of fish health or fish consumption as a source of human exposure within the
Chesapeake Bay watershed is PFAS.

Exposure to PFAS has been associated with immune system effects in humans that
include reduced antibody concentrations, increased allergies and infections [4,20,21]. Much
less information is available for fish immune effects. Experimental studies have shown
increased numbers of leukocytes, including granulocytes, lymphocytes and macrophages
with increasing concentrations of certain PFAS compounds [22]. Reproductive endocrine
disruption, including reduced fecundity, the induction of vitellogenin and testicular oocytes,
and differential regulations of reproductive-associated genes have been demonstrated in
fishes [23–25]. Consequently, we used archived plasma samples to determine (1) if perfluo-
roalkyl compounds are present in smallmouth bass captured within the Chesapeake Bay
watershed; (2) if there are site, sex or seasonal differences in the presence or concentration
of plasma compounds; and (3) if there are associations between land-use and plasma
concentrations of perfluoroalkyl compounds in this important sportfish.

2. Materials and Methods

Adult smallmouth bass were collected at two sites in the Susquehanna River drainage,
Pine and West Branch Mahantango (WB Mahantango) creeks, and two in the Potomac River
watershed, Antietam Creek and South Branch Potomac (SB Potomac) River (Figure 1). Pine
Creek, the northern-most site, begins in Potter County, Pennsylvania, flowing 140.3 km
south to the West Branch Susquehanna River. Fish were sampled within Pine Creek, close
to the mouth. WB Mahantango Creek is a 29 km tributary with headwaters in Bald Eagle
State Park and joins North Branch Mahantango Creek prior to the confluence with the
Susquehanna River. The sampling site was within Mahantango Creek close to the mouth.
Antietam Creek is a 67.1 km tributary of the Potomac River, originating in Pennsylvania
where the East and West Branches join just north of the Pennsylvania–Maryland border
line to form the main stem. It enters the Potomac River south of Sharpsburg, Maryland.
Fish were sampled in the Potomac River at the mouth of Antietam Creek. The SB Potomac
originates in Highland County, Virginia, flowing through West Virginia, approximately
224 km, to join the North Branch near Green Spring, West Virginia, and form the mainstem
Potomac River. The sampling site was near Moorefield, WV, USA.

Land-use characteristics were evaluated at both the immediate and upstream catch-
ments based on the National Hydrography Dataset Plus 2 (NHDPlus), which integrates
the NHD, National Elevation Dataset and the National Watershed Boundary Dataset [26].
The immediate catchment is the stream segment that aligns with the NHDPlus framework
for the upstream catchment calculations. Landcover data were obtained from the National
Land Cover Dataset (NLCD) [27], and 2018 landcover data were summarized using the
Zonal Histogram Tool in ArcMap (10.6.1; ESRI, Redlands, CA). The Environmental Pro-
tection Agency’s Integrated Compliance Information System (ICIS) National Pollutant
Discharge Elimination System (NPDES) data were used to obtain facility locations for all
NPDES facilities for each site. Facility locations were displayed in ArcMap (10.6) and spa-
tially joined to the immediate and upstream watersheds. Domestic WWTPs were identified
using the keywords “WTP”, “WWTP”, “waste water”, “wastewater”, “water pollution”,
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“water treatment” “filtration”, “STP”, or “WW Treatment” in the facility name. From the
remaining records, the keywords “poultry”, “hatchery”, “CAFO”, “AFO”, “Plant” (except
where it coincides with WWTP), “lumber co”, “industrial”, “LLC”, “corp”, “inc.”, “facility”,
“mine”, “quarry” or “metal” were used to identify industrial facilities. Remaining facilities
were unable to be identified as either domestic or industrial.
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Figure 1. Site locations (Pine Creek, West Branch Mahantango Creek, Antietam Creek, South Branch
Potomac River) for smallmouth bass collections and associated land cover in the upstream catchments.
Inserts (A–D) represent the immediate catchments.

Biosolids data were available from the Chesapeake Scenario Assessment Tool (CAST;
https://cast.chesapeakebay.net/, (accessed on 12 October 2020) as estimated nutrient (nitrogen
and phosphorus) applications from biosolids at the county scale for all counties intersecting
the Chesapeake Bay watershed for water year 2018 (1 October–31 September). The combined
application rate (pounds/acre) was applied to the acres of turf grass, pasture and cropland
per catchment as defined in the 1m High Resolution Chesapeake Landcover (Chesapeake
Conservancy; https://www.chesapeakeconservancy.org/conservation-innovation-center/high-
resolution-data/land-cover-data-project/, accessed on 12 October 2020). These estimates were
summed into total pounds (converted to kg) of nutrients applied for the immediate and
upstream catchments to give a final estimate of nutrients from biosolids per catchment.

Bass used in this study were collected by boat electroshocking in the spring (5–14 May)
and fall (2–30 October) of 2018. All fish at a particular site were collected on a single day.
Fish were held in aerated live wells until processed (less than two hours) and euthanized in
350 mg/L Finquel (MS-222, tricaine methanosulfate, Argent Labs, Redmond, WA) follow-
ing procedures approved by the U.S. Geological Survey Eastern Ecological Science Center’s
Institutional Animal Care and Use Committee. Fish were weighed (gms), measured (total
length in mm), examined for visible abnormalities and a blood sample was obtained from
the caudal vessels using a sterile 3 mL syringe with a 23-gauge needle. Blood was placed
into a heparinized Vacutainer tube (Fisher Scientific, Waltham, MA, USA) and stored on
wet ice until returned to the laboratory (2–4 h). Blood was centrifuged at 1000× g at 4 ◦C
for 10 m and plasma was aliquoted into cryovials and stored at −80 C.

https://cast.chesapeakebay.net/
https://cast.chesapeakebay.net/
https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/
https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/
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Plasma (0.5 mL) samples were shipped on dry ice to SGS AXYS Analytical Services
Ltd., Sidney, British Columbia, Canada. We use the term PFAS (poly- and perfluorinated
substances) for consistency with the literature; however, 13 perfluoroalkyl analytes (Table 1)
were measured by the SGS AXYS Method MLA-042: Analytical Procedure for the Anal-
ysis of Perfluoroalkyl Carboxylates and Sulfonates and Perfluorooctane Sulfonamide in
Blood Serum by LC-MS/MS. Samples were spiked with isotopically labeled surrogate
standards, extracted in formic acid, cleaned up on SPE cartridges and analyzed by liquid
chromatography/tandem mass spectrometry (HPLC-MS/MS or UPLC-MS/MS). Final
sample concentrations were determined by isotope dilution/internal standard quantifica-
tion against matrix matched calibration standards carried through the analysis procedure
alongside the samples. Results were reported directly in units of ng/mL in the plasma
sample. Detection limits were in the 0.5–1 ng/mL range for a 0.5 mL plasma sample.

Table 1. Perfluoroalkyl substances analyzed in smallmouth bass plasma.

Chemical Name Abbreviation Carbon Chain Length

Perfluoroalkyl Carboxylic Acid Compounds

Perfluorobutanoic acid PFBA 4
Perfluoro-n-pentanoic acid PFPeA 5

Perfluorohexanoic acid PFHxA 6
Perfluoroheptanoic acid PFHpA 7
Perfluorooctanoic acid PFOA 8
Perfluorononanoic acid PFNA 9
Perfluorodecanoic acid PFDA 10

Perfluoroundecanoic acid PFUnA 11
Perfluorododecanoic acid PFDoA 12

Perfluoroalkyl Sulfonic Acid Compounds

Perfluorobutane sulfonic acid PFBS 4
Perfluorohexane sulfonic acid PFHxS 6
Perfluorooctane sulfonamide PFOSA 8
Perfluorooctane sulfonic acid PFOS 8

Statistical analyses were conducted using GraphPad Prism version 9.0.0 (GraphPad
Software, San Diego, California). Nonparametric analysis of variance (ANOVA) was com-
pleted using the Kruskal–Wallis multiple comparisons test for site comparisons. Unpaired
Mann–Whitney test was used to compare sex and seasons within a site. Differences were
considered significant at p < 0.05.

3. Results
3.1. Smallmouth Bass Morphometric Characteristics

Plasma samples were available from 34 (17 female, 17 male) smallmouth bass from
Antietam Creek, 36 (18 female, 18 male) from SB Potomac, 28 (14 female, 14 male) from WB
Mahantango and 32 (15 female, 17 male) from Pine Creek. Fish from Antietam, SB Potomac
and Pine Creek were similar in size (total length and weight) and age, while those from
WB Mahantango were significantly larger than those collected at the other three sites, and
older than those collected at the Antietam and SB Potomac sites (Table 2).

Table 2. Morphometric characteristics of smallmouth bass collected at four sites within the Chesa-
peake Bay watershed.

Site Sample Size Length (mm) 1 Weight (gm) 1 Age (Years) 1

Antietam Creek 34 304 ± 40 a 375 ± 169 a 3.9 ± 1.2 a

South Branch Potomac 36 309 ± 57 a 436 ± 258 a 4.0 ± 1.5 a

West Branch Mahantango 28 368 ± 37 b 694 ± 259 b 5.0 ± 1.8 b

Pine Creek 32 280 ± 43 a 314 ± 135 a 4.2 ± 1.0 a,b

1 Presented as mean ± standard error. (a,b) Values followed by the same letter are not significantly different.
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3.2. Chemical Detections and Site Comparisons

Perfluorobutanoic acid (PFBA), PFBS, PFHpA, PFHxS, PFHxA, PFOA, and PFPeA
were not detected in any samples, while PFDA, PFDoA, PFOS and PFUnA were found in
every plasma sample. Perfluorononanoic acid (PFNA) was detected in 29.4% of plasma
from Antietam Creek (range BD (below detection) to 1.3 ng/mL), 5.6% from SB Potomac
(range BD to 0.7 ng/mL), 3.6% from WB Mahantango Creek (range BD to 0.6 ng/mL) and
12.5% from Pine Creek (range BD to 0.6 ng/mL). Detectable concentrations of PFOSA were
observed in 73.5% of plasma samples at Antietam Creek (range BD to 1.0 ng/mL), 0% from
SB Potomac, 96.4% at WB Mahantango (range BD to 1.5 ng/mL) and 12.5% at Pine Creek
(range BD to 0.5 ng/mL).

Initial site comparisons were made irrespective of sex or season and significant site
differences were observed (Table 3). The compound with the highest concentrations at
all sites was PFOS. All four sites were significantly different, with Antietam having the
highest mean concentrations, followed by WB Mahantango and SB Potomac. The lowest
concentrations were observed in fish from Pine Creek. For the other three compounds
found in all samples, Antietam also had the highest concentrations. WB Mahantango bass
had significantly lower concentrations than Antietam and higher than either SB Potomac
or Pine Creek, which were similar. Total plasma perfluoroalkyl compounds followed the
same pattern (Table 3).

Table 3. Site comparisons of the perfluoroalkyl chemical concentrations detected in smallmouth bass. Presented as
mean ± standard error with minimum and maximum below in parentheses.

Site Sample
Size

PFOS
ng/mL

PFUnA
ng/mL

PFDA
ng/mL

PFDoA
ng/mL

Total 1 PFAS
ng/mL

Antietam Creek 34 381.4 ± 16.5 a

(220–574)
28.4 ± 1.7 a

(13–55)
21.4 ± 1.0 a

(13–37)
15.1 ± 1.1 a

(8–34)
447.0 ± 17.8 a

(256–644)

South Branch Potomac 36 90.4 ± 6.5 c

(40–181)
8.4 ± 0.5 c

(3–14)
5.3 ± 0.3 c

(3–11)
4.0 ± 0.3 c

(1–9)
108.2 ± 7.5 c

(49–214)
West Branch Mahantango

Creek 28 187.1 ± 12.6 b

(95–427)
20.2 ± 1.5 b

(12–43)
14.1 ± 0.8 b

(9–25)
11.8 ± 0.9 b

(6–25)
234.0 ± 3.3 b

(131–470)

Pine Creek 32 48.4 ± 5.8 d

(20–206)
9.8 ± 0.6 c

(4–20)
5.2 ± 0.4 c

(2–15)
4.9 ± 0.5 c

(2–11)
68.6 ± 7.0 c

(28–250)
1 Includes PFNA and PFOSA when detected; a,b,c Values within a column followed by the same letter are not significantly different.

3.3. Seasonal Comparisons

A total of 77 plasma samples from the spring and 53 from the fall were collected. Data
from all sites within a season were combined and analyzed. There were no significant
differences between the seasons.

3.4. Sex Comparisons

All sites and seasons were initially pooled to assess possible sex differences in plasma
concentrations of perfluoroalkyl compounds. A total of 64 female and 66 male samples
were compared. The mean age (±standard error) of males (4.3 ± 0.2) was not different
than females (4.2 ± 0.2). Concentrations of PFDoA (p < 0.001) and PFUnA (p = 0.005)
were higher in males than females, while PFOS and PFDA were not significantly different
between the sexes.

Individual site analyses indicated no significant difference between the sexes in PFOS
or total PFAS concentrations at any of the sites (Figure 2A,B). Concentrations of PFDA in
male bass were only higher (p < 0.05) at Pine Creek, while at the other sites the differences
were not quite significant (Figure 2C).
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Concentrations of PFUnA and PFDoA were significantly higher in males than females
at all sites (Figure 2D,E).

3.5. Site Land-Use Comparisons

Sites varied in land cover and land-use at both immediate and upstream catchments.
In the immediate catchment, the SB Potomac site had the highest percent agricultural land,
Antietam Creek was second highest, and WB Mahantango and Pine Creek were lower.
Pine Creek was the most forested, followed by WB Mahantango, Antietam Creek and SB
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Potomac. Antietam Creek was the most developed with 21.4% of the landcover in some
level of development, while Pine Creek was the least developed (Table 4).

Table 4. Land-use characteristics of the smallmouth bass sampling sites at the immediate catchment scale.

Characteristics Antietam Creek South Branch Potomac
River

West Branch
Mahantango Creek Pine Creek

Drainage Area (km2) 5.95 1.04 1.21 8.49
Percent Agriculture 63.6 74.4 20.4 1.1

Percent Forest 14.1 10.4 66.1 88.2
Percent Developed 21.4 7.2 10.0 4.2

Nutrients from Biosolids (kg) 0.1 0 2.9 3.4
Domestic Wastewater

Treatment Plants 0 0 0 0

Industrial Wastewater
Facilities 0 0 0 0

Contrasting with the immediate catchment, SB Potomac had only 14.0% of the up-
stream catchment area as agricultural land, with greater forested landcover (Table 5). The
upstream catchments at other sites were more consistent with the immediate catchment
(Table 5). Pine Creek was again the most forested, and the same pattern of development as
noted in the immediate catchment occurred with Antietam Creek being the most developed
and Pine Creek and SB Potomac having low levels of development (Table 5).

Table 5. Land-use characteristics of smallmouth bass sampling sites in the upstream cumulative catchment.

Characteristics Antietam Creek South Branch Potomac
River

West Branch
Mahantango Creek Pine Creek

Drainage Area (km2) 730 3151 218 2437
Percent Agriculture 49.1 14.0 31.6 8.5

Percent Forest 32.2 80.6 60.1 84.2
Percent Developed 17.3 3.2 7.0 3.6

Nutrients from Biosolids (kg) 18,240 3.8 799 1486
Domestic Wastewater

Treatment Plants 27 13 1 7

Industrial Wastewater
Facilities 51 77 9 12

Nutrient applications from biosolids, which serves as a proxy for biosolids applica-
tions, ranged in the immediate catchment from a high of 3.4 kg applied at Pine Creek to
zero application at the SB Potomac site (Table 4). However, in the upstream watershed,
Antietam Creek had the highest biosolids applications (18,240 kg), while the SB Potomac
site still had a relatively small total application of 3.8 kg (Table 5).

Domestic WWTP and industrial discharge facilities were only found in the upstream
catchments for all sites. Antietam Creek had the highest number of domestic WWTPs and
the second highest number of industrial discharges. SB Potomac had the most industrial
discharges and a relatively large number of domestic WWTPs. WB Mahantango had the
fewest facility counts, and Pine Creek had the second lowest facilities (Table 5).

4. Discussion

To our knowledge, plasma concentrations of PFAS in freshwater sportfish, particularly
bass, have not been previously reported in the Potomac and Susquehanna watersheds.
Four PFAS compounds, one sulfonic acid (PFOS) and three carboxylic acids (PFDA, PFUnA,
PFDoA), were detected in the plasma of every fish, although concentrations varied from
site to site and within sites. Two other compounds, PFOSA and PFNA, were detected
but at a lower occurrence and concentrations. Previous studies have shown that longer
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chain compounds tend to bioaccumulate and the sulfonic acid compounds (PFSA) are
more bioaccumulative than carboxylic acid compounds (PFCA) with the same carbon
chain length [28]. The findings in smallmouth bass were consistent with this as two
PFSAs (8 carbons) and four PFCAs (9, 10, 11, 12 carbons) were detected. While these
13 compounds represent a very small proportion of the number of PFAS potentially present
in the environment, the findings indicate that additional monitoring needs to occur.

Smallmouth bass from other geographic areas have been reported to contain PFAS [3,29–33].
Unfortunately, these studies utilized fillets (important for establishing human consumption
guidelines) or liver and so direct comparisons cannot be made. A study in New York
state waterbodies found that liver PFOS concentrations ranged from 10 to 431 ng/g wet
weight, with higher concentrations in males than females. In the current study, there
were no sex differences in PFOS plasma concentrations; however, males did have higher
concentrations of PFUnA and PFDoA. Conversely, in laboratory exposures, female fathead
minnow accumulated higher levels of PFOS than males [34], illustrating effects of species,
tissues, behavior and exposure route. For instance, longer chained PFAS have been shown
to accumulate in sediments [35]. In the spring, it is the male bass that have increased
exposure to sediments as they build and guard the nests.

The relationship between PFAS concentrations in blood/plasma and liver or muscle
in smallmouth bass is currently unknown. Plasma/blood provides a potential non-lethal
sample, may provide better insights into fish health effects and can be sampled repeatedly
from the same individual [36]. It also provides a comparison to human exposure/toxicity
as most human studies utilize blood/plasma/serum. Laboratory and field studies suggest
blood or plasma has the highest concentrations when compared to other tissues, in many
but not all fishes. The distribution of PFOS in tiger puffer fish (Takifugu rubripes) after
a single intraperitoneal injection of 0.1 mg/kg body weight documented plasma levels
over 700 ng/mL on day 1 and 861 ng/mL at 14 days. Mucus, suggested as an elimination
route, had the next highest (690 ng/g) and gradually increased over time. Liver had the
third highest concentrations [37]. Tissue distribution and accumulation were examined
in rainbow trout (Oncorhynchus mykiss) exposed through the water. The greatest PFOS
concentrations were in blood and 94–99% were in plasma versus the cellular fraction. The
lowest concentrations were in muscle [38]. In aqueous lab exposures of fathead minnow,
PFOS concentrations were highest in the blood, followed by liver and gonad [34]. However,
in a study of multiple wild fish species from various sites in Japan, ratios of PFOS between
liver and blood varied widely (0.02 to 179) among species [39]. In the future, it will be
important to determine the tissue distribution of PFAS in smallmouth bass.

Laboratory studies suggest PFOS accumulation in fishes is primarily through aqueous
exposure and dietary sources are secondary [34]. However, the assessment of bioaccumula-
tion factors (combined effects of all uptake pathways) in wild fishes does not necessarily
support that finding. Many factors, including PFOS precursors and temporal variability,
can influence field-based bioconcentration factors (the direct uptake of a chemical by an
organism from water or air), which are generally an order of magnitude higher than con-
trolled laboratory exposures [28,40]. In one study, a bioconcentration factor of 8850 was
estimated between smallmouth bass liver and surface water [33]. A survey of freshwater
fishes from urban rivers and Great Lakes sites indicated that pooled fillet samples from
carnivorous species tended to be higher than other species [31]. Fish species collected from
a lake receiving discharge from a WWTP in Beijing, China, varied in concentrations, some-
what related to trophic level [41]. Smallmouth bass feed on aquatic insects and zooplankton
as young, shifting to predominately fish, crayfish and other prey, and are considered top
predators as adults [42]. Hence, both water and diet may play a role in PFAS concentrations
in smallmouth bass.

Concentrations of plasma PFAS, particularly at the Antietam Creek site, were high
compared to other wild fish species for which blood/plasma data are available in the
literature (Table 6). One exception was in bluegill Lepomis macrochirus from Lake Biwa,
Japan’s largest lake with a high degree of surrounding development. Blood concentrations
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of 455–834 ng/mL were measured in bluegill, while largemouth bass M. salmoides from the
same lake had lower concentrations (317–322 ng/mL). Unfortunately, only two fish of each
species were analyzed and no information on fish size or age was provided [39]. Striped
bass Morone saxatilis collected from the Cape Fear River, North Carolina, downstream of a
PFAS production facility had plasma concentrations of PFOS up to 977 ng/mL [43].

Table 6. Comparison of plasma, serum or blood perfluoroalkyl concentrations in fish species world-
wide as reported in the literature.

Species Range (ng/mL) Citation

Smallmouth bass Micropterus
dolomieu

PFOS 20–574

Current studyPFDA 2–37
PFUnDA 3–55

PFNA BD–1.3

Chub Leuciscus cephalus PFOS 38.9–57.8
[44]PFNA 0.88–7.1

Grey mullet Mugil cephalus

PFOS 93 (mean)

[45]
PFDA 13 (mean)
PFNA 3.8 (mean)

PFUnDA 26 (mean)

Rockfish Sebastes inermis

PFOS 31 (mean)

[45]
PFDA 1.9 (mean)
PFNA 1.9 (mean)

PFUnDA 3.6 (mean)

Crucian carp Carassius auratus

PFOS 48.9–84.4

[41]
PFDA 9.7–25.4

PFUnDA 7.0–15.3
PFOSA 0.3–2.0
PFNA 0.3–1.2

Common carp Cyprinus carpio

PFOS 14.2–32.2

[41]
PFDA 1.4–11.7

PFUnDA 1.1–9.0
PFNA 0.1–0.7

White semiknife carp Hemiculter
leucisculus

PFOS 8.4–11.4

[41]
PFDA 5.2–10.3

PFUnDA 1.7–2.5
PFOSA 1.0–5.8
PFNA 0.3–0.5

Nile tilapia Oreochromis niloticus

PFOS 4.8–6.7

[41]
PFDA 2.9–4.3

PFUnDA 1.6–1.9
PFOSA 0.1–2.8
PFNA 0.3–0.5

Leather catfish Clarias lazera

PFOS 7.0–25.9

[41]
PFDA 5.1–15.5

PFUnDA 5.4–14.1
PFNA 0.1–1.0

Largemouth bass Micropterus
salmoides PFOS 317–322 [39]

Blue gill Lepomis macrochirus PFOS 455–834 [39]

Common carp Cyprinus carpio PFOS 68–77 [39]

Striped bass Morone saxatilis
PFOS 4.6–977

[43]PFDA 1.7–146
PFNA 0.3–11.6
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The four sites in this study were part of a long-term monitoring project primarily
initiated to assess the effects of emerging contaminants from agricultural practices on the
general and reproductive health of smallmouth bass. Hence, these subwatersheds had
varying types and intensity of agricultural land-use and a relatively low (<25%) level of
urbanization (developed). There are likely multiple sources of PFAS in these watersheds.
The pattern among sites for total PFAS and the four compounds measured in all fish was the
same as the pattern of both agricultural and developed land-use in the upstream catchment
(Figure 3). The Antietam Creek site had the highest percentage of both agricultural and
developed land-use, as well as the highest number of domestic WWTPs. In the nearby
Delaware River, higher concentrations were generally measured in the more developed
zones. The same six analytes we detected were also detected in fish fillets from the Delaware
River, with nontidal smallmouth bass having the highest PFOS concentrations of the four
species tested [29].
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Domestic WWTPs, industrial wastewater and biosolid application may all be sources
of PFAS in this study. A better understanding of scale (immediate versus upstream),
transport, types of point sources and types of treatments within individual WWTPs in
a catchment will be necessary to better manage exposure. For instance, a comparison of
samples taken at various stages of treatment in a WWTP demonstrated that PFOS was
3-fold higher in the outflow than the inflow and 8-fold higher in waste-activated sludge
than in primary sludge [5]. The use of these biosolids in agriculture can provide a source
of PFAS through run-off to surface water or by infiltration to groundwater [7,46]. The type
of wastewater facility is also important. In one study, the highest release of PFAS was
from WWTPs with industrial wastewater, second highest in small domestic WWTPs also
receiving commercial and industrial wastewater and lowest in plants with only domestic
wastewater [47]. PFOS, PFDA, PFUnA and PFNA were detected in effluents from both
domestic and industrial source types, although higher in industrial effluents. The highest
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emissions were from the metal and paper industry. Concentrations of PFDoA were higher
in domestic WWTP effluent and PFOSA was only detected in WWTP effluent [47].

5. Conclusions

The results of this study indicate that PFAS are accumulating in smallmouth bass, an
important sportfish, captured in the Potomac and Susquehanna rivers, located within the
Chesapeake Bay watershed. Four compounds were detected in every smallmouth bass
plasma sample and were particularly high at the Antietam Creek site, the site with the
highest developed and agricultural landcover in the upstream catchment. Total plasma
PFAS ranged from 256 to 644 ng/mL at this site and were higher than plasma or blood
concentrations at most sites and species previously reported in the literature. The four
sites varied significantly in concentrations, which was likely due to land-use within the
catchments. It is currently not known if these levels may be associated with impaired
health and reproduction observed in smallmouth in this region. The results suggest further
research is needed to identify sources and to determine if biological effects are associated
with environmentally relevant exposure to these compounds. The latter is particularly
important since little is known about the effects of PFAS exposure and tissue accumulation
in wild fish species.
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