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Abstract
Gestational and developmental cues have important consequences for long-term health,

behavior and adaptation to the environment. In addition, social stressors cause plastic

molecular changes in the brain that underlie unique behavioral phenotypes that also modu-

late fitness. In the adult African cichlid, Astatotilapia burtoni, growth and social status of

males are both directly regulated by social interactions in a dynamic social environment,

which causes a suite of plastic changes in circuits, cells and gene transcription in the brain.

We hypothesized that a possible mechanism underlying some molecular changes might be

DNA methylation, a reversible modification made to cytosine nucleotides that is known to

regulate gene function. Here we asked whether changes in DNA methylation of theGnRH1
gene, the central regulator of the reproductive axis, were altered during development of A.
burtoni. We measured changes in methylation state of theGnRH1 gene during normal

development and following the gestational and developmental stress of social crowding.

We found differential DNAmethylation within developing juveniles between 14-, 28- and 42-

day-old. Following gestational crowding of mouth brooding mothers, we saw differential

methylation and transcription of GnRH1 in their offspring. Taken together, our data provides

evidence for social control of GnRH1 developmental responses to gestational cues through

DNA methylation.

Introduction
To survive, it is essential for animals to respond quickly to changes in their environment. Over
longer time-scales, environmental changes can produce life-long effects on both behavior and
physiology. In humans, for example, variations in quality of early life experiences have been
associated with a number of psychological consequences such as increased depression and
anxiety [1, 2]. Such changes in behavior are often accompanied with a suite of anatomical [3]
and molecular marks [4, 5]. One mechanism known to regulate transcriptional gene function
is epigenetic modification. Epigenetic modifications such as histone modification and DNA
methylation [6, 7] are known to have important roles during cell division, imprinting, and dif-
ferentiation [8, 9]. These epigenetic changes, specifically DNA methylation, can also occur in
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response to environmental events, both during early development and in later life [10–13]. In
rodents, for example, variations in the quality of early maternal care has been correlated with
stress reactivity and is thought to be regulated, at least in part, by changes in the methylation
state of the glucocorticoid receptor (GR) gene [14]. In humans, prenatal exposure to maternal
depression during pregancy has been associated with differential methylation of the human
GR, NR3C1, [15] and suicide completers with a history early-life abuse were found to have
increased methylation of rRNA and NR3C1 [16, 17]. Furthermore, unique signatures of DNA
methylation accompany and mediate transgenerational effects underlying behaviors related to
stress [18, 19] underlining their importance in generational adaptation to stress.

Here, we asked whether there was a DNA methylation response to social stress, particularly
related to reproductive activity mediated by the brain-pituitary-gonadal (BPG) axis. The brain
regulates sexual maturation and reproduction [20] via this axis by delivering gonadotropin-
releasing hormone 1 (GnRH1) from the brain to the pituitary. GnRH1 is a decapeptide highly
conserved in all vertebrates [21, 22], that is synthesized in neurons located in the basal fore-
brain or pre-optic area (POA) [23, 24] that signals the pituitary to release gonadotropin hor-
mones LH and FSH into the bloodstream. The reproductive pathway is highly responsive to
stress with a consequent strong inhibitory effect [25, 26].

Here, we studied gene-specific DNAmethylation and its effect on transcription in response
to social stress in females of an east African cichlid fish species, Astatotilapia burtoni. In this
species, social interactions regulate the male reproductive system directly. There are two dis-
tinct, socially reversible, phenotypes: dominant males that are reproductively competent and
subordinate males that are reproductively incompetent. The difference in social status is evi-
dent with the increase in GnRH1 expression that occurs when animals ascend in social status,
become brightly colored, change their behavioral repertoire, and become reproductively capa-
ble [27, 28]. In females, there is an equivalent change in GnRH1 regulation but it follows an
internal cycle with peak GnRH1 expression just prior to spawning [3]. A female becomes gravid
approximately on a 6-week cycle and once it mates with a male, collects the eggs in her mouth
where she broods them for two weeks before releasing them as fry (Fernald, 1977).

We measured the methylation levels of GnRH1 during normal development as well as
under conditions where the mother was stressed through crowding. We examined the CG
nucleotide sites where methylation occurs by sampling developing fry at different times and
subsequently measured resulting GnRH1 DNAmethylation patterns across the whole animal.
To see whether GnRH1methylation could be affected by an adverse early-life environment, we
housed brooding females either at low density or in crowded aquaria. GnRH1methylation and
transcription levels were then measured in the progeny of females crowded while brooding and
compared with methylation and transcription levels in normal breeding females at 2 weeks
post-fertilization.

Materials and Methods

Animals
All animal work was performed in compliance with the animal care and use guidelines of the
Stanford University Administrative Panel for Laboratory Animal Care (Protocol 9882).

Subjects were laboratory-bred cichlid fish A. burtoni, derived from stock wild-caught in
Lake Tanganyika, Africa [29]. Animals were housed in aquaria under conditions that closely
mimic their natural habitat (28°C, pH 8.0, 12 hours light and 12 hours dark cycle with full spec-
trum illumination, and constant aeration), and fed daily with cichlid pellets and flakes approxi-
mately one pellet and one flake per adult fish (AquaDine, Healdsburg, CA). Juvenile animals
were fed ground flakes with a diameter smaller than the width of their mouths and their diet
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was supplemented with brine shrimp. Aquaria contained gravel substrate and semi-cylindrical
terra-cotta pots that served as shelters and spawning territories.

Raising juvenile animals
Eight breeding females were raised in large aquaria (151 L) or small aquaria (30 L) for non-
crowded and crowded social paradigms, respectively. Non-crowded breeding tanks contained
2 size-matched males between 3 cm and 5 cm with 2 spawning shelters. Crowded tanks, housed
8 females and, and two males male between 3–5 cm with one spawning shelter.

After spawning, A. burtoni females brood their young in their mouths before releasing fry at
~14 days post-fertilization. Breeding tanks were monitored several times a day and mouth-
brooding females were identified by daily visual inspection. At two weeks post-fertilization,
each mouth brooding female was transferred into a smaller aquarium (30L). While the number
of fry in a single mother can vary between 15–30, the total number of fry from each mother for
analyses post-day 14 were capped at n = 25 per tank. Upon transfer, adult females expelled
their brood and were removed from the tank. We used a crowding paradigm early in develop-
ment and assayed changes at 14 days. Animals for the 14-day time point were immediately col-
lected and 25 fry were left in each tank (Fig 1A). This was done early in development before
adult-specific behaviors could affect the regulation of GnRH1. For crowded fry, 14-day-old ani-
mals were immediately collected and 25 fry were transferred to small 1L aquaria. The volume
for these “crowded” growing tanks was determined by photographing and measuring the vol-
ume that a brood of this size and age typically occupies and then dividing it in half (Fig 1B).

Tissue Preparation
Upon collection, fry were placed in iced water and standard length (+/- 1mm) and weight (+/-
0.01 g) were measured. Animals were either sacrificed by rapid cervical transection or flash fro-
zen whole in a methanol/dry ice bath. DNA and RNA (DNeasy/RNeasy Blood and Tissue kit,
Qiagen, Valencia, CA) was extracted and assayed from entire heads and bodies, separately.
Measurements of DNAmethylation between heads and bodies separately showed no signifi-
cant differences (S1 Fig), allowing our comparison between the heads of 28–42 day-old juve-
niles and whole body of 14 day-old juveniles throughout our study. Separated heads/bodies or
entire specimens were place in 1.5mL tubes and stored at -80°C until processing.

DNAmethylation profiling and expression analysis
Purified DNA was bisulfite converted as previously described by Clark et al [30]. Primers were
directed against CG rich regions in the promoter and coding region of the A. burtoni GnRH 1
gene (Genebank accession number AF076961; See Fig 2). Primers were designed to exclude
any CpG dinucleotides so that methylated and unmethylated sequences were amplified with
the same efficiency (Table 1). The sequencing template was prepared using the standard proto-
col (Stanford Protein and Nucleic acid core facility [31]). Briefly, for each PCR amplification,
one inner primer was biotinylated at 5’ end at allow for immobilization of the amplicon. 15–
20 μl of each biotinylated PCR product was combined with and immobilized on streptavidin
coated sepharose beads (Dynabeads M280, Dynal, Oslo, Norway). The immobilized DNA was
treated with sequential washes of 70% ethanol, 0.2 M NaOH (for denaturation of the DNA),
and Tris buffer. The single-stranded DNA target was then hybridized to specific sequencing
primers. Pyrosequencing was performed using the PyroMark Q96 DNA sequencing system
(Qiagen, Valencia, CA) according to manufacturer’s instructions. For analysis of methylation
at individual CpG sites, data are presented as percent methylation averaged across samples.
cDNA libraries were built from 2μg of extracted RNA (quantified by Nanodrop spectrometer)
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using the iScript system according to manufacturer’s instructions (Biorad, Pleasanton, CA).
qPCR experiments were then performed in triplicate using Ssofast Supermix (Biorad, Pleasan-
ton, CA) according to the manufacturer’s guidelines with primers designed across exon bound-
aries. qPCR was performed using primers specific for GnRH1 and were standardized to the
geometric mean of rpl32 and gapdh (Table 1). All differences between groups were analyzed
using an unpaired Student’s t-test.

Results

GnRH 1 promoter and coding methylation during development
Wemeasured GnRH1 methylation in A. burtoni fry at 14, 28, and 42 days post-fertilization (Fig
2A). We chose 15 CG sites within a ~1.5 Kb window upstream of the GnRH1 transcriptional

Fig 1. Schematic of experimental designs used to characterize development (A) for 14-, 28- and 42- day old fry (n = 25) and (B) comparison of
uncrowded and crowded conditions.

doi:10.1371/journal.pone.0142043.g001
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start site (TSS) and 4 CG sites ~300bp downstream of the TSS (Fig 2A). With the exception of
one CG site (-1337), significant GnRH1 hypermethylation was observed during development at
eight CG sites (-1419, -1290, -1110, -1189, +135, +199, and +207) between both 14-day and
28-day old juveniles with 42-day old juveniles (Fig 2B). This hypermethylation event was the
largest within the coding region of GnRH1 ranging between 15–30% differences in methylation
(Fig 2B).

Effect of maternal social crowding on progeny
We found that fry from crowded mothers had a hypomethylated GnRH1 promoter versus
those from uncrowded mothers at the 14-day-old time point. Specifically, CpGs -1146, -1128,
and -1110 were shown to decrease in methylation within maternally and developmentally
crowded individuals (Fig 3A). Furthermore, this hypomethylation event was accompanied
with a marked increase of GnRH1 transcription (Fig 3B). Between 14- and 28-day-old fry, we
were not able to accurately determine a significant difference in size between each group, how-
ever, 42-day-old fry from crowded mothers raised in crowded tanks had on average ~18% the
body mass of fry from non-crowded mothers and raised in non-crowded tanks (Fig 3C).

Fig 2. DNAmethylation of theGnRH1 gene during development (A) Physical map of the GnRH1 promoter and coding region. Location of the Egr-1
binding site in red. Coding regions in black, non-coding in gray. TSS is the transcription start site (B) Fractional methylation in the GnRH gene at 18 positions
on the GnRH gene for three different developmental time points, 14- (white), 28- (grey), and 42-days (black) * = p<0.05, ** = p<0.001, *** = p<0.0001.
(n = 5–7 /group). Error bars represent s.e.m.

doi:10.1371/journal.pone.0142043.g002
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Discussion
To understand possible mechanisms through which the early life environment can exert long-
term effects on an organism, we analyzed DNAmethylation of the promoter for the

Table 1. Primer sequences andmelting temperatures for QPCR.

Primer Sequence (5’-3’) Tm

qPCR

rpl32 forward CGGTTATGGGAGCAACAAGAAAAC 60°C

rpl32 reverse GGACACATTGTGAGCAATCTCAGC

gnrh1 forward CAGACACACTGGGCAATATG 60°C

gnrh1 reverse GCCCACACTCGCAAGA

gapdh forward AAACACACTGCTGCTGCCTACATA 60°C

gapdh reverse CACACAAGCCCAACCCATAGTC

Pyrosequencing

GnRH1 for (-1419 to -1290) AGATTGAAAGTTGGTAATTGAGAA 48°C

GnRH1 rev (-1419 to -1290) TTATCTTTTTCCAAATACACCATC

Seq Forward ATTGAGAAGATTTTATGTAG

Seq Forward AAAGAAAGTGGTATTAATAG

GnRH1 for (-1146 to -1189) AGTTTAAGGTTTTTTAAATGGG 48°C

GnRH1 rev (-1146 to -1189) ACAACAAACATAACCAAACCATTA

Seq Forward AAGGTTTTTTAAATGGGT

GnRH1 for (+135 to +246) TTGGAGTTAAATGGGGGAAAAA 48°C

GnRH1 rev (+135 to +246) TCCAAATCCCTCTTCCCTCCTA

Seq Reverse TCTTCCCTCCTAAACTCA

Seq Reverse TTCTAAAAATAAAACTTCAC

doi:10.1371/journal.pone.0142043.t001

Fig 3. Social crowding results in hypomethylation and silencing of theGnRH1 gene and decreased bodymass (A) Bisulfite map of methylation in the
GnRH1 gene and 1.5kb upstream of its transcriptional start site (TSS) from uncrowded (white) and crowdedmothers (black) (B) Relative expression of
GnRH1 from 14-day-old fry following gestational crowding. (C) Body mass seen in 42-day-old fry following gestational and developmental crowding. * =
p<0.05. (n = 5–7 /group). Error bars represent s.e.m. Unpaired student’s T-test.

doi:10.1371/journal.pone.0142043.g003
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reproductively essential GnRH1, a key regulator of reproductive development in all vertebrates.
Our study has three main findings. Within whole heads and juveniles we found that methyla-
tion in the GnRH 1 promoter and coding region of A. burtoni remained constant between 2
and 4 weeks post-fertilization but had increased significantly at 6 weeks during development.
Second, we found that at 2-weeks post fertilization, immediately after the end of mouth brood-
ing, progeny of gestationally crowded females had significantly decreased methylation levels in
the coding region of GnRH1 and decreased transcription of mRNA. Third, we demonstrated
that a sustained social crowding in the maternally crowded progeny resulted in the physiologi-
cal outcomes of long-term low body mass.

While many genes are known to be affected by social cues we limited our investigation to
GnRH1 because it is regulated by social status in adults and has been thoroughly characterized
in A. burtoni. GnRH1 governs reproductive development via the hypothalamic-pituitary-
gonadal axis by regulating the production of gonadotropins, which in turn controls the produc-
tion of gonadal steroid hormones. GnRH1 expression is regulated by a large number of tran-
scription factors [32], including the glucocorticoid receptor GR [33] and the immediate early
gene egr-1 [34], which both have putative binding sites in the promoter region of A. burtoni
[27]. Post-transcriptional regulation also plays a significant role in the control of GnRH1
mRNA levels [35], allowing for a rapid response to social opportunity [5]. GnRH peptide is
released from specific GnRH neurons in a pulsatile manner, synchronized with the release
from neighboring neurons [36–38].

We interpret our results to mean that crowding and its effect on development [39] may be
regulated through the reproductive axis, DNA methylation of GnRH1 and time to reproduc-
tion. During normal development we saw no change in methylation between 14- and 28-day-
old animals, however, levels of GnRH1mRNA remain relatively constant in the first several
weeks after fertilization, increasing as the animal reaches sexual maturity [40]. The sharp
increase in methylation seen in 6-week old animals may represent the transition between devel-
opmental and behavior-specific regulation. We hypothesize that as animals approach maturity,
differential methylation may poise differential transcription of GnRH1 specific to reproductive
status. This is supported by examination of the specific CpG sites in the promoter that are dif-
ferentially methylated during maturation. Interestingly, methylation at the 3 CpG sites that
correspond to the putative binding site for egr-1 (CpG -1313, -1310, and -1307) show no
change during development. Expression of egr-1 increases transiently when an adult animal
ascends to dominant social status [27] and this specific location is differentially methylated
during adult male social transitions (Lenkov et al, in review). It is important to note that our
data represents average GnRH1methylation in the entire head of studies individuals. As there
are less than 500 GnRH1 neurons in a single individual, our data could represent GnRH1
methylation in some cells that do not express GnRH1. Therefore, direct comparison to studies
of isolated GnRH1 containing cells can generalize that this loci-specific DNAmethylation
event corresponds to a global event that occurs throughout the tissue, thus requiring further
validation. Furthermore, while we did not fully characterize a role for DNA methylation within
the GnRH1 promoter, we speculate that the distribution of methylation around the transcrip-
tion start site (TSS) may be indicative of its regulation of GnRH1 transcription. Hypermethyla-
tion of gene-body CpGs (+135, +199, and +207) isolated within the coding sequence of
GnRH1(Fig 2B) are known to be associated with increased transcriptional activity [41, 42] as
opposed to hypermethylation in distal areas relative to the TSS [43]. Future experiments mea-
suring transcription at these time points as well as methylation reporter assays [44] will provide
additional evidence in support of a role in transcription.

To ascertain the possible role of epigenetic mechanisms to adverse developmental condi-
tions, we examined the effect of gestational crowding on differential methylation of GnRH1.
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Animals collected immediately after mouth brooding from crowded females had signifi-
cantly lower levels of methylation in the promoter (-1410, -1146, -1128, and -1110 respec-
tively). This was accompanied with increased transcription of GnRH1 from crowded
gestation, suggesting DNA hypomethylation occurring upstream of the TSS methylation
may be regulating the transcription of GnRH1. Furthermore, in our crowded conditions,
methylation and transcription may not be occurring within the exact same tissues and cell
populations. Additional studies would be required to assay these molecular changes within
single cells or cell types.

Even though these animals were carried by females during their development, the crowded
conditions may have resulted in a change in behavior or physiology in the females which was
transmitted to the brooding fry in her mouth and/or possibly to the oocytes before fertilization.
There are a number of studies that have identified a correlation between prenatal maternal con-
ditions and differential DNA methylation in their progeny. For example, in humans, children
of mothers who were depressed during pregnancy have increased GR methylation [15]. Male
offspring of mice exposed to gestational stress have decreased DNA methylation of the CRH
gene promoter and increased methylation of the GR exon 17 promoter region in hypothalamic
tissue [45]. Social crowding also causes profound effects on tank environments which may
work in concert with social behaviors to alter methylation. In this regard, cortisol accumulation
and reduced quality of water may be direct consequences of crowding that in turn could affect
methylation patterns [46].

There can be several reasons for this directional change in animals exposed either directly
or indirectly to crowded conditions. Social crowding is likely to be stressful, and activation of
the stress axis has an inhibitory effect on GnRH1 expression. 42-day-old animals raised in
crowded conditions were much smaller than their non-stress counterparts (Fig 2C), suggest-
ing crowding further interferes with a number of developmental pathways. We suggest that
these developmental pathways may be similar to those seen in male adult social status
through somatostatin regulation [47]. Additionally, other reports have shown that genomic
methylation can drive sizing continuums during development in a natural population, sug-
gesting that genome wide levels of methylation must also be considered during early develop-
ment [48].

Although DNAmethylation was once thought to be involved only in the regulation of early
embryonic development, recent studies of nutritional [49, 50], chemical [51], and other envi-
ronmental factors [12, 45] which influence postnatal development have shown that epigenetic
regulation of gene expression can be an important component in experience dependent change.
Postnatal maternal separation in rodents is associated with decreased DNA methylation within
the AVP promoter [52], while experience of low levels of licking and grooming in infancy is
associated with increased methylation in the GR promoter region [14].

In many mammals and invertebrates the regulation of DNA methylation through diverse
social cues is important for adapting to a novel environment. For example, regulating caste in
wasps, bees and ants [53–55], and recovering from injury in mammals [56].

Our data expands on the repertoire of social interventions capable of regulating DNA meth-
ylation. Furthermore, we show a relationship between gestational crowding and decreased
methylation of the GnRH 1 promoter and coding region. A survey of GnRH1methylation at
several developmental time points reveals an increase in methylation between weeks 4 and 6
post-fertilization which is consistent with previous studies that have shown a connection
between early-life events and epigenetic changes, suggesting that mechanism could be impor-
tant for gene by environment interactions.
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Supporting Information
S1 Fig. Comparing GnRH 1 methylation across promoter and coding regions in 42 day old
animals between tissue from heads vs. bodies (t-test, p>0.05, n = 9–10 per group). Signifi-
cance determined with an unpaired student’s T-test.
(TIF)
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