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Johannes Söding*, Michael Remmert, Andreas Biegert and Andrei N. Lupas

Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Spemannstrasse 35,
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ABSTRACT

HHsenser is the first server to offer exhaustive inter-
mediate profile searches,which it combineswithpair-
wise comparison of hidden Markov models. Starting
from a single protein sequence or a multiple align-
ment, it can iteratively explore whole superfamilies,
producing few or no false positives. The output is a
multiple alignment of all detected homologs.
HHsenser’s sensitivity should make it a useful tool
for evolutionary studies. It may also aid applications
that rely on diverse multiple sequence alignments as
input, such as homology-based structure and func-
tion prediction, or the determination of functional
residues by conservation scoring and functional
subtyping.

HHsenser can be accessed at http://hhsenser.
tuebingen.mpg.de/. It has also been integrated into
our structure and function prediction server HHpred
(http://hhpred.tuebingen.mpg.de/) to improve predic-
tions for near-singleton sequences.

INTRODUCTION

Most methods that predict properties about a protein from its
sequence profit from the inclusion of evolutionary information
in the form of a multiple sequence alignment. Examples are
the prediction of secondary structure (1), solvent accessebility
(2), disorder (3), transmembrane helices (4), intraprotein con-
tacts (5), protein–protein interactions (6), subcellular localiza-
tion (7), internal repeats (8), deleterious mutations (9) and
conserved or subtype-specific functional residues (10–13).
Finally, the sensitivity to detect remote homologs depends
particularly on how much sequence information from distant
homologs is used in a pairwise comparison (14,15). The ability
to construct a diverse multiple alignment from a single query
sequence can therefore critically influence the performance of
a vast array of analyses and prediction methods.

To find as many homologs as possible, two approaches have
been taken. In the first, exemplified by PSI-BLAST (16), a
sequence profile or profile hidden Markov model (HMM) (17)
is constructed iteratively by searching a sequence database and
updating the profile with the statistically significant sequence
matches after each round of search. In the second approach
(‘intermediate sequence search’), a search with BLAST or a
similar method is performed and each of the significantly
matched sequences is used as an intermediate sequence for
a new search (18–20). Very similar to the second approach is
intermediate profile search, where PSI-BLAST with a fixed
number of iterations is used instead of BLAST (14,21–23). To
keep computation times manageable, a maximum sequence
identity between intermediate sequences is normally enforced.
For the same reason, the search depth, i.e. the number of
intermediate sequence links, is generally limited to one,
two, or three.

An extension of the third approach was implemented in
SENSER (24), where sequences need not constitute a signifi-
cant match (E-value < 10�3) in order to be used as intermediate
sequences. It suffices if they are found in the trailing end of the
last PSI-BLAST search, i.e. with an E-value below 10. These
sequences are used as seeds for the construction of new align-
ments by PSI-BLAST. If, starting from a new seed sequence,
PSI-BLAST finds the query or one of its already accepted
homologs with E-value lower than 10, the seed and its
homologs are accepted. This concept, referred to as ‘back-
validation’, relies on the asymmetry inherent in profile-
sequence comparison. Owing to its sensitivity, SENSER
was quite successful in several CASP competitions, but the
unpredictable risk of false positives made manual checking
of results necessary. We ascribe this to the heuristic, non-
statistical nature of the back-validation criterion.

HHsenser was inspired by this method and has adopted the
concept of seeds and trailing ends. Instead of back-validation,
we use HMM–HMM comparison (25) in combination with a
score correlation analysis. This should make HHsenser subs-
tantially more sensitive than straightforward implementations
of intermediate profile search (14,22,23) (see caption of
Figure 2). At the same time, it increases selectivity as compared
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with SENSER. Since HHsenser has not been described before,
we will give a brief explanation in the following section.

METHOD

HHsenser takes a single query sequence or amultiple alignment
as input and returns two multiple alignments, a strict alignment
and a permissive one. The strict alignment normally contains
only homologous sequences, whereas the permissive one occa-
sionally includes unrelated sequences. On the other hand, it
often contains homologs not present in the strict alignment.
The strict alignment may be more suitable for automated
analyses, whereas the permissive alignment can be very useful
for further expert analysis, where the occurrence of a limited
number of non-homologous subgroups poses no problems (26).

The flow chart of HHsenser is shown in Figure 1. The query
is used as the first seed in an iterated PSI-BLAST search with
an E-value threshold of E ¼ 10�3 (steps 0–4). Steps 5–7 are
skipped in the first pass, since the strict alignment is still
empty. The alignment parsed out from the PSI-BLAST results
is copied into the strict and permissive alignment (steps 8 and
9) and all matched sequence segments up to E ¼ 1 are
appended to the list of seeds (step 10). If there are seeds
left in the list (step 1), a new seed is taken (step 2) and com-
pared with all seeds for which an alignment has already been
built (step 3). If the pairwise sequence identity to all these
seeds is below an adjustable threshold (e.g. 30%), this seed is
used to generate a new alignment with PSI-BLAST (step 4).
The alignment is compared with the strict alignment by pair-
wise comparison of HMMs (step 5) (25). A correlation anal-
ysis is performed and an effective E-value is calculated. This is

Figure 1. Simplified flow chart (left) and schematic diagramofHHsenser (right). The redX in the diagram is the query sequence, the other, smallerX’s represent seed
sequences from which new alignments are built (shaded disks). The large circles indicate the space from which new seeds are selected (arrows). The large search
radius (E < 1) together with sensitive HMM–HMM comparison allows to jump wide gaps between related families (green arrow).
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to account for the fact that the seed sequence may be a high-
scoring false positive that was selected by PSI-BLAST for its
chance similarity with the query profile from a large sequence
database (see below). If the P-value from the HMM–HMM
comparison is below 10�4 and the effective E-value is below 1
(step 6), the new alignment is appended to the permissive
alignment by HMM–HMM comparison (step 9) (25). If the
P-value is below 10�6 and the effective E-value is below 10�3,
the new alignment is appended also to the strict alignment
(steps 7 and 8). Finally, all matches that scored better than
E ¼ 1 in the last PSI-BLAST search are added to the list of
seeds. The process continues until all seeds have been pro-
cessed. If a multiple alignment is given as input instead of a
single sequence, this alignment is used to jump-start one round
of PSI-BLAST, upon which the program proceeds directly to
step 7.

To understand the necessity of calculating an effective
E-value, assume, for example, that a false positive seed was
found with an E-value of 0.1 and that this seed is a singleton, in
other words the PSI-BLAST alignment contains only the seed
itself. An HMM-HMM comparison between this single-
sequence alignment and the strict query alignment would
give approximately the same P-value as the profile-sequence
comparison in PSI-BLAST. With an effective database size of
106 the P-value would therefore be P � 10�7. Hence, the
sequence would get a good P-value just because it was
selected from a large database for its chance similarity with
the query alignment.

Several measures have been devised to improve efficiency,
sensitivity and selectivity:

� We have developed an ‘end-pruning’ procedure for
PSI-BLAST that can significantly reduce the amount of
non-homologous sequences creeping into the alignments
(J. Söding, unpublished data).

� The maximum sequence identity threshold in step 3 is auto-
matically adjusted according to the number of seeds in the
list. It varies from 80% (<6 seeds) to 25% (>1000 seeds),
thereby avoiding excessively long search times for large
superfamilies.

� When extracting seeds in step 10, we add up to 50 residues
on either side to the sequence segment matched by PSI-
BLAST. In this way, we make sure that new seeds are
not always shorter than their parent seed, since this
would effectively limit the search depth.

� The first time that step 10 is performed, we extract a mini-
mum number of four seeds from the PSI-BLAST results,
even if they have E-values higher than 1. This increases
chances of bridging the gap between singleton sequences
and their closest homologs.

� Four databases can be selected: the non-redundant database
(nr) at NCBI, and four filtered versions containing only
eukaryotic, prokaryotic, bacterial, or archaeal sequences.

� We use versions of the sequence databases (e.g. nr90f and
nr70f) that are clustered at 90 and 70% maximum pairwise
sequence identity by CD-HIT (22). In PSI-BLAST searches,
we start with the nr90f and automatically switch to the nr70f
when >50 homologs are found. As a consequence, not all
homologs contained in the complete nr database may appear
in the alignments returned by HHsenser. If this is desired,
however, the option ‘Show representative sequences’ can be

disabled. In this case, the last PSI-BLAST search in step 4
will use the unclustered database.

In principle, our method works for single as well as multido-
main sequences. However, it is recommended to break the
sequence up into single domains (using HHpred or a similar
method) since multi-domain sequences are at an increased risk
of having non-homologous sequence segments included dur-
ing the PSI-BLAST searches.

From the symmetry of HMM–HMM comparison one might
be tempted to conclude that HHsenser will find the same
sequences no matter with which particular sequence in a fam-
ily it is started with. This is wrong for two reasons. First, even
though the HMM–HMM comparison step is symmetric, the
PSI-BLAST searches to detect new seed sequences are not. A
sequence that has no homologs up to a BLAST E-value of 10
might very well come out as a significant match when the
database is searched with a PSI-BLAST profile of related
sequences. Second, the query sequence automatically defines
the match state assignment for the strict and permissive HMMs
used in the HMM–HMM comparisons in steps 5, 8 and 9:
all aligment positions with a residue in the query sequence
are assigned to match states, all others are inserts. Therefore,
when starting from a different sequence, different positions
will normally be assigned to match and insert states. In
practice, we find that most of the times the choice of the
start sequence does not influence the number of subgroups
found and the sets of detected sequences do overlap to a
high degree.

A downside of HHsenser, as of other intermediate profile
search methods, are the long computation times involved, in
particular when the query sequence is a member of a large
superfamily. With �1000 homologs in the nr90f database, the
calculation time is typically <5 h, but for the largest super-
families (like AAA+ ATPases, outer membrane beta barrels,
TIM barrels or immunoglobulins) a search may take several
days. To avoid straining our computational resources too
much, we have therefore set a limit of 500 residues in the
input sequence. Also, when a number of 5000 homologs is
exceeded the search will terminate and the current results are
returned. Last, the number of HHsenser jobs is limited to 10
and additional jobs will be queued. Users who would like
to perform searches without these limitations are asked to
contact us.

EXAMPLE APPLICATIONS

Pei and Grishin recently found by manual transitive PSI-
BLAST searches and sequence analysis that the putative
endopeptidase P5 from bacteriophage phi-6 and the family
of lytic transglycosilases that cleave bacterial peptidoglycans
are distantly related (27). When HHsenser is launched with
P5 (spjP07582jVLYS_BPPH6) and default parameters, it
returns 1591 sequences in the strict alignment and 1991 seq-
uences in the permissive one (Figure 2). A clustering analysis
with CLANS (28) reveals that P5 from phi-6 is indeed a distant
member of a superfamily containing various families of lytic
transglycosilases (PilT, LysM, SLT, mltC/mltE, resuscitation-
promoting factor Rpf), a group of putative periplasmic-
binding transport proteins, lysozyme C and G, and several
as yet undescribed groups of hypothetical proteins. We
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found no obvious false positives in either the strict or permiss-
ive alignment. This search took�3 h to complete on a 2.2 GHz
AMD64 PC.

A further example is the family of AbrB-like transcription
factors which we have studied recently (26). When the struc-
ture of AbrB was solved, we were surprised to learn that it
adopted a new fold even though previous sequence analyses
conducted in our group had indicated that it should be related
to MazE and MraZ, two proteins which fold into swapped-
hairpin barrels. We therefore decided to study AbrB and its
homologs in more detail. HHsenser was started with the

sequence of AbrB in Bacillus subtilis (ABRB_BACSU) and
after �5 h it returned a permissive alignment with 724
sequences that contained no identifiable false positives.
Both MazE and the two domains of MraZ showed up in
our alignments. We therefore decided to redetermine the struc-
ture of AbrB and found indeed that it is very similar to the
swapped-hairpin barrel of MazE and MraZ. Clustering of the
sequences with CLANS resulted in eight major groups of
bacterial transcription factors, six of which had been described
before and two of which were groups of hypothetical proteins
from cyanobacteria and proteobacteria. With the default

Figure 2. Sample output of HHsenser showing a part of the stringent alignment of lytic transglycosilases obtained with protein P5 from bacteriophage phi-6 as
starting sequence. The overlaid window shows a JalView applet (30). Tabs allow to switch to the stringent alignment, the permissive alignment, the sequences
rejected in the course of the transitive search and the various intermediate aligments accepted as homologs. Files can be downloaded via links, either with or without
inserts relative to the query sequence.
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parameters in our web server, all but the proteobacterial
group of hypothetical proteins are recovered without false
positives.

CONCLUSION

Starting from a single sequence, HHsenser is able to explore
the space of homologous sequences and align these to the
query sequence by HMM–HMM comparison. Its distinctive
feature is its ability to jump between distantly related families
while producing few or no false positives. In combination with
an interactive clustering method such as the publicly available
CLANS program (28), HHsenser is in our experience a pow-
erful tool for the functional annotation and evolutionary anal-
ysis of whole protein superfamilies (26).

Its main drawback is the long computation times necessary
for these exhaustive searches. Since we believe that HHsenser
can be particularly useful for singletons or sequences with only
few PSI-BLAST-detectable homologs, we offer a quick, non-
exhaustive version that can be called from the results page of
our structure and function prediction server HHpred (29). The
search will terminate as soon as 100 homologs have been
found, which will normally take <15 min.
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