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Previous whole-exome sequencing has demonstrated that melanoma tumors harbor
mutations in the GRIN2A gene. GRIN2A encodes the regulatory GluN2A subunit of
the glutamate-gated N -methyl-D-aspartate receptor (NMDAR), involvement of which in
melanoma remains undefined. Here, we sequenced coding exons of GRIN2A in 19 low-
passage melanoma cell lines derived from patients with metastatic melanoma. Potential
mutation impact was evaluated in silico, including within the GluN2A crystal structure,
and clinical correlations were sought. We found that of 19 metastatic melanoma tumors,
four (21%) carried five missense mutations in the evolutionarily conserved domains of
GRIN2A; two were previously reported. Melanoma cells that carried these mutations were
treatment-naïve. Sorting intolerant from tolerant analysis predicted that S349F, G762E, and
P1132L would disrupt protein function.When modeled into the crystal structure of GluN2A,
G762E was seen to potentially alter GluN1–GluN2A interactions and ligand binding, imply-
ing disruption to NMDAR functionality. Patients whose tumors carried non-synonymous
GRIN2A mutations had faster disease progression and shorter overall survival (P < 0.05).
This was in contrast to the BRAF V600E mutation, found in 58% of tumors but show-
ing no correlation with clinical outcome (P =0.963). Although numbers of patients in this
study are small, and firm conclusions about the association between GRIN2A mutations
and poor clinical outcome cannot be drawn, our results highlight the high prevalence of
GRIN2A mutations in metastatic melanoma and suggest for the first time that mutated
NMDARs impact melanoma progression.

Keywords: melanoma, GRIN2A, mutation, GluN2A, NMDAR, NMDA receptor, glutamate, prognosis

INTRODUCTION
The genomic revolution of recent years has led to substantial
advances in the cataloging of mutations in melanoma, most
notable of which have been activating mutations in BRAF, NRAS,
and KIT genes (1). The presence of these mutations helps to guide
treatment with RAF, MEK, and KIT inhibitors, but they do not
predict disease progression or survival of patients (2). In general,
the usefulness of molecular biomarkers in determining prognosis
in melanoma remains limited.

Mutations in GRIN2A have been reported in up to a third of
melanoma samples (3), although there is wide variation between
studies (4–7) and no data on their clinical relevance. The GRIN2A
gene, located on chromosome 16p13.2, encodes the GluN2A

protein, a regulatory subunit of the glutamate-gated N -methyl-d-
aspartate receptor (NMDAR) (8, 9). NMDARs are best known for
their roles in the brain; hence, the finding of GRIN2A mutations
in melanoma had been unexpected. Nevertheless, NMDARs have
attracted attention for their potential contribution in cancer due to
the effects on cell death, survival, and migration (10, 11). Excessive
NMDAR activation overloads the cell with calcium and leads to cell
death (12). On the other hand, normal NMDAR activity promotes
cell survival through the phosphatidylinositol 3-kinase (PI3-K)
and extracellular signal-regulated kinase (ERK) signaling pathways
(13). In addition, NMDAR effects on cell migration may affect
tumor spread in tissue (10). Current knowledge on the NMDARs
in the context of melanoma is limited, although expression of
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GluN2A in both normal and malignant melanocytes has been
demonstrated (14, 15). NMDAR inhibitors reduce migration and
proliferation of melanoma cells in vitro (15).

In response to the previously published exome sequencing data
(3), we have investigated the prevalence of GRIN2A mutations in
19 low-passage metastatic melanoma cell lines out of over a 100
developed in our institution, and retrospectively correlated the
presence of GRIN2A mutations with patient outcome.

MATERIALS AND METHODS
PATIENTS AND TUMOR MATERIAL
Low-passage melanoma cell lines derived from 19 patients with
metastatic melanoma treated at two independent national sites
were used in this study (Table S1 in Supplementary Material).
Written informed consent was obtained from all participants prior
to enrolment; all study procedures were approved by Northern A
Health and Disability Human Ethics Committee. This was not a
clinical trial, and study procedures did not affect patient manage-
ment in any way. Patients underwent skin, lymph node, or distant
organ biopsies for diagnosis, staging, or treatment, as required
clinically. Excess tissue was used to establish melanoma cell lines,
as described (16). Cell lines for sequencing were chosen randomly
out of over a 100 previously established in our center; all were
passaged <30 times. Cells were grown in 25 or 75 cm2 flasks to
75% confluency in a low-oxygen humidified incubator (37°C, 5%
O2, and 5% CO2 in nitrogen). Cultures were maintained in Alpha-
modified Minimal Essential Medium (Sigma-Aldrich, Saint Louis,
MO, USA) containing 5% fetal bovine serum (Life Technologies,
Carlsbad, CA, USA), penicillin (100 units ml−1), streptomycin
(100 µg ml−1) (Sigma-Aldrich), insulin (5 µg ml−1), transferrin
(5 µg ml−1), and sodium selenite (5 ng ml−1) (Roche Applied Sci-
ence, San Diego, CA, USA). Melanoma cells were sub-cultured
weekly to maintain them in a proliferative state.

Normal human epidermal melanocytes were used as control
cells (HEMa-LP, Life Technologies); we did not have access to
non-tumor tissue from patients. Melanocytes were cultured in

Medium 254 (M-254-500; Life Technologies) supplemented with
Human Melanocyte Growth Supplement (Life Technologies). Cul-
tures were maintained in a humidified incubator (5% CO2 in air)
at 37°C. Melanocytes were sub-cultured every 4 weeks.

SEQUENCING
DNA was isolated using a PureLink Genomic DNA kit (Life
Technologies), according to the manufacturer’s instructions.
Concentrations and purity of DNA were determined using
a nanodrop spectrophotometer (ND-1000, NanoDrop, Ther-
moFisher Scientific, Rockford, IL, USA). Twelve coding exons
of GRIN2A (numbered 3–14), including their flanking intronic
regions, were sequenced using Sanger method. The sequenc-
ing primers were as previously reported (3), except for
7Reverse (5′-GCAGGCCCTTTGTCTGAGTA-3′) and 8Forward
(5′-CCTTGCATCCAGGTGGTC-3′), which we designed using
Primer3web version 4.0.0 software1 to reduce interference from
polyA sequences located in the intron between GRIN2A exons 7
and 8. PCR conditions for all primers are provided in Table 1.
PCR reactions were performed in a final volume of 25 µl 1× PCR
buffer containing 50–100 ng DNA, 0.3 µM forward and reverse
primers each, 5 U Expand High Fidelity Enzyme mix (Roche
Applied Science), 0.2 mM deoxynucleoside triphosphates, and
1.5 mM MgCl2. Bovine serum albumin (3 ng µl−1; Life Technolo-
gies) was used to counteract PCR inhibition where required. The
correct sizes of the amplicons were confirmed on 2% agarose gels
with DNA visualized with GelRed (Biotium, Hayward, CA, USA).
DNA concentrations were estimated against Low-Mass Ladder
(Life technologies). Sequencing was performed in two directions
using ABI Prism 3730xl Genetic Analyzer with the ABI PRISM Big
Dye Terminator Cycle Sequencing Ready Reaction kit, version 3.1
(Applied Biosystems, Foster City, CA, USA).

The BRAF V600E mutation status had been determined previ-
ously for most cell lines (17). For the remaining samples, Cobas®

1http://primer3.wi.mit.edu/

Table 1 | PCR cycling conditions used to amplify GRIN2A sequences.

Amplicon name Amplicon

size (bp)

Denaturation Annealing Extension Cycles number

GRIN2A_1 and 2 710 94°C, 30 s 66°C, 30 s 72°C, 45 s

GRIN2A_3 and 4 763 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_5 331 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_6 464 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_7 350 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_8 295 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_9 362 94°C, 30 s 68°C, 30s 72°C, 30 s 35

GRIN2A_10 428 94°C, 30 s 60°C, 30 s 72°C, 30 s for all

GRIN2A_11 372 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_12 373 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_13 381 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_14 397 94°C, 30 s 60°C, 30 s 72°C, 30 s

GRIN2A_15 and 16 633 94°C, 30 s 60°C, 30 s 72°C, 45 s

GRIN2A_17 and 18 759 94°C, 30 s 60°C, 30 s 72°C, 45 s

GRIN2A_19 and 20 758 94°C, 30 s 60°C, 30 s 72°C, 45 s
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4800 BRAF Mutation Test (Roche Molecular Systems, Pleasanton,
CA, USA) was used.

SEQUENCE ANALYSIS AND PREDICTION OF MUTATION IMPACT
Exon sequences of GRIN2A were analyzed by reference to human
GRIN2A (GenBank accession number NG_011812; RefSeqGene
number GI: 226492187) using Geneious Pro 5.6.4 software (Bio-
matters, Auckland, New Zealand). To help predict if amino acid
substitutions would affect protein function, Sorting Intolerant
from Tolerant (SIFT) analysis of mutations was performed2

(18), applying UniProt SWISS-PROT 57.15 database. Catalog of
somatic mutations in cancer (COSMIC)3 and MelanomaDB (19)
databases were interrogated to search for GRIN2A mutations pre-
viously found in melanoma. Common germline single nucleotide
polymorphisms (SNPs) in GRIN2A were eliminated using the
NCBI database of SNPs4 (20).

MODELING MUTATION IMPACT
The G762E mutation was modeled into the X-ray crystal struc-
ture of the GluN1–GluN2A S1S2 heterodimer using Modeller 9.1
(21) and the Protein Data Bank entry 2A5T (22) as the template.
Ten models were constructed using two rounds of optimization
with the slow autoschedule and molecular dynamics refinement

2http://sift.jcvi.org/
3http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
4http://www.ncbi.nlm.nih.gov/projects/SNP

options; all other settings were kept at default values. The models
were superimposed on the 2A5T heterodimer using PyMol (23)
and inspected visually.

COLLECTION OF CLINICAL DATA AND STATISTICAL ANALYSIS
Data on antecedent primary melanoma, disease progression, and
treatment were obtained from a retrospective review of patient
medical records. Melanoma staging was determined clinically
based on the criteria designated by the American Joint Committee
on Cancer (24). In this system, patients with lymph node metas-
tases are designated as stage III; stage IV disease is defined by the
presence of distant organ metastases. Overall survival is shown
as the length of time from the initial diagnosis of melanoma to
death. Considering that patient groups were small in this study,
we presented quantitative data as median (range) (Table 2) to
best demonstrate sample distribution. To compare groups, cross-
tabulations with significance tests were performed for data in
categories. Analysis for mean differences between groups was per-
formed using one-way ANOVA. Differences in time to event data
were analyzed for the effect of GRIN2A mutation status using
the survival analysis method (log-rank test). Kaplan–Meier curves
were generated to plot time to events (such as development of
lymph node or distant organ metastases, or death) for individ-
ual patients (dot plots are provided as Supplemental Material).
Statistical analysis was conducted using IBM SPSS Statistics soft-
ware package for Windows, version 19.0 (Chicago, IL, USA) (25).
P values <0.05 were considered statistically significant.

Table 2 | Clinical characteristics for all patients, according to the presence or absence of GRIN2A mutations in tumor-derived cell lines.

All

patients

Non-synonymous

GRIN2A

mutations

Synonymous

GRIN2A

mutations only

Non-mutated

GRIN2A

P value

n = 19 n = 4 n = 3 n = 12

Age: median (range) years 54 (36–81) 58 (36–69) 46 (40–69) 56 (38–81) 0.916a

Males n (%) 13 (68) 4 (100) 1 (33) 8 (67) 0.168b

Duration of known melanoma prior to enrolment: median (range) months 31 (0–211) 14 (0–30) 6 (4–56) 88 (1–211) 0.110a

Patients with distant metastases at enrolment: n (%)c 12 (63) 1 (25) 2 (67) 9 (75) 0.198b

Patients treated with chemotherapy: n (%) 5 (26) 0 2 (67) 3 (25) 0.149b

Patients treated with autologous tumor vaccine: n (%) 3 (16) 0 1 (33)d 2 (17) 0.492b

Progression from diagnosis to lymph node metastases (stage III):

median (range) months

9 (0–140) 0 (0–27) 6 (0–17) 37 (0–140) 0.040e

Progression from diagnosis to distant organ metastases (stage IV):

median (range) months

34 (0–205) 2 (0–34) 14 (4–35) 108 (1–205) 0.012e

Progression from diagnosis to death (i.e. overall survival):

median (range) months

36 (4–229) 5 (4–36) 15 (5–61) 114 (4–229) 0.013e

“All patients” column demonstrates patient characteristics at enrolment into the study. The P values are for the effect of GRIN2A mutation status, so the data in the

last three columns were used for statistical analysis (i.e. excluding the “All patients” column).
aOne-way ANOVA
bχ2 test
cOther patients had lymph node metastases at enrolment.
dThis patient also received chemotherapy.
eLog-rank P values reflect differences between patients with non-mutated GRIN2A versus patients with non-synonymous GRIN2A mutations. When patients with

synonymous GRIN2A mutations were compared, differences were not statistically significant (pairwise P values are shown in Figures 3 and 4 and Figure S1 in

Supplementary Material).
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RESULTS
Nineteen low-passage melanoma cell lines, derived from 19
patients with metastatic melanoma, were used in this study to
sequence coding exons of GRIN2A, together with their flank-
ing intronic regions. Patient characteristics at enrolment into the
study are shown in Table 2 (“All patients” column). Apart from
two patients who presented with either bulky or disseminated dis-
ease and entered this study on presentation, other patients had
a prior history of skin melanoma dating back a median of 34
(1–211) months. Seventeen patients had primary skin lesions in
sun-exposed areas; in the other two, primary skin lesions remained
occult. At the time of enrolment (between 1989 and 2010), 12
patients (63%) had metastatic melanoma in distant organs (stage
IV disease) and 7 patients (37%) had lymph node involvement
(stage III disease). All patients were managed surgically and with
regional radiotherapy. Five patients also received chemotherapy –
three had POC (procarbazine, vincristine, and lomustine), one
temozolomide, and one DTIC (dacarbazine) – with the number
of chemotherapy cycles ranging from one to six. Autologous tumor
vaccine was used in three patients (in one, after an unsuccessful
course of chemotherapy). One patient also received an experimen-
tal vascular disrupting agent within a phase I clinical trial, as well
as interferon α. No patient received BRAF inhibitors. Treatment

was the decision of a clinical team, independent of research proce-
dures. One patient remained free of melanoma 12 years after nodal
recurrence. The other 18 patients have all died of their disease. The
median survival time was 36 (4–229) months.

GRIN2A MUTATIONS AND PREDICTED IMPACT ON PROTEIN
STRUCTURE
Sequencing of GRIN2A was conducted using cell lines derived
from tumors spread to lymph nodes in 12 patients (63%), dis-
tant organs (brain, small bowel, ascites, or lung) (five patients;
26%), or locoregional metastases (two patients; 11%). All cell lines
used in this study were passaged <30 times, and were generated
from treatment-naïve tumors, except for NZM 017 and NZM 040,
which were derived from patients who received prior immunother-
apy or chemotherapy, respectively (Table S1 in Supplementary
Material).

Of 19 tumor samples tested, four (21%) carried five non-
synonymous mutations in GRIN2A (Figure 1; Table 3). Tumors
that carried these mutations were treatment-naïve, excluding ther-
apy effect. All non-synonymous mutations were missense: three
clustered in exon 14 (G889E, P1132L, P1133S), and the other two
in exon 5 (S349F) and exon 12 (G762E) (Figure 1). These loca-
tions corresponded with the evolutionarily conserved domains in

FIGURE 1 | GRIN2A mutations in melanoma cell lines. (A) Schematic of
the GluN2A protein together with the non-synonymous (in red) and
synonymous (in gray) mutations in GRIN2A. GRIN2A cDNA is 4392
nucleotides long and can be divided into sections encoding evolutionarily
conserved domains in the GluN2A protein. The first and last amino acid
residues of the SP, S1, S2, and M1–M4 domains are numbered. Symbols N
and H mark mutations that coincided in the same tumor samples; *marks

mutations reported previously. Abbreviations: SP, signal peptide; NTD,
N-terminal domain; S1 and S2 segments form the glutamate-binding domain;
M1–M4 transmembrane segments form the ion channel pore; CTD,
C-terminal domain. (B) Sanger sequencing output of non-synonymous
mutations in GRIN2A. Each panel represents a non-synonymous mutation
detected. Nucleotides are labeled below their respective peaks.
Corresponding amino acid sequences are indicated.

Frontiers in Oncology | Cancer Genetics January 2014 | Volume 3 | Article 333 | 4

http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D’mello et al. GRIN2A mutations in melanoma

Table 3 | Non-synonymous mutations in GRIN2A.

NZM cell

line

Substitution

and nucleotide

number

Amino

acid

change

Exon Zygosity SIFT

score

SIFT

median

061 C >T S349F 5 Hetero- 0 3.33

c.1046

g.291693

061 G >A G762E 12 Hetero- 0 3.08

c.2285

g.384407

007 G >A G889E 14 Hetero- 0.29 3.24

c.2666

g.417877

100 C >T P1132L 14 Hetero- 0.2 3.32

c.3395

g.418606

003 C >T P1133S 14 Hetero- 0 3.32

c.3397

g.418608

Mutations are listed in the order of location along the sequence. Deleterious

substitutions were predicted from SIFT scores ≤0.05.

c, cDNA; g, genomic DNA; hetero-, heterozygous; SIFT, sorting intolerant from

tolerant analysis.

the GluN2A protein: C-terminal, N-terminal, and the S2 segment,
respectively (Figure 1). The S2 segment forms the ligand bind-
ing domain, and the intracytoplasmic C-terminus is involved in
intracellular signaling and interactions with the cytoskeleton. Two
mutations, G889E and P1132L, were previously reported [Ref. (3,
17), respectively]. SIFT analysis predicted that S349F, G762E, and
P1133S would deleteriously affect protein function (Table 3).

Five synonymous mutations were also detected (Table 4), as
well as four SNPs (Table 5); SNPs were excluded from further
analysis. F186F synonymous mutation was found in the NZM 040
cell line derived from patient who received two cycles of POC
chemotherapy 8 months prior to cell line derivation (Table S1 in
Supplementary Material). In this instance, the possibility that ther-
apy contributed to the presence of this mutation could not be
ruled out.

We modeled the G762E missense substitution into the 3-
dimensional X-ray crystal structure of the GluN1–GluN2A het-
erodimer, 2A5T (22) (Figure 2). This revealed that G762E was
located in the distal “hinge” of the glutamate-binding clam-shell-
like region of GluN2A. In this location, the mutated glutamate
residue was seen to interact with K531 in the GluN1 protein inter-
facing GluN2A in this region. While K531 formed a hydrogen
bond with the backbone carbonyl of F524 in GluN2A, its proxim-
ity to the mutated glutamate side-chain (G762E) indicated the
potential for new electrostatic interactions between G762E (in
GluN2A) and K531 (in GluN1) (Figure 2) with the ability to
alter interactions between GluN2A and GluN1 subunits and con-
sequently, impact NMDAR functionality. Conformational changes

Table 4 | Synonymous mutations in GRIN2A.

NZM cell

line

Substitution and

nucleotide number

Amino

acid

Exon Zygosity

061 C >T F177F 4 Hetero-

c.531

g.244320

040 C >T F186F 4 Hetero-

c.558

g.244347

055 C >T L794L 13 Homo-

c.2380

g.413689

003 C >T F1344F 14 Hetero-

c.4032

g.419243

086 A > C A1409A 14 Hetero-

c.4227

g.419438

Mutations are listed in the order of location along the sequence.

c, cDNA; g, genomic DNA; hetero-, heterozygous; homo-, homozygous.

Table 5 | GRIN2A SNPs in tumor-derived cell lines.

NZM cell

line

Substitution and

nucleotide number

Amino

acid

Exon Zygosity

011 G >A L425L 6 Homo-

007 c.1275

055 g.332946

001 G >A L425L 6 Hetero-

034 c.1275

061 g.332946

011 G > C R695R 11 Homo-

007 c.2085

055 g.360408

01 G > C R695R 11 Hetero-

061 c.2085

g.360408

006 C >T W730W 12 Homo-

c.2190

g.384312

003 C >A N1076K 14 Hetero-

c.3228

g.418439

c, cDNA; g, genomic DNA; homo-, homozygous; hetero-, heterozygous.

that developed to accommodate G762E could also affect ligand
binding, as the residue preceding G762E (Y761) was part of the
glutamate-binding site (Figure 2) (26).
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FIGURE 2 | Model of G762E within the GluN1–GluN2A X-ray
crystal structure. The S1S2 loop of GluN2A (in green) is shown
interfacing with GluN1 (in cyan). A portion of the GluN2A
agonist-binding site is on the left together with bound glutamate (Glut).
G762E and F524 residues of GluN2A are 2.7 and 3.9 Å away from K531
in GluN1, respectively; potential new electrostatic interactions are
indicated as dashed lines. Nitrogen atoms are in blue, and oxygen
in red.

CLINICAL ASSOCIATIONS OF GRIN2A MUTATIONS
There was no difference in age and gender between patients
whose melanoma lines carried GRIN2A mutations and those
who did not (Table 2). Two patients in this study presented
with disseminated melanoma and both were found to carry non-
synonymous mutations in GRIN2A. The other two patients with
the non-synonymous GRIN2A mutations presented with skin
lesions that spread to lymph nodes within 9 and 27 months,
compared with a median of 37 (0–140) months for patients
with non-mutated GRIN2A (P = 0.041; Table 2). Overall, patients
with non-synonymous GRIN2A mutations had faster progres-
sion of melanoma from skin lesions to the involvement of lymph
nodes (P = 0.04) or distant organs (P = 0.012), and shorter over-
all survival (P = 0.013) compared with patients with non-mutated
GRIN2A (Table 2; Figures 3 and 4A). The BRAF V600E mutation
was found in 11 of 19 (58%) tumor samples but in contrast to
GRIN2A, its presence showed no correlation with overall survival
(P = 0.963; Figure 4B; Table S1 in Supplementary Material).

Seven patients in this study received systemic therapy – five
had chemotherapy and another two autologous tumor vaccine
(Table 2). These were in addition to surgery and involved field
radiotherapy used in all patients. When compared with patients
managed with surgery and radiotherapy alone, the administra-
tion of systemic therapy did not change disease spread to lymph
nodes (P = 0.849), distant organs (P = 0.499), or overall survival
(P = 0.843).

Patients with isolated synonymous GRIN2A mutations (n= 3)
displayed a trend for poorer outcome, compared with patients with
non-mutated GRIN2A, but this was not statistically significant
(Figures 3 and 4).

FIGURE 3 |Times of disease progression from diagnosis to lymph node (A) or distant organ (B) metastases for individual patients according to the
presence or absence of GRIN2A mutations. Levels of statistical significance are shown. *Progression data for one patient with non-mutated GRIN2A was
not available.
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FIGURE 4 | Overall survival according to the GRIN2A (A) or BRAF
V600E (B) mutation status. Levels of statistical significance are shown.
*Data for one patient with non-mutated GRIN2A (V600E absent) was not
available.

DISCUSSION
This study has shown that cell lines derived from 4 of 19 (21%)
patients with metastatic melanoma carried five missense muta-
tions in GRIN2A. They occurred in three of the four evolution-
arily conserved domains of the GluN2A subunit of the NMDAR:
the N-terminal, glutamate-binding, and C-terminal domains. All
missense mutations were found in treatment-naïve samples. The
S349F, G762E, and P1132L substitutions were predicted by SIFT
to disrupt protein function. When modeled into the crystal struc-
ture of GluN2A, the G762E substitution was seen to potentially
alter GluN1–GluN2A interactions and ligand binding, implying
disruption to the NMDAR functionality. Patients whose tumors
carried non-synonymous mutations in GRIN2A had faster disease
progression and shorter overall survival. Our findings suggest for
the first time, to our knowledge, that GRIN2A mutations may drive
melanoma progression.

Our results are in agreement with the seminal whole-exome
sequencing work, where non-synonymous mutations in GRIN2A

were found in 26% of melanoma samples (3). Other exome-wide
sequencing projects detected GRIN2A mutations at lower frequen-
cies (4–7). The true frequency of GRIN2A mutations in melanoma
remains uncertain, but our results support the high prevalence of
GRIN2A mutations in metastatic melanoma (3). Possible causes
for differences between studies include the stage of tumors tested,
or biological heterogeneity of tumors influenced by demographic,
geographical, or environmental factors. Our study demonstrates
for the first time that patients with GRIN2A mutations may have
more aggressive disease. Considering that there is currently no
reliable genetic biomarker that predicts melanoma progression,
GRIN2A mutation testing may offer valuable prognostic infor-
mation. Earlier detection of highly aggressive tumors could assist
faster introduction of new therapies for melanoma patients. We
propose that the GRIN2A mutation testing be incorporated in
larger prospective studies for further evaluation of our findings.

Our work has obvious limitations. Patient numbers are small,
and the clinical outcome was assessed retrospectively. We did not
have access to non-diseased patient DNA to exclude germline poly-
morphisms (SNPs were excluded using online databases). Original
tumor tissue is no longer available to confirm that these contained
GRIN2A mutations found in cell lines, but an error in cell line
authentication is extremely unlikely. Short tandem repeat profil-
ing has been conducted on NZM cell lines to ensure authentication
is possible in the future; however, profiles of original tumors are
not available. Small sample size limits our conclusions, and con-
founders cannot be excluded. Nevertheless, the BRAF mutation
status and systemic therapy had no effect on clinical outcome
in these patients. Other possible limitations include the relatively
late stage of patients at presentation and the selection of cell lines
tested. Our success rate of establishing melanoma cell lines is at
least 90%, but the possibility of bias toward melanomas that can
be grown in culture cannot be ruled out.

Synonymous mutations in GRIN2A associated with poorer
patient outcome; however, these observations were not statistically
significant. Recent studies indicate that synonymous mutations
may be important in cancer, primarily through mechanisms that
affect RNA processing and protein translation (27, 28). Further
work in this area will be required to clarify if synonymous GRIN2A
mutations play a role in melanoma biology.

Our results have strong implications for basic research.
The roles of NMDAR-mediated pathways in melanoma are
still unknown and will require elucidation. Well-characterized
melanoma cell lines with known mutations, such as those
described in this manuscript, will be valuable tools to examine
the mechanisms of action and consequences of specific GRIN2A
mutations in melanoma tumors. We hypothesize that possible
mechanisms through which G762E and other GRIN2A muta-
tions interfere with the NMDAR include reduced NMDAR channel
function and disturbed intracellular signaling downstream. Such
effects would be most relevant under conditions of NMDAR over-
activation, where excessive calcium uptake induces cell toxicity.
The lack of NMDAR-mediated cell death could facilitate tumor
progression. Our hypothesis is consistent with the previously sug-
gested role for the NMDAR as a tumor suppressor (29). Other
GluN subunits (if expressed in melanoma cells) could compensate
for the GluN2A disruption or contribute additional functionality.
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NMDAR-mediated pro-cell-survival signaling could also provide
oncogenic effects, in keeping with the functional dichotomy of the
NMDAR (11).

In conclusion, our study suggests that non-synonymous muta-
tions in GRIN2A are present in approximately 20% of patients
with metastatic melanoma and associate with faster disease pro-
gression and shorter overall survival. The most direct clini-
cal implication of our work is that GRIN2A mutation sta-
tus may allow earlier detection and hence faster treatments
of patients with aggressive tumors. Our data also imply that
NMDAR may be a novel molecular modifier in melanoma;
hence, further studies into its biological role should be pur-
sued.
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