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Abstract

Background: Conventional trial design and analysis strategies fail to address the typical challenge of immune-
oncology (IO) studies: only a limited percentage of treated patients respond to the experimental treatment.
Treating non-responders, we hypothesize, would in part drive non-proportional hazards (NPH) patterns in Kaplan-
Meier curves that violates the proportional hazards (PH) assumption required by conventional strategies. Ignoring
such violation incurred from treating non-responders in the design and analysis strategy may result in
underpowered or even falsely negative studies. Hence, designing innovative IO trials to address such pitfall
becomes essential.

Methods: We empirically tested the hypothesis that treating non-responders in studies of inadequate size is
sufficient to cause NPH patterns and thereby proposed a novel strategy, p-embedded, to incorporate the
dichotomized response incurred from treating non-responders, as measured by the baseline proportion of
responders among treated patients p%, into the design and analysis procedures, aiming to ensure an adequate
study power when the PH assumption is violated.

Results: Empirical studies confirmed the hypothetical cause contributes to the manifestation of NPH patterns.
Further evaluations revealed a significant quantitative impact of p% on study efficiency. The p-embedded strategy
incorporating the properly pre-specified p% ensures an adequate study power whereas the conventional design
ignoring it leads to a severe power loss.

Conclusion: The p-embedded strategy allows us to quantify the impact of treating non-responders on study
efficiency. Implicit in such strategy is the solution to mitigate the occurrence of NPH patterns and enhance the
study efficiency for IO trials via enrolling more prospective responders.

Keywords: Cancer immunotherapy, Dichotomized response, Immuno-oncology trial, Non-proportional hazards
pattern, Proportional hazards assumption, Sample size and power calculation

Introduction
The unprecedented growth in immuno-oncology (IO)
trials has outstripped the development of proper design
and analysis strategies. Particularly, a variety of complex
survival patterns frequently arise in conventionally de-
signed IO trials with time-to-event endpoints, including
the delayed treatment effect pattern where Kaplan-Meier

(KM) curves for the two treatment groups overlay dur-
ing the early trial stage (Fig. 1a), the belly-shape dimin-
ishing effect pattern where the KM curves first separate
then join after sufficient follow-up (Fig. 1b), the crossing
hazards pattern where the KM curve for treatment starts
out being worse than that for active control but ends up
being better (Fig. 1c), or the combination patterns that
combine the aforementioned patterns in various fashions
(Fig. 1d–f). These complex patterns reveal that the
underlying hazard rate of the treatment arm is no longer
proportional to that of the control arm over time, violat-
ing the proportional hazards (PH) assumption required
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by the conventional design and analysis strategies. This
non-proportional difference in hazards makes most con-
ventionally designed IO studies underpowered or even
falsely negative. Hence, how to design tailored and in-
novative IO studies to mitigate the power loss becomes
the question of interest.
There is much recent literature introducing novel trial

designs for IO studies with non-proportional hazards
(NPH) patterns [5–11]. Most proposals, however, only

address a particular category of complex patterns and
may not be applicable to other categories. Moreover,
none of these proposals provide a solution to avert the
occurrence of NPH patterns at the design stage. Hence,
to address the question of interest, we should go beyond
asking: what is the underlying cause behind various pat-
terns? Many biological and clinical evidences show that
the indirect mechanism of action of immunotherapy re-
sults in delayed treatment responses, causing the non-

Fig. 1 Real study examples on non-proportional hazards (NPH) patterns. a Delayed treatment effect pattern: nivolumab in previously untreated
melanoma without BRAF mutation (N = 418); adapted from C Robert, GV Long, B Brady, C Dutriaux, M Maio, L Mortier, JC Hassel, P Rutkowski, C
McNeil, E Kalinka-Warzocha, et al. [1]. b Belly-shape diminishing effect pattern: A randomised non-comparative phase II trial of cixutumumab (IMC-
A12) or ramucirumab (IMC-1121B) plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate
cancer; adapted from M Hussain, D Rathkopf, G Liu, A Armstrong, WK Kelly, A Ferrari, J Hainsworth, A Joshi, RR Hozak, L Yang, et al. [4]. c Crossing
hazards pattern: nivolumab versus docetaxel in advanced squamous-cell non-small cell lung cancer (N = 582); adapted from J Brahmer, KL
Reckamp, P Baas, L Crino, WE Eberhardt, E Poddubskaya, S Antonia, A Pluzanski, EE Vokes, E Holgado, et al. [2]. d Delayed effect and crossing
hazards combination pattern: nivolumab versus docetaxel in advanced squamous-cell non-small cell lung cancer (N = 582); adapted from J
Brahmer, KL Reckamp, P Baas, L Crino, WE Eberhardt, E Poddubskaya, S Antonia, A Pluzanski, EE Vokes, E Holgado, et al. [2]. e Delayed effect and
belly-shape diminishing effect combination pattern: sipuleucel-T immunotherapy for castration-resistant prostate cancer; adapted from PW
Kantoff, CS Higano, ND Shore, ER Berger, EJ Small, DF Penson, CH Redfern, AC Ferrari, R Dreicer, RB Sims, et al. [3]. f Various belly-shape
diminishing effect combination pattern: a randomized non-comparative phase 2 trial of cixutumumab (IMC-A12) or ramucirumab (IMC-1121B)
plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate cancer; adapted from M Hussain, D
Rathkopf, G Liu, A Armstrong, WK Kelly, A Ferrari, J Hainsworth, A Joshi, RR Hozak, L Yang, et al. [4]
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proportional hazards. However, would the lag duration
manifested in the Kaplan-Meier curves reflect the true
delayed duration? Moreover, what are the causes behind
the NPH patterns other than the delayed treatment ef-
fect pattern, such as the crossing hazards pattern? The
prevalence of various patterns seems to indicate that
there exist some other causes besides a working
mechanism.
In this paper, we first investigated the possible causes

behind the NPH patterns and resultant power loss. In-
spired by the recognition that cancers are highly hetero-
geneous diseases [12], we conjecture that the
manifestation of such patterns stems in part from treat-
ing patients who are not likely to respond to the experi-
mental therapy in studies of limited size. Traditionally
designed IO trials often impose very liberal entry criter-
ion and enroll all comers of the target cancer type, likely
resulting in a heterogeneous trial population for which
only a small subset of patients harbor immunotherapy-
sensitive tumors [13] and would respond to the im-
munotherapy once being treated [14–18] (responders),
whereas the rest of patients would not respond (non-re-
sponders). In this article, the responders are broadly de-
fined as those subjects who can benefit from the IO
treatment and achieve improved overall survival (OS)
due to reduced hazards. Thus, the hazard ratio (HR) be-
tween responders and controls would be reduced from
one attributable to treatment whereas the ratio between
non-responders and controls would remain at one.
When it comes to calculating the sample size, trialists
normally over-specify the treatment effect size by target-
ing only the responders and ignoring the existence of
non-responders in the treatment arm, inadvertently un-
aware that the beneficial effect of treatment on the
former has been negated by the null effect on the latter.
Consequently, such a study would end up underpowered
and possibly fail to detect a truly effective immunother-
apy, if any. Likewise, when the comparison between
treatment and control is depicted using a KM plot, a
variety of NPH patterns would likely be manifested,
since the HR measuring the average effect of responders
and non-responders in the treatment group versus the
controls is driven by the proportion of responders and
this proportion is constantly modified over the course of
study.
Although NPH patterns result partially from treating

non-responders, eliminating it remains difficult due to
the challenge in identifying the prospective responders
definitely. Predictive biomarkers play a critical role in
selecting therapeutic-sensitive responding patients for
IO treatment; the existing biomarkers, however, cannot
predict a particular patient’s therapeutic response with
certainty [19, 20], and in many malignancies, the bio-
markers are yet to be available for responder selection.

Despite the individual responder membership is un-
known a priori, however, the chance of an individual pa-
tient responding to a given treatment, can be estimated
by the proportion of responders in the treatment group
at the baseline, p%, via prior studies. An innovative ana-
lysis procedure can acknowledge and incorporate the re-
sponse dichotomy, incurred from treating non-
responders and measured by p%, to ensure an adequate
study power.
This idea leads to the proposed p-embedded strategy, in-

cluding the p-embedded sample size and power calculation
algorithm for design, p-embedded re-randomization test for
hypothesis testing and p-embedded EM algorithm for treat-
ment effect estimation. The p-embedded strategy involves
essentially a mixture model where the treatment group is a
mixture of responders and non-responders although the in-
dividual responder membership is unknown. Such mixture
model is different from the existing mixture models includ-
ing cure model [21] for which all treated patients respond
with a subset of them cured. The proposed method has
three advantages. First, it ensures an adequate study power
to detect a potentially effective therapy when a dichotomized
treatment response is present. Second, it explicitly reveals
that treating more responders would dramatically reduce
the study size and/or shorten the trial duration. Third, it
provides a remedy to mitigate the occurrence of NPH pat-
terns. Although the response dichotomy of IO studies has
been well recognized and the highly responsive immuno-
genic subtypes for various cancer types have been identified
[22–24], how to take advantage of such advances in the trial
design and subsequent analysis has yet to be thoroughly ex-
plored, which is therefore the focus of this article.

Methods
The effect of response dichotomy and inadequate sample
size on the emergence of NPH patterns
We first conducted a simulation study to demonstrate
that low proportion of responders p% combined with in-
adequate sample size N could be sufficient to cause
NPH patterns. Assuming the responders accounting for
20% of treated patients at baseline, we simulated 100
randomized trials of 200 patients each. Within each trial,
patients were allocated to the treatment and control
arms at 1:1 ratio. The objective was to compare the dif-
ference in overall survival (OS) between the two arms,
where the median survival time for responders was an-
ticipated to be 3.3 times longer than that of non-
responders or controls. The details of the simulation set-
ting are provided in Additional file 1. We depicted the
simulated data with KM curves, inspected the resultant
patterns visually and summarized them in terms of pro-
portions of trials falling into each aforementioned pat-
tern category. To contrast the joint effect of p% and N
on NPH patterns, the same analysis was repeated when
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p% was increased from 20 to 90% and/or N from 200 to
2000.

Incorporating response dichotomy into the design and
analysis of IO trials
To properly incorporate response dichotomy into the
design and analysis of IO studies, we first developed the
p-embedded re-randomization test for hypothesis testing
and p-embedded expectation maximization (EM) algo-
rithm for treatment effect estimation. Particularly, we as-
sumed that at baseline p% of treated patients would
respond to the experimental therapy and their survival
times follow a piecewise constant exponential distribu-
tion, for which the hazard rates vary from hC to hT at
the lag time t∗ since randomization. The survival times
of non-responders and controls would follow a regular
exponential distribution with a constant rate hC. We
considered the administrative censoring mechanism
under which patients would either die during the course
of the study or be censored at the end of the study.
Since the latent response status of each individ-

ual treated patient was unknown, we resorted to the
expectation-maximization (EM) algorithm [25, 26] for
estimating the treatment effect measured by HR λp ¼ hT

hC
,

while incorporating the aggregated information on pro-
portion of responders into the estimation procedure.
The p-embedded EM algorithm worked iteratively by
the E-step and M-step, with E-step guessing the latent
responder status of each treated patient under the con-
straint that the overall proportion of responders among
treated was p% and M-step using those guesses to esti-
mate the parameters hC and λp (or hT) by maximizing
the likelihood of pre-specified survival distributions. The
parameter estimates from M-step further refined the
guesses of latent responses in the next E-step and the re-
fined guesses in turn fine-tuned the parameter estimates
in the next M-step. The iteration continued until the al-
gorithm converged, and the treatment effect estimate at

the convergence, λ̂p , was selected as the outcome of p-
embedded EM algorithm.

To test the significance of estimated treatment effect
and obtain a valid inference, a non-parametric re-
randomization test embedded with p% was adopted, due
to the fact that the overall sample size was limited and
only a small subset of treated patients could contribute
to the detection of treatment effect; thus, the asymptotic

distribution of λ̂p obtained from the EM algorithm may
not well approximate the true null distribution. Specific-
ally, for any pre-specified p%, the p-embedded re-
randomization test worked by first calculating the

observed test statistic, λ̂
obs
p , using p-embedded EM algo-

rithm on the observed data, then fixing the data at their

observed values, regenerating treatment assignments for

the entire trial, and computing the test statistic λ̂
shuf
p cor-

responding to those re-shuffled assignments using the
same p-embedded EM algorithm. This process was re-
peated for a large number of times, and a p value was
computed as the proportion of re-randomized trials

whose test statistic λ̂p shuf was at least as extreme as that

of the observed assignments λ̂
obs
p .

Based upon the proposed testing procedure, we devel-
oped the corresponding p-embedded sample size and
power calculation algorithm through numeric simula-
tions. Given the target power, treatment effect size λp,
baseline hazard hC, and baseline proportion of re-
sponders among treated p%, the proposed algorithm in-
volved a grid search of sample size over a plausible
range. Each candidate sample size was evaluated for its
empirical power by repeating the following steps a large
number of times:
Step 1. Randomized patients to the treatment and con-

trol arms at 1:1 ratio to obtain the observed treatment
assignments;
Step 2. Generated the observed survival outcome for

each patient assuming hC and λp and determined the
censoring status under the administrative censoring
mechanism;
Step 3. Carried out the p-embedded re-randomization

test as described in the previous paragraph to compute
the associated p value;
Step 4. Step 1 to 3 were repeated for a large number

of times and for each time, the p value was recorded.
The estimated empirical power for a given candidate

sample size was the proportion of p values that were less
than or equal to 0.05. Among the candidate sample sizes,
the one whose empirical power was closest to the target
was then selected as the sample size required to achieve
the target power, N.

Robustness against the mis-specification risk of p%
Apparently, the p-embedded design and analysis pro-
cedure depends critically upon the pre-specification of
p%; but in practice, the true value of p% is unknown.
It is thus critical to address the robustness property
of the p-embedded strategy against the mis-
specification risk under various scenarios. To this
end, we first computed the required sample size N
using the p-embedded design when p% was over-
specified or under-specified from the truth as pm%.
Next, given N, we calculated the empirical power that
the p-embedded analysis procedure could actually
achieve based on the mis-specified pm%. For compari-
son purpose, we also evaluated the conventional de-
sign ignoring response dichotomy. To calculate the
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empirical power under the mis-specification scenarios,
the survival outcomes for the responders and non-
responders/controls were simulated under the true
p%, but the p values were computed under the mis-
specified pm% using the p-embedded re-randomization
test. The aforementioned process was repeated 1000
times to obtain the empirical power.

Software
To facilitate the implementation of the p-embedded
strategy in practice, we have developed a software
“Immunotherapy.Design” that allows users to perform
the p-embedded sample size and power calculation,
hypothesis testing as well as treatment effect estima-
tion. The software is freely available at GitHub
https://github.com/wheelerb/Immunotherapy.Design.

Trial example
To illustrate the p-embedded strategy for the design
and analysis of IO trials, consider a phase 3 study
with the target power at 80% and type I error rate at
0.05. Suppose the enrollment rate of 0.53 subject per
day, delayed duration of one month and overall study
duration of 5 years, the hazard ratio for the treated
responders versus controls is pre-specified to be 0.6,
and the responders account for 60% of treatment
group (p% = 60%). Targeting 80% power, the p-
embedded sample size and power calculation algo-
rithm built in the Immunotherapy.Design software
conducts a grid search of sample size over a plausible
range between 100 and 300 and determines 275 sub-
jects are required to achieve the target power. Further
suppose that a hypothetical trial is conducted with
275 patients enrolled, whose time-to-event data were
simulated from a piecewise constant exponential
distribution for the treated responders and from a
regular exponential distribution for the treated non-
responders/controls, respectively. Applying the p-
embedded EM algorithm on the hypothetical trial
gives an estimate of hazard ratio between responders
and controls at 0.595, very close to the underlying
truth of 0.60 used to generate the hypothetical trial
data, and performing the p-embedded re-
randomization test evaluating the significance of treat-
ment effect leads to a p value of 0.023.

Results
Low proportion of responders plus inadequate sample
size could cause NPH patterns
The exploratory study, which simulated 100 ran-
domized trials with different p% and N, revealed
that low proportion of responders plus inadequate
sample size could cause NPH patterns to arise.
Among the 100 clinical trials of 200 patients each

with a p% of 20%, a disproportionate portion (89%)
manifested NPH patterns of various kinds: 27% of
delayed treatment effect pattern with a prolonged
(or shortened) lag of longer than (or shorter than)
the underlying truth of 3 months, 12% of belly-shape
diminishing effect pattern, 9% of crossing hazards
pattern, and 41% of combination pattern. In con-
trast, if p% increased to 90%, the overwhelming ma-
jority of simulated trials displayed a clear separation
of survival curves between arms right after the 3-
month lag and only 20% of trials demonstrated di-
verse NPH patterns. It is interesting to note that N
played a critical role in the causal impact of p% on
NPH patterns. As N increased, the impact of p%
varnished. Among trials simulated under a small p%
of 20%, a sample size of 2000 patients resulted in
23% of trials involving NPH patterns, whereas N of
200 led to 89% of them showing complex patterns.
This empirical analysis shedded light on the driving
forces behind NPH patterns and supported our con-
jecture. It thus also provided a remedy to avert the
occurrence of NPH patterns by either treating more
responders or increasing N or both.

Impact of response dichotomy on study efficiency
The p-embedded sample size and power calculation
algorithm quantifies the impact of response dichot-
omy on study efficiency through the relationship be-
tween p% and N under a given target power
(Table 1). For comparison, N was computed by the
p-embedded and conventional designs, respectively.
To detect a 70% increase in median survival time for
treated subjects relative to the controls with a de-
sired power, the conventional design required 27 pa-
tients, whereas the p-embedded design entailed 269
patients when only 20% of treated patients respond.
The simulation study confirmed that 269 patients
achieved 80% of power empirically based on the p-

Table 1 Impact of treating non-responders and the incurred
response dichotomy on the required sample size (N) and
empirical power (EP). Response dicotomy is measured by the
proportion of responders (p%) among the treatment arm at
baseline. Target power is 80%. Lag duration is 1 month. Hazard
ratio for responding patients is 0.3. Total study duration is 5
years. Enrollment rate is 0.53 subjects/day

P-embedded design Conventional design

p (%) N Empirical power N Empirical power

20 269

80% 27

8.81%

30 137 13.39%

40 89 18.58%

50 68 25.73%

60 52 32.81%
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embedded re-randomization test whereas 27 patients
only provided 8.81% of empirical power based on
the conventional log-rank test. This evaluation re-
veals that ignoring the dichotomized treatment re-
sponse in the design and analysis strategy would
result in a severe underestimate of sample size and
consequently a serious loss of power, whereas recog-
nizing such dichotomy yields a proper increase in
sample size so that an adequate and well-controlled
study can be ensured. Although one may argue that
a randomized trial with 27 patients is apparently un-
common in practice, we aim to use such a study to
illustrate the detrimental effect of ignoring p% in IO
trials with a large treatment effect size for re-
sponders (HR = 0.3) to be detected.
If p% increases from 20 to 60%, N required by p-

embedded design plummeted from 269 to 52 pa-
tients. Such a precipitous decrease implies that if
only a minority of treatment arm respond (e.g.,
20%), even to detect a highly effective treatment
regimen with the desired power requires a very large
sample size, as opposed to that required when a ma-
jority of treatment arm responds (e.g., 60%). This
finding has an intuitive implication. To achieve the
desired power under a dichotomized treated popula-
tion with a small subset of latent responders, investi-
gators would need to enrich the study without

knowing what to enrich, leaving the magnitude of
enrichment inefficiently large. In contrast, treating
more, if not all, responders, can significantly reduce
the study size and enhance the study efficiency,
which underscores the value of precision design for
immunotherapy studies.
Next, we explored how trial parameters, such as the

magnitude of treatment effect, trial duration as well as
lag duration, affect the relationship between response di-
chotomy and study efficiency.

Magnitude of treatment effect
As the magnitude of treatment effect varies, similar
trends could be observed between the proportion of
responders and the required sample size (Fig. 2).
The association that the lower the proportion of re-
sponders, the larger the required sample size became
more apparent when the treatment effect got
smaller. For instance, when the post-lag hazard ratio
for responders was 0.3, a decrease in p% from 60 to
20% resulted in an increase in N from 52 to 269;
when the hazard ratio increased to 0.4, the same
variation in p% led to a dramatic inflation in N from
82 to 541. As the hazard ratio became 0.5, an even
more extreme trend was present where, if p% was
20%, no matter how large N rose to, the study could
no longer achieve the desired power given the same

Fig. 2 The impact of response dichotomy on study efficiency as magnitude of treatment effect (measured by hazard ratio) varies
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enrollment rate and study duration. The reason was
because the subjects who were enrolled late to the
study could no longer be sufficiently followed up until
their event times before the study ends. Thus, the
strategy to salvage the loss of power due to low pro-
portion of responders via increasing the sample size
only worked when the treatment effect size was rela-
tively large and the study duration was reasonably
long. On the contrary, when the effect size was mod-
erate or the study duration could not be further ex-
tended, enhancing the proportion of responders p%,
that is, enrolling more responders, seemed to be the
only sensible solution to achieve the desired power.

Trial duration
Trial duration plays a critical role in rescuing the power
loss when the response dichotomy is severe. As Table 2
illustrates, a study with 20% treated responders was im-
possible to achieve the desirable power given 3 years of
duration and 0.53 subjects/day enrollment rate. In order
to salvage the power loss, the study duration needed to
be prolonged to allow sufficient follow-up time for pa-
tients who were enrolled late. Table 2 also reveals an in-
teresting interplay among the trial duration, required
sample size N and proportion of responders p%. In gen-
eral, as the trial duration extended, achieving the target
power required less sample size, given a fixed value of
p%. As p% increased, such impact of trial duration on
sample size diminished and the study remained efficient
even under a short duration. For instance, when p% be-
came as large as 60%, N converged to approximately 52
patients regardless of the study duration. This finding
once again highlights the benefits of enhancing p% in
conducting faster and smaller trials.

Lag duration
When the treatment time-lag effect is present, an IO
study generally requires more sample size to achieve the
target power. Figure 3 demonstrates that given the same
p%, the longer the lag, the larger the sample size. As p%

varied, the trajectory of N remained roughly similar re-
gardless of the lag duration, although the inflation in N
due to a decrease in p% seemed slightly more apparent
under a longer lag.

Impact of mis-specifying p%
Table 3 illustrates that over-specifying p% from the truth
would result in underpowered studies but under-
specifying p%, overpowered ones, and the deviation from
the target power due to the mis-specification varnished
as p% increased. For example, the p-embedded design
based on a mis-specified p% at 60% claimed that 52 pa-
tients were sufficient to achieve the target power at 80%.
If the true p% fell below the specified (p% = 50%) or
above it (p% = 70%), the empirical study revealed that
the p-embedded analysis procedure given 52 patients
could actually achieve 71.4% or 88.0% of power, respect-
ively, where the deviation from the target power was less
than 10%. In contrast, when the true p% was small, even
the same magnitude of mis-specification in p% could re-
sult in a more severe deviation in power from the target.
For instance, if p% was mis-specified to 20% but the
truth lied at 10% or 30%, the resulting study designed
and analyzed by p-embedded strategy gave rise to 44.9%
or 95.2% of power, where the deviation from the target
power was more than 10%. By contrast, the conventional
study led to an even more severe loss of power (empir-
ical powers were 6.61% or 13.39%).
Three conclusions can be drawn. First, the study

power based on the p-embedded strategy can be severely
overestimated when p% is very small and lies below the
specified. Second, despite being underpowered under
certain circumstances, the proposed approach account-
ing for the dichotomized response is still much more
powerful than the conventional method ignoring it com-
pletely. Intuitively thinking, ignoring the response di-
chotomy could be regarded as over-specifying p% to
100% by assuming all enrolled patients could uniformly
respond to a given therapy, a severe over-specification
that would result in a serious power loss. Third, as p%
increases, the mis-specification risk is alleviated, imply-
ing that increasing p% by treating more responders is
helpful to guard against the mis-specifying risk. In prac-
tical application of the p-embedded strategies, it is es-
sential to conduct sensitivity analysis by evaluating
various plausible values of p%.

Discussions
Treating non-responders and ignoring the response di-
chotomy incurred are a potential pitfall in designing IO
trials. Specifically, response dichotomy combined with
inadequate study size would likely give rise to NPH pat-
terns in Kaplan-Meier curves, undermine the study
power and make the treatment effect difficult to detect.

Table 2 Impact of response dichotomy on the sample size
required to achieve the target power by study duration. Target
power is 80%. Lag duration is 1 month. Hazard ratio for
responding patients is 0.3. Enrollment rate is 0.53 subjects/day

p
(%)

Sample size required to achieve the target power

Study duration

3 years 4 years 5 years

20 NA 313 269

30 186 153 137

40 108 96 89

50 76 70 68

60 55 52 52
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Although eliminating the response dichotomy by identi-
fying individual responding patient remains challenging,
properly pre-specifying the proportion of responders p%
among a group of patients with certain characteristics
can be feasible, and that information can be taken ad-
vantage of to ensure an adequate power. Hence, we have
developed the p-embedded strategy for the design and
analysis of IO trials, which allows us to quantify the im-
pact of treating non-responders on study characteristics
and properly inflate the sample size to salvage the

potential power loss. Our findings reveal that if the
treatment group consists of only a small subset of latent
responders, salvaging the power loss requires enriching
the study without knowing what to enrich, thus leaving
the magnitude of enrichment inefficiently large or even
infeasible. Conversely, if more prospective responders
would be enrolled so that p% is increased, the NPH pat-
terns can be mitigated and study efficiency dramatically
improved as we demonstrate quantitively in this article.
These results underscore the importance and benefits of

Fig. 3 The impact of response dichotomy on study efficiency as duration of treatment lag varies

Table 3 The impact of mis-specifying p% on the design and analysis. At the design stage, the sample size required to achieve the
target power is calculated using the conventional design ignoring response dichotomy and the p-embedded design recognizing
response dichotomy but mis-specifying the true p∗% to be pm%. Given the sample size calculated, the empirical power (EP) is
evaluated under the true response dichotomy p∗%. Target power is 80%. Lag duration is 1 month. Hazard ratio for responding
patients is 0.3. Total study duration is 5 years

P-embedded design Conventional design

Design Analysis Design Analysis

Mis-specifying p* Over-specifying p* = pm − 10 Under-specifying p* = pm + 10 Ignoring p*

pm (%) N p* (%) EP p* (%) EP N p* (%) EP p* (%) EP

20 269 10 44.90% 30 95.20%

27

10 6.61% 30 13.39%

30 137 20 59.30% 40 88.90% 20 8.81% 40 18.58%

40 89 30 63.70% 50 89.20% 30 13.39% 50 25.73%

50 68 40 70.30% 60 89.00% 40 18.58% 60 32.81%

60 52 50 71.40% 70 88.00% 50 25.73% 70 40.93%
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precision design for immunotherapy trials. It is worth
noting that the benefits from properly enriching the sub-
set of responders would be associated with not only IO
agents but also non-IO agents.
In this article, the responders are broadly defined as

those subjects who can benefit from the IO treatment by
achieving improved OS due to reduced hazards, so p% is
generally larger than the objective response rate. From
the clinical perspective, the responders could include pa-
tients who can achieve complete response (CR), partial
response (PR) as well as durable stable disease (SD)
which is also clinically meaningful and can translate to
improved OS, per RECIST criteria. Such definition of re-
sponders has pros and cons, respectively. The pros are
that it may fully capture the OS benefits and is not re-
stricted to objective response, as not all survival benefits
for IO therapy can be adequately captured by objective
response. The disadvantage is that it creates added chal-
lenge for the investigators to pre-specify the proportion
of prospective subjects who can take advantage of im-
proved OS benefits, p%.
How to properly pre-specify p% and how to enroll

a patient population with large p% are the critical
questions to be addressed when applying the pro-
posed strategy. In practice, pre-specifying p% and HR
for responders is challenging yet feasible based on
early-phase studies. As described in the US Food and
Drug Administration Guidance on Clinical Consider-
ations for Therapeutic Cancer Vaccines [27], a ran-
domized phase 2 trial is highly recommended prior to
the transition to confirmative trials to help determine
the appropriate sample size and treatment effect size.
Given the study results of a randomized phase 2 trial
with the target cancer type, one can modify the p-
embedded EM algorithm to estimate not only the HR
of responders but also p%. If the confirmatory study
enrolls patients with same characteristics, the esti-
mates from phase 2 can help to properly pre-specify
p% for phase 3. More importantly, when a predictive
biomarker is available, it can facilitate the selection of
study population with a larger p%. For instance, if pa-
tients’ PD-L1 expression [28] levels are collected in
phase 2, then the p-embedded EM algorithm can be
applied to estimate p% and HR for PD-L1 expression
positive or negative subgroups, respectively. Investiga-
tors can then enroll patients who are PD-L1 expres-
sion positive exclusively for phase 3, so that the
confirmatory trial could have a patient population
with a higher likelihood of therapeutic response (i.e.,
larger p%) as compared with the one enrolling pa-
tients of all subtypes. At present, it is not feasible to
predict definitively a particular patient’s therapeutic
response based on the existing biomarkers [19, 20],
which however makes the p-embedded strategy

particularly useful as it incorporates the uncertainty
in patients’ therapeutic responses into the design and
analysis to salvage power loss. With the refinement of
existing biomarkers [29, 30] and identification of
novel biomarkers [31], more rational use of bio-
markers could be ensured to direct the selection of
trial population who is more likely to benefit, making
it feasible to enhance the study efficiency of IO trials.
Ultimately, it helps to administer the immunotherapy
to the prospectively responding patients in the real
world. Artificial Intelligence (AI) may help improve
the efficiency of IO trials conducted using the p-
embedded strategy via enrolling a study population
with a larger p%. When large-scale prior studies be-
come available, AI may help identify the biomarkers
[32] to predict the responses of individual patients to
IO treatments [30, 33, 34] so that therapeutic-
sensitive patients can be enrolled and a study popula-
tion with a larger p% can be obtained.
Despite the many benefits of p-embedded strategy can

provide, the proposed approach is only suitable within
certain scope. For instance, p-embedded is not suitable for
a single-arm study or a study for which patients can
homogeneously benefit from the therapeutic agent (such
as p% is close to 100%). In the extreme case when p% is
impossible to elicit due to the lack of any prior informa-
tion, the p-embedded strategy cannot be adopted or per-
form well. More likely, insufficient knowledge about p% is
availabe and there are chances of mis-specifying p%. In
this case, to control the risk of mis-specification within a
reasonable range, historical studies, pilot data, and good
biological and medical judgment on the mechanism of ac-
tion of therapeutic agent are recommended to utilize, ap-
propriately, for study design. In addition, sensitivity
analysis should always be conducted to explore various
plausible values of p%. Another limitation of the p-
embedded strategy is the robustness of the parametric as-
sumption as the baseline hazard is modeled parametrically
via an exponential distribution. While acknowledging the
limitation, we consider that the parametric model has its
merit, as it is sufficient to illustrate the key idea that quan-
tifying the impact of treating non-responders is essential
for IO trial design and reducing incurred response dichot-
omy can enhance the study efficiency significantly. A more
robust non-parametric approach is currently under devel-
opment for future research.

Conclusions
In summary, we identified that NPH patterns in IO trials
are largely caused by treating non-responders and pro-
posed a first-of-its-kind strategy, p-embedded, to address
the incurred dichotomized treatment response. The p-
embedded strategy makes two significant contributions:
first, it ensures an adequate study power of IO trials by
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properly pre-specifying response dichotomy, which sig-
nificantly reduces falsely negative IO studies; second, it
provides a solution to enhance the IO trial efficiency and
mitigates the occurrence of NPH patterns by enrolling
more prospective responders identified via prior studies,
which outlines a path towards precision immunotherapy.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13045-020-0847-x.

Additional file 1: A simulation study to investigate the cause of NPH
patterns.
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