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Abstract: Fibronectin (FN) contributes to cell adhesion, proliferation, and differentiation 

in various cell types. To enhance the activity of fibronectin at the sites of focal adhesion, 

we engineered a novel recombinant fibronectin (FNIII10) fragment connected to the 

peptide amphiphile sequence (PA), LLLLLLCCCGGDS. In this study, the effects of 

FNIII10-PA on rat mesenchymal stem cells (rMSCs) were compared with those of FNIII10. 

FNIII10-PA showed the prominent protein adhesion activity. In addition, FNIII10-PA 

showed a significantly higher effect on adhesion, proliferation, and differentiation of rMSCs 

than FNIII10. Taken together, the FNIII10-containing self-assembled sequence enhanced 

rMSCs adhesion, proliferation, and differentiation. 
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1. Introduction 

Recently, the interest in self-assembly is increasing in various tissue engineering areas. Self-assembly 

is defined as the organized structure or pattern of many components, such as phospholipids, peptides, 

or proteins [1,2]. Of the possible self-assembled components, self-assembled peptides serve as building 

blocks due to their small size, ease of synthesis, and physical and chemical stability [3]. In addition, 

self-assembled peptides exhibit biocompatibility and molecular recognition [4]. Designed self-assembled 

peptides form fibril, nanotube, and nanosphere structures under solvent, temperature, and pH condition [5,6]. 

Based on these characteristics, self-assembled peptides are widely studied in tissue engineering,  

as well material science [7]. For instance, octapeptide, FEFEFKFK (F, phenylalanine; E, glutamic acid; 

K, lysine) formed self-supporting hydrogels and supported viability, morphology retention, and 

collagen type II deposition of bovine chondrocytes [8]. In other study, Gelain et al. designed RADA16  

(Ac–RADARADARADARADA–COHN2), RADA16-bone marrow homing peptide 1 (BMHP1), 

RADA16-bone marrow homing peptide 2 (BMHP2), and controlled the three-demensional culture of 

neural stem cells [9]. Arg–Gly–Asp (RGD) peptide has also been extensively studied. The application 

of RGD peptide to polylactide (PLA) or poly (ethylene oxide) (PEO) enhanced cell functions, such as 

adhesion and migration [10,11]. In addition, small molecules, such as ECM, regulate the surface of 

biomaterials, leading to influence on stem cell culture and differentiation [12]. Thus, self-assembled 

peptides have different functions according to the sequence design. 

Interestingly, fibronectin (FN) has self-assembled characteristics. This is attributed to it having RGD 

in the FN structure [13]. FN is a major component of the extracellular matrix (ECM) and its structures 

are classified as type I, II or III [14,15]. FN type III has specific domains, such as a central cell binding 

domain (CCBD) and a heparin binding domain (HBD). In particular, CCBD containing RGD is  

an essential domain that confers cell adhesion [16]. FN commonly promotes cell proliferation, 

migration, and differentiation, as well as cell adhesion [15,17,18]. We previously reported that various 

recombinant FN type III domain fragments showed cell adhesion activity. Furthermore, we showed 

that this cell adhesive activity is dependent on FN type III domain fragments. FNIII9-10 commonly 

promoted adhesion, proliferation, and the differentiation of osteoblasts [19,20]. In a previous study, 

FNIII12-14 showed lower cell adhesive activity than FNIII8-10 [21]. Somewhat surprisingly, FNIII8-14 

demonstrated the highest cell adhesive activity [18]. 

Here, we designed the amphiphile sequence and constructed FNIII10-PA. In the present study,  

we investigated the effect of FNIII10-PA on rMSCs compared to FNIII10. The protein adhesion 

activity and the effects of FNIII10-PA on the rMSCs adhesion and proliferation were investigated. 

Furthermore, the osteogenic differentiation activities of FNIII10-PA on rMSCs were investigated by 

real-time PCR. 
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2. Results and Discussion 

2.1. Expression and Purification of FNIII10-PA in Escherichia coli (E. coli) 

In this study, we constructed and purified FNIII10-PA in E. coli and used purified FNIII10 as  

a control. FNIII10 and FNIII10-PA were purified by using a nickel–nitrilotriacetic acid resin column. 

The yields for purified FNIII10 and FNIII10-PA from 1 liter culture were 1.2 and 1.3 mg/mL, respectively. 

Final purity was approximately 98%. 

Figure 1B showed the morphology of FNIII10-PA. FNIII10-PA was self-assembled as a fibrous 

structure and condensed. 

The molecular weights of FNIII10 and FNIII10-PA were determined by Western blotting.  

As shown in Figure 1C, the molecular weights of FNIII10 and FNIII10-PA were approximately  

25 and 27 kDa, respectively. As was expected, the difference of molecular weight was due to the 

designed amphiphile sequence. 

 

Figure 1. Structure (A), SEM image (B) and molecular weight (C) of FNIII10-PA. Peptide 

amphiphile sequence (PA), LLLLLLCCCGGDS (L, leucine; C, cysteine; G, glycine;  

D, aspartic acid; S, serine) was connected with fibronectin type III10. The molecular 

weight of FNIII10 and FNIII10-PA are approximately 25 (Lane 1) and 27 kDa (Lane 2). 

2.2. Protein Adhesion Activity of FNIII10-PA 

Figure 2 showed the protein adhesion activities of FNIII10 and FNIII10-PA. The protein adhesion 

activity of FNIII10-PA was dose-dependently increased. At over 0.5 μg·mL−1, the protein adhesion 

activity of FNIII10-PA was significantly higher than that of FNIII10 (* p < 0.05 and *** p < 0.001).  

In particular, FNIII10-PA at 5 μg·mL−1 dramatically increased protein adhesion (*** p < 0.001). FN is 

known to be a pivotal adhesive protein and to promote cell adhesion and, therefore, FN is widely  

used with materials to improve cell adhesion, as well as protein adhesion. For example, FN on poly 

(vinyl alcohol) hydrogels has been reported to enhance fibroblast proliferation, migration, and 

adhesion [22], and FN on functionalized hydroxyapatite was found to improve dermal fibroblast 

attachment [23]. FNIII10 containing PA promoted protein adhesive activity of FNIII10. 
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Figure 2. Protein adhesion activity of FNIII10-PA. Twenty-four well plates were coated 

with various concentrations of FNIII10 or FNIII10-PA overnight at 4 °C. After the addition 

of antibody, Turbo-TMB ELISA was added. Protein adhesion activities are expressed as 

mean ± SD (n = 3). * p < 0.05 and *** p < 0.001. 

2.3. rMSCs Adhesion Activity Promotion by FNIII10-PA 

To examine the effect of FNIII10-PA on cell adhesion, rMSCs were cultured on 24-well plates 

coated with FNIII10 or FNIII10-PA in FBS-free medium for 1 h. FNIII10-PA showed dose-dependent 

cell adhesion activity, as shown Figure 3A. The cell adhesion activity of FNIII10-PA at 5 μg·mL−1 was 

significantly greater than that of FNIII10 (** p < 0.005; Figure 3A). As shown in Figure 3B, FNIII10-PA 

at 5 μg·mL−1 increased rMSC adhesion compared to the FNIII10 through DAPI and F-actin staining. 

Many studies have demonstrated the cell adhesion activity of FN itself [24–26]. Based on protein 

adhesion and cell adhesion data, FNIII10-PA at μg·mL−1 was used in subsequent experiments. 

 

Figure 3. Cell adhesion activities of FNIII10-PA on rMSCs. Twenty-four well plates were 

coated with various concentrations of FNIII10 or FNIII10-PA overnight at 4 °C. Cells were 

seeded at a density of 1 × 105 cells/well on plates and incubated for 1 h at 37 °C. (A) Cell 

adhesion activities were measured by crystal violate assay and expressed as mean ± SD  

(n = 3). ** p < 0.005; (B) CLSM images (nuclei in blue and F-actin in red). Scale bar, 50 μm. 
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2.4. The Promotion of rMSCs Proliferation Activity by FNIII10-PA 

Cell proliferation was examined using a MTT assay. At day 5, the cell proliferative activity of 

FNIII10-PA was significantly greater than FNIII10 (* p < 0.05; Figure 4). These results are entirely 

consistent with our earlier studies. FN promoted adhesion, viability, and proliferation of MSC to 

electrospun polyethylene terephthalate (PET) and polyurethane (PU) [27]. Therefore, research of 

FNIII10-PA potentiates to improve with materials in tissue engineering. 

 

Figure 4. Cell proliferation activities of FNIII10-PA on rMSCs at 5 days. Twenty-four well 

plates were coated with 5 μg·mL−1 of FNIII10 or FNIII10-PA overnight at 4 °C. Cells were 

seeded at a density of 1 × 105 cells/well on the plates and incubated for 5 days at 37 °C. 

Formazan absorbance was used as a measure of cell proliferation. Cell proliferation activities 

are presented as means ± SD (n = 3). * p < 0.05. 

2.5. Osteogenic Differentiation Gene Eexpression by FNIII10-PA 

To examine the osteogenic differentiation activity of FNIII10-PA, the mRNA levels of osteogenic 

differentiation gene markers, that is, Col I, OC, OPN, and Runx2, were measured by real-time PCR. 

Among the five most common types, Col I is found in skin, tendons, vascular ligature, organs, and 

bones. Particularly, Col I is a main component of the organic part of bone. Furthermore, a deficiency 

of Col I cause osteogenesis imperfecta [28]. OC is secreted by osteoblasts and participates in bone 

mineralization. OC is used as a marker of bone formation [29], as is OPN, whereas Runx2 is a crucial 

transcription factor involved in osteogenic differentiation [30,31]. In the present study, FNIII10-PA 

induced the osteogenic differentiation by up-regulation of all genes. The gene expressions of Col I, OC 

and Runx2 were significantly up-regulated by FNIII10-PA at 7 days (* p < 0.05, ** p < 0.005, and  

*** p < 0.001; Figure 5). In particular, FNIII10-PA significantly increased Col I expression (*** p < 0.001). 

In consistent with our results, Zhang et al. reported that FN exhibits the osteogenic differentiation 

activity [32,33]. Our qPCR results showed that FNIII10-PA promoted the osteogenic differentiation of 

rMSCs moreso than FNIII10 itself. 
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Figure 5. Osteogenic differentiation activities of FNIII10-PA on rMSCs at 7 days. 

Twenty-four well plates were coated with 5 μg·mL−1 of FNIII10 or FNIII10-PA overnight 

at 4 °C. Cells were seeded at a density of 1 × 105 cells/well on plates and incubated for  

7 days at 37 °C. On day 7, quantitative real-time PCR results were analyzed. * p < 0.05,  

** p < 0.005, and *** p < 0.001. 

3. Experimental Section 

3.1. Construction of Expression Plasmids 

Amphipathic peptide has hydrophobic and hydrophilic regions in its structure. Thus, amphipathic peptides 

strongly tend to self-assemble one-dimensionally, leading to be amyloid-like fibril structures [34].  

In consideration of this characteristic, we designed a peptide amphiphile sequence consisting of  

a hydrophobic and hydrophilic peptide with FN type III10 (FNIII10-PA). As shown in Figure 1A,  

the LLLLLLCCCGGDS (L, leucine; C, cysteine; G, glycine; D, aspartic acid; S, serine) was designed. 

To construct FNIII10-PA, the PA sequence was amplified using the following primers, 5′-ATTGAT 

TATTTGCACGGCGT-3′, and 5′-TTAGAATTCTTAAAACAGCAGCAGCAGCAGAAACAGCAG 

GCAGCAGCAGCCGCCATCGCTATCGCTGCCGGTACCGCCCTCGAG-3′. PCR was performed 

over 30 amplification cycles (1 min at 55 °C annealing, 1 min at 72 °C extension, and 1 min at 94 °C 

denaturation). Amplified PCR products were digested with NheI and EcoRI, and after digestion, PCR 

products were ligated into pBAD-HisB-FNIII10, pBAD-HisB-FNIII10-PA to give the final constructs. 

3.2. Protein Expression and Purification 

After transformation into TOP10 Escherichia coli (E. coli), cells were grown in Luria-bertani (LB) 

medium containing ampicillin overnight at 37 °C. When the absorbance of cultures reached 0.6 (A600), 

induction was initiated with 0.1% (w/v) L-arabinose, and cells were incubated at 20 °C for 6 h. Bacteria 

were pelleted by centrifugation at 6000× g for 10 min, lysed, and sonicated. A soluble extract was 

prepared by centrifugation for 30 min at 14,000× g in a refrigerated centrifuge, and the supernatant so 

obtained was purified using a nickel-nitrilotriacetic acid resin (Invitrogen, Carlsbad, CA, USA). 

The purities of FNIII10 and FNIII10-PA were examined under denaturing conditions by Coomassie 

Brilliant Blue staining on a 12% (v/v) sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). 

Western blotting was performed using a peroxidase conjugate of a monoclonal anti-polyhistidine 
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antibody (sc-8036 HRP, Santa Cruz Biotechnology, Santa Cruz, CA, USA) to confirm the expression 

of the recombinant fusion protein. Molecular sizes were confirmed by comparison versus the migration 

of pre-stained protein marker (Elpis Biotech, Daejeon, Korea) run in parallel lanes. 

3.3. FNIII10-PA Morphology 

After purification of FNIII10-PA, we observed the structure of FNIII10-PA under the condition of 

pH 5 via scanning electron microscopy (SEM) at an accelerating voltage of 15 kV after fixing with 

glutaraldehyde (2.5%), dehydrating with a graded series of ethanol (75%, 90%, 95%, and 100% (v/v) 

for 10 min each), and treating with hexamethyldisilazane and coating with platinum. 

3.4. Protein Adhesion Assay 

To evaluate protein adhesion activity, 24-well plates were coated only once with FNIII10 or 

FNIII10-PA (0–10 μg·mL−1) overnight at 4 °C. After incubation, each well was washed with 

phosphate-buffered saline (PBS). Wells were then blocked with 1% (w/v) BSA solution for 1 h  

at room temperature (RT). After washing with PBS, a peroxidase conjugate of a monoclonal  

anti-polyhistidine antibody was added and incubated for 1 h at RT. After washing with TBS-T,  

200 μL Turbo TMB-ELISA was added and incubated for 30 min at RT. H2SO4 (100 μL, 2 M) was then 

added to stop the reaction. The absorbance of each well was read at 450 nm using a microplate reader. 

Protein adhesion assay was performed in negative control group (un-treated), positive control group 

(FNIII10), and experimental group (FNIII10-PA). The value of negative control was approximately 

equal to the value of FNIII10 and FNIII10-PA. Hence, results were expressed as the comparison 

between FNIII10 and FNIII10-PA without negative control. 

3.5. Cell Isolation and Culture 

To isolate rat mesenchymal stem cells (rMSCs), male adult Sprague-Dawley rats (4–5 weeks old, 

180–200 g) were purchased. rMSCs were isolated from bone marrow of rat femurs and tibias, 

according to the code of practice for the care and use of animals for scientific purposes approved by 

Animal Ethics Committee, Dankook University. The bone marrow was flushed with α modified 

Eagle’s medium (a-MEM; Gibco, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS; Gibco, Carlsbad, CA, USA), and 1% penicillin–streptomycin using 10 mL 

syringes and filtered with a 40-μm nylon filter (Cell strainer, BD Biosciences, Spark, MD, USA). 

rMSCs were cultured in α-MEM containing 10% FBS, 100 units/mL penicillin G sodium, 100 mg/mL 

streptomycin sulfate, and 0.25 mg·mL−1 amphotericin B (Invitrogen, Carlsbad, CA, USA) in a 5% CO2 

atmosphere at 37 °C. Confluent cells were detached with 0.25% trypsin-EDTA for 5 min, and  

aliquots were subcultured. rMSCs maintained for three passages were used for further cell adhesion, 

proliferation, and differentiation studies. 

3.6. Cell Adhesion Assay 

Cell adhesion activity was measured using the crystal violet assay. Twenty-four well plates were 

coated only once with FNIII10 or FNIII10-PA (0–10 μg·mL−1) overnight at 4 °C. After incubation, 
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each well was washed with Dulbecco’s phosphate-buffered saline (DPBS), and then blocked with  

1% (w/v) bovine serum albumin (BSA) solution for 30 min. rMSCs, prepared in α-MEM serum-free 

medium at 1 × 105 cells/well, were seeded in each plate and, 30 min later, adherent cells were washed 

twice with DPBS and fixed with 3.7% (w/v) formalin solution for 15 min at room temperature.  

Cells were then stained with 0.25% (w/v) crystal violet (Sigma, St. Louis, MO, USA) in 2% (v/v) 

ethanol/water for 1 h at 37 °C, and gently washed 3 times with DPBS. Cells were then lysed with  

2% SDS solution and transferred to 96-well plates. Absorbances were read at 570 nm using  

a microplate reader. Results were expressed as the comparison between FNIII10 and FNIII10-PA. 

3.7. DAPI and F-Actin Staining 

To observe the adhesion effect of rMSCs by FNIII10-PA, F-actin and DAPI staining were 

performed. Cells were seeded with 1 × 105 cells/well. After incubation for 1 h, cells were fixed with 

4% paraformaldehyde, the cells were permeabilized with 0.2% Triton-X100. Cells were blocked with 

5% BSA solution for 1 h after washing. Then, cells were stained with phalloidin (A22283, Invitrogen, 

Carlsbad, CA, USA) to stain F-actin and the nuclei were stained with DAPI (P36935, Invitrogen, 

Carlsbad, CA, USA). The fluorescence image was obtained by confocal laser scanning microscopy 

(CLSM, Carl Zeiss 510L, Oberkochen, Germany). 

3.8. Cell Proliferation Assay 

Cell-proliferating activity was assessed using a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) MTT viability assay, which measures the metabolic activity of viable cells, and was used for 

the indirect cell quantification according to the manufacturer’s instructions (Promega, Madison, WI, 

USA). FNIII10 and FNIII10-PA protein solutions were coated at 5 μg·mL−1 on 24-well plates, and 

then rMSCs were plated at a density of 1 × 105 cells/well and incubated for 5 days at 37 °C. Cells were 

then washed three times with DPBS and 500 μL of MTT (5 mg·mL−1 in PBS) was added to each well. 

After 4 h of incubation, media were removed and formazan crystals were dissolved in 200 μL dimethyl 

sulfoxide (DMSO). Well absorbances were read at 540 nm using a microplate reader. Cell proliferation 

assay was performed in negative control group (un-treated), positive control group (FNIII10), and 

experimental group (FNIII10-PA). After identifying the effect of FNIII10 and FNIII10-PA as compared 

with negative control, results were expressed as the comparison between FNIII10 and FNIII10-PA. 

3.9. Quantitative Real-Time PCR Analysis 

FNIII10 or FNIII10-PA protein was coated at 5 μg·mL−1 onto 24-well plates, and then, rMSCs were 

plated at a density of 1 × 105 cells/well and incubated for 7 days at 37 °C. Total RNA was extracted 

using an Easy-spin RNA Extraction kit (iNtRON, Seoul, Korea), and the cDNA was synthesized.  

The overexpressions of genes such as collagen type I (Col I), osteocalcin (OC), osteopontin (OPN), 

and runt-related transcription factor 2 (Runx2) were confirmed by quantitative real-time PCR. 

All real-time PCR analyses were performed using an ABI Step One real-time PCR system.  

Each reaction was performed in a 20 μL reaction mixture containing 0.1 µM of each primer, 10 µL of 

2× SYBR Green PCR master mix (Applied Biosystems, including AmpliTaq Gold DNA polymerase in 
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buffer, a dNTP mix, SYBR Green I dye, Rox dye, and 10 mM MgCl2), and 1 µL of template cDNA. 

The Ct (cycle threshold) value for each gene was determined using the automated threshold  

analysis function in the ABI instrument and normalized with respect to Ct(GAPDH) to obtain dCt  

(dCt = Ct(GAPDH) − Ct(specific gene)). Finally, Ct value of FNIII10-PA was normalized by the Ct value  

of FNIII10. The primers used for quantitative PCR are shown in Table 1. The qPCR results were also 

expressed as the comparison between FNIII10 and FNIII10-PA. 

Table 1. Sequences of primers used for real-time PCR. 

Genes Forward Primer Reverse Primer 

GAPDH 5′-TGGAAGGACTCATGACCACA-3′ 5′-TTCAGCTCAGGGATGACCTT-3′ 
Col I 5′-CTGGCAAGAACGGAGATGAT-3′ 5′-TTAGGACCAGCAGGACCAGT-3′ 
OC 5′-CATCACTGCCACCCAGAAGAC-3′ 5′-CAGTGGATGCAGGGATGATGT-3′ 

OPN 5′-CCAATGAAAGCCATGACCAC-3′ 5′-CGACTGTAGGGACGATTGGA-3′ 
Runx2 5′-CGCCCCTCCCTGAACTCT-3′ 5′-TGCCTGCCTGGGATCTGTA-3′ 

3.10. Statistical Analysis 

Experiments were conducted in triplicate. Experimental results were expressed as mean ± standard 

deviation (SD). The Student’s t-test with paired data sets was used to determine the significances of 

differences between two groups. Statistical significance was accepted for p values <0.05. 

4. Conclusions 

In summary, we found that FNIII10-PA containing the amphiphile sequence dramatically increased 

protein adhesion activity. Cell adhesion and proliferation of rMSCs were also enhanced by FNIII10-PA 

compared to FNIII10. Interestingly, FNIII10-PA induced the osteogenic differentiation of rMSCs  

in all genes. Consequently, the amphiphile sequence of FNIII10-PA enhances the proliferation, 

differentiation, and adhesion of rMSCs. Further, FNIII10-PA potentiates utilization for tissue 

engineering with various materials, as well as FNIII10-PA alone. 
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