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18F-FDG positron emission tomography (PET) imaging of brain glucose use and amyloid

accumulation is a research criteria for Alzheimer’s disease (AD) diagnosis. Several PET

studies have shown widespread metabolic deficits in the frontal cortex for AD patients.

Therefore, studying frontal cortex changes is of great importance for AD research. This

paper aims to segment frontal cortex from brain PET imaging using deep neural networks.

The learning framework called Frontal cortex Segmentation model of brain PET imaging

(FSPET) is proposed to tackle this problem. It combines the anatomical prior to frontal

cortex into the segmentation model, which is based on conditional generative adversarial

network and convolutional auto-encoder. The FSPET method is evaluated on a dataset

of 30 brain PET imaging with ground truth annotated by a radiologist. Results that

outperform other baselines demonstrate the effectiveness of the FSPET framework.

Keywords: brain image segmentation, convolutional auto-encoder, conditional generative adversarial network,

PET, Alzheimer’s disease

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive disease that destroys memory and other important mental
functions. As of 2019, it ranked as the sixth leading cause of death in China (Vos et al., 2020). There
are more than 10 million patients with AD in China, a country with the most AD patients in the
world (Jia et al., 2020).

AD is usually diagnosed based on the clinical manifestation. Nowadays, medical imaging
including computed tomography (CT) or magnetic resonance imaging (MRI), and with single-
photon emission computed tomography (SPECT) or positron emission tomography (PET), can
be used to help doctors understand the pathophysiology of AD, for example, Aβ plaques,
neurofibrillary tangles, and neuroinflammation. Moreover, the pathophysiology of AD is believed
that starts years ahead of the of clinical observation, and helps detect AD earlier than conventional
diagnostic tools (Marcus et al., 2014).

Among the above medical imaging technique, PET/CT is a nuclear medicine technique that
combines a PET scanner and a CT scanner to acquire sequential images from both devices in
the same session, which are combined into a single superposed image. Figure 1 shows the brain
PET/CT fusion image. The first line is the PET imaging, and the second line is the CT imaging. The
fusion imaging of PET/CT is list in the third line. Each line from left to right is (a) coronal section,
(b) median sagittal section, and (c) transverse section.
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FIGURE 1 | A brain positron emission tomography (PET)/computed tomography (CT) fusion image. The first line is the PET imaging, and the second line is the CT

imaging. The fusion imaging of PET/CT is list in the third line. Each line from left to right is (a) coronal section, (b) median sagittal scan, and (c) transverse section.

18F-FDG PET imaging of brain glucose use and amyloid
accumulation is a research criteria for AD diagnosis (Berti et al.,
2011). Several 18F-FDG PET studies have been conducted to
estimate AD-related brain changes. They have consistently
shown widespread metabolic deficits in the neocortical
association areas, such as frontal cortex. Further studies
have demonstrated that CMRglc in frontal cortex suffers an
average decline of 16 − 19% over a 3-year period (Smith et al.,
1992; Mielke et al., 1994). Frontal cortex covers frontal lobe
and contains most of the dopamine neurons. Figure 2 shows
the location of frontal cortex in the brain. The yellow part
of the left subfigure is its anatomical location, while the red
contour in the right subfigure indicates its location in 18F-FDG
PET imaging. Due to its sensitive to detect frontal cortex
changes over time, 18F-FDG PET imaging can be used not only
for AD diagnosis but also to monitor dementia progression
and therapeutic interventions. Therefore, PET imaging are
valuable in the assessment of patients with AD. Moreover,
the frontal cortex segmentation of PET imaging is crucial
for understanding AD progression on AD-related regions
in brain.

Although frontal cortex segmentation is an important
problem for AD research. However as far as we know,
this paper is the first work that studies the frontal cortex
segmentation problem for PET imaging. Unlike organ or
tumor, which is different from other tissue with gray-level,
texture, gradients, edges, shape, etc., frontal cortex is a part
of brain without obvious boundaries. Moreover, supervised
learning frameworks need segmentation ground truth from
professional doctor, and it is difficult to get large number of

FIGURE 2 | The frontal cortex in the brain: the left is anatomical location, and

the right is for 18F-FDG positron emission tomography (PET) imaging.

annotated imaging. All thesemakes frontal cortex segmentation a
tough problem.

Since manual segmentation is time consuming, automatic
semantic segmentation for medical images, which makes
pathological structures changes clear in images, becomes one
of the hottest research topic in image processing. Currently,
more and more machine learning technologies have been used in
medical applications, such as medical single processing, medical
image processing, medical data analyzing, and so on (Jiang et al.,
2021a,b; Yang et al., 2021). Brain and brain tumor segmentation
is one of the most popular medical image segmentation tasks
(Szilagyi et al., 2003; Tu and Bai, 2009; Zhang et al., 2015;
Jiang et al., 2019). Many approaches have been proposed to
address this problem, such as thresholding (Sujji et al., 2013),
edge detection (Tang et al., 2000), Markov random fields
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FIGURE 3 | Framework of proposed model FSPET based on conditional generative adversarial network (cGAN) and convolutional auto-encoder (CAE).

(MRF) (Held et al., 1997), and support vector machine (SVM)
(Akselrod-Ballin et al., 2006).

Due to the rapid development of deep learning, neural
networks, which can extract hierarchical feature of images,
become one of the most effective technique in brain imaging
segmentation (Fakhry et al., 2016; Işın et al., 2016; Zhao et al.,
2018). U-net (Ronneberger et al., 2015) and its 3D version V-Net
(Milletari et al., 2016) are the most well-known deep learning
architecture in medical image segmentation. Recently, organ
and tissue’s shape and position priors are combined into the
segmentation algorithm to improve the accuracy. (Oktay et al.,
2017) proposes a training framework ACNN, which incorporates
cardiac anatomical prior into CNN. Boutillon et al. (2019)
combines scapula bone anatomical prior into a conditional
adversarial learning method.

The related work has made large progress in semantic
segmentation in medical imaging. However, they are
not designed for frontal cortex segmentation in PET
imaging, and they cannot be utilized directly for this
problem. Motivated by this, in this paper, we propose
the supervised segmentation framework: Frontal cortex
Segmentation model of brain PET imaging (FSPET).
The FSPET model based on both conditional generative
adversarial network (cGAN) and convolutional auto-encoder
(CAE) incorporates the anatomical prior to improve the
prediction accuracy.

The contribution of FSPET dedicated to frontal cortex
segmentation is threefold. First, the CAE is used to find the
embedding of frontal cortex shape priors in latent space. Second,
the segmentation method based on U-net, as the generator
of cGAN, learns the feature of frontal cortex to generate the
binary mask in PET imaging. Third, the anatomical prior is
fused into the discriminator model in cGAN to get more precise
prediction. Extensive experiments demonstrate the effectiveness
of the proposed FSPET model.

2. METHODS

In this section, we will introduce the proposed FSPET framework
in detail, which combines the prior of frontal cortex shape in the
deep neural networks, as shown in Figure 3. FSPET contains two
parts: cGAN and CAE.

2.1. Conditional Generative Adversarial
Networks
Generative Adversarial Network (GAN) (Goodfellow et al., 2014)
is widely used for data augmentation by generating new images.
Since PET imaging shows low contrast, low resolution, and
blurred boundaries between different tissues, GAN is becoming a
popularmethod formedical image segmentation (Luc et al., 2016;
Son et al., 2017; Souly et al., 2017).

cGAN (Mirza and Osindero, 2014) is an extension of GAN,
which is used as a machine learning framework for training
generative models. The proposed FSPET model adopts the
framework in Conze et al. (2021) based on cGAN, which consists
of two neural networks: the generator G and the discriminator D.

The generator G of cGAN in the FSPET model is the
segmentation framework, which learns the feature of frontal
cortex to generate the binary mask in PET imaging. Formally,
let x be the source image and y be the ground truth image of
class label yi ∈ L = {1, 2, . . . , c}. The generator learns the
mapping between images and labels G : x → L by optimizing
the loss function using stochastic gradient descent. The generator
of cGAN is often based on U-net framework. The network
consists of a contracting path and an expansive path (shown
in Figure 4B). The contracting path is a convolutional network
that consists of repeated application of 3 × 3 convolutions, each
followed by a rectified linear unit (ReLU) and a 2×2 max pooling
operation. Dice loss is used in U-net to compare the prediction
G(x) and ground truth y, in which the loss function is as follows:
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FIGURE 4 | FSPET architecture: (A) convolutional auto-encoder (CAE), (B) Generator (G), and (C) Discriminator (D).

TABLE 1 | Loss in the proposed FSPET model.

Notation Loss type Evaluated by Calculated from Loss function

Lu Dice Prediction and ground truth U-net G Ex,y [Ldice(G(x), y)]

Ld BCE Prediction and input Discriminator D Ex,y [−log(D(x,G(x)))]

Le Euclidean Prediction and ground truth encoder in CAE f Ex,y [(f (G(x))− f (y))2]

Lu = Ex,y[Ldice(G(x), y)]. (1)

The discriminator D in FSPET (shown in Figure 4C) inputs are
source images and prediction to be evaluated. D distinguishes the
given boundary by the generator from the realistic segmentation.
The output is a binary prediction as to whether the image is real
(class = 1) or fake (class = 0). In cGAN, binary cross entropy
(BCE) loss is used to determine the loss function:

Ld = Ex,y[−log(D(x,G(x)))]. (2)

2.2. Convolutional Auto-Encoder
Auto-encoder is a type of neural networks used to learn
a representation (encoding) for a set of data. It imposes a
bottleneck in the network, which forces a compressed knowledge
representation of the original input. An auto-encoder consists of
two parts, the encoder and the decoder, which can be defined as f
and g such that:

f :X → h

g :h → X

f , g =arg min
f ,g

||X − (f ◦ g)X ||,

whereX is the input and h is usually referred to as code, the latent
representation of the input. Motivated by Oktay et al. (2017),
we utilized the CAE to find the embedding of frontal cortex
shape priors in latent space (shown in Figure 4A). The BCE loss
is minimized in the CAE framework with the ground truth y
as input:

LCAE(f , g) = Ex,y[−log(y, g(f (y)))]. (3)

As shown in Figure 4A, after CAE is fixed, we use its encoder
part f for segmentation training. By conducting CAE low-
dimensional projection on both prediction and ground truth, we
can minimize the loss function as:

Le = Ex,y[(f (G(x))− f (y))2]. (4)

2.3. Fusion
We have obtained three loss functions from different parts of
the FSPET model respectively, whose information are listed in
Table 1. Finally, we fuse the U-net segmentation method with
frontal cortex shape priors. In the backward propagation, the loss
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TABLE 2 | Quantitative assessment of U-net (Ronneberger et al., 2015), ACNN (Oktay et al., 2017), cGAN-Unet (Singh et al., 2018), and the FSPET model.

Model Dice Jaccard Sensitive Specificity HD

U-net 71.03 ± 21.37 55.04 ± 20.43 72.29 ± 26.76 98.22 ± 2.12 38.73 ± 30.46

ACNN 74.57 ± 18.34 59.45 ± 19.17 78.37 ± 23.85 97.24 ± 1.88 35.48 ± 27.83

cGAN-Unet 79.04 ± 19.59 65.34 ± 14.45 79.75 ± 21.53 97.18 ± 2.57 30.32 ± 29.12

FSPET 83.37 ± 15.98 71.47 ± 15.32 81.97 ± 20.88 96.93 ± 2.27 28.05 ± 25.78

Bold results indicate the best scores.

function of generator G is:

LG(G,D, f ) = Ld + λ1Lu + λ2Le

= Ex,y[−log(D(x,G(x)))]

+ λ1Ex,y[Ldice(G(x), y)]

+ λ2Ex,y[(f (G(x))− f (y))2],

(5)

where λ1 and λ2 are the weighting factor. Minimizing Lu tends to
provide rough frontal cortex shape prediction, while maximizing
log(D(x,G(x))) is designed to improve contour delineations. At
the same time, the latent loss Le guarantees the global consistent
and precise prediction similar to the original segmentation.

Additionally, the loss function of discriminator D is:

LD(G,D) = Ex,y[−log(D(x, y))]

+ Ex,y[−log(1− D(x,G(x)))].
(6)

It maximizes log(D(x, y), which is the loss between input
and ground truth. Simultaneously, it minimizes loss value
for generated −log(1 − D(x,G(x))) masks. The optimization
proceeds in alternative periods on G and D using stochastic
gradient descent.

3. EXPERIMENTS

In this section, we conduct extensive experiments to validate the
effectiveness of FSPET.

3.1. Validation Setup
Dataset: We collected 30 18F-FDG PET images from different
patients and their sensitive information was erased. The brain
PET images were acquired using a PET/CT (Discovery STE,
General Electric, Waukesha, USA) approximately 1 h after an
intravenous injection of 18F-FDG (10 mCi). The original data
were stored in Digital Imaging and Communications inMedicine
(DICOM) format. Images were then resampled with a resolution
512 × 512 pixels. Frontal cortex in all images were annotated by
a radiologist with 7 years experience to obtain the ground truth
and also the shape priors.

Baselines:We compare FSPETwith different baselinemethods
in frontal cortex segmentation for brain PET imaging. The
comparison methods used in the experiments include:

• U-net (Ronneberger et al., 2015): U-net is the classical
segmentation algorithm for medical images, and the generator
G of FSPET is based on U-net. The architecture (shown
in Figure 4B) contains contraction path and symmetric
expanding path. The former path is used to capture the context

FIGURE 5 | Frontal cortex segmentation in median sagittal section of brain

positron emission tomography (PET) imaging using U-net, ACNN, cGAN-Unet,

and the FSPET model. Ground truth and predicted contour are in red and

black, respectively. (A) U-net. (B) ACNN. (C) cGAN-Unet. (D) FSPET.

in the image and the latter one is used to enable precise
localization using transposed convolutions.

• ACNN (Oktay et al., 2017): It utilizes the auto-encoder and T-
L network to combine anatomical prior knowledge into CNNs.
These regularizersmake predictions that are in agreement with
the shape priors.

• cGAN-Unet (Singh et al., 2018): It is proposed for breast
mass segmentation in mammography. The cGAN is used in
the segmentation framework, in which the generative network
learns the features of tumors and the adversarial network
guarantees the contour to be similar to the ground truth.

Measurements: With the definition of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), the
following metrics are used to provide an overall assessment of
all methods:

• Dice coefficient (dice): It is a similarity measure over
prediction and ground truth. It ranges between 0 and 1.

DSC =
2TP

2TP + FP + FN

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 796172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhan et al. Brain PET Imaging Segmentation

• Jaccard index (Jaccard): It is another similarity metric with
range [0, 1].

J =
TP

TP + FP + FN

• Sensitivity: It is a measure of how well a test can identify
true positives.

TPR =
TP

TP + FN

• Specificity: It is a measure of how well a test can identify
true negatives.

TNR =
TN

TN + FP

• Hausdorff distance (HD): It is the greatest of all the distances
from a point in one set to the closest point in the other set.
HD measures how far two contours of prediction and ground
truth are from each other.With A and B are the set of non-zero
voxels in labels images, HD is defined as:

HD(X,Y) = max(h(A,B), h(B,A))

where h(A,B) = maxa∈Aminb∈B||a− b||

Training Detail: In this paper, we use Adam optimization
(Kingma and Ba, 2014), which is a stochastic gradient descent
method that is based on adaptive estimation of first-order and
second-order moments. To train the FSPETmodel, the CAEwith
BCE loss is first optimized based on (3). With the learning rate
of 0.01 for 30 epochs, the batch size is fixed at 32. Then the
optimization of cGAN proceeds in alternative periods on G and
D according to (5) and (6). In (5), the weight λ1 = 10−2 and
λ2 = 10−4. With the learning rate of 10−4, batch size 32 and 30
epochs enjoyed the best performance.

3.2. Results
Quantitative metric and score values are provided in Table 2

for frontal cortex segmentation. When comparing U-net and
ACNN, the dice score improves from 71.03% to 74.57%, and
HD score decreases from 38.73 to 35.48. This demonstrates
that extending U-net with CAE allows the model taking
advantage of latent representation of shape priors. Moreover,
significant improvements can be noticed using cGAN-Unet
comparing with U-net (38.73 to 30.32 on HD), which
indicates the appropriateness of embedding U-net into a
cGAN pipeline. Combining CAE and cGAN networks, the

proposed FSPET model discriminates more efficiently frontal
cortex from surrounding structures by achieving the best
score with regard to dice, Jaccard index, sensitivity, and HD.
In particular, large gains in terms of Jaccard index (55.04–
71.47%) and HD (38.73–28.05) are reported between U-net
and FSPET.

Qualitative results for frontal cortex segmentation in median
sagittal section of brain PET imaging are displayed in Figure 5.
Compared to U-net, ACNN, and cGAN-Unet, which are
prone to under- or over-segmentation, sometimes combined
with unrealistic shapes, better contour adherence and shape
consistency are reached by the FSPET model. We also take
one example (shown in bottom right of each subfigure) for
comparison, and the FSPET captures more complex shape and
subtle contours compared to other frameworks. This reveals the
importance of combining both adversarial networks and shape
priors in the segmentation task.

4. CONCLUSION

This paper propose a deep learning framework to segment
frontal cortex from brain PET imaging. The model based on
both cGAN and CAE incorporates the anatomical prior to
improve the prediction accuracy. Future work will utilize the
proposed method to detect other parts of AD-related brain area,
such as hippocampus.
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