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Abstract

Bacteria are highly diverse, even within a species; thus, there have been many studies which classify a single species into

multiple types and analyze the genetic differences between them. Recently, the use of whole-genome sequencing (WGS) has

been popular for these analyses, and the identification of single-nucleotide polymorphisms (SNPs) between isolates is the

most basic analysis performed following WGS. The performance of SNP-calling methods therefore has a significant effect on

the accuracy of downstream analyses, such as phylogenetic tree inference. In particular, when closely related isolates are

analyzed, e.g. in outbreak investigations, some SNP callers tend to detect a high number of false-positive SNPs compared

with the limited number of true SNPs among isolates. However, the performances of various SNP callers in such a situation

have not been validated sufficiently. Here, we show the results of realistic benchmarks of commonly used SNP callers,

revealing that some of them exhibit markedly low accuracy when target isolates are closely related. As an alternative, we

developed a novel pipeline BactSNP, which utilizes both assembly and mapping information and is capable of highly accurate

and sensitive SNP calling in a single step. BactSNP is also able to call SNPs among isolates when the reference genome is a

draft one or even when the user does not input the reference genome. BactSNP is available at https://github.com/IEkAdN/

BactSNP.

DATA SUMMARY

BactSNP is available at https://github.com/IEkAdN/
BactSNP and simulated correct SNPs and reads in the
benchmarks are available at http://platanus.bio.titech.ac.jp/
bactsnp.

INTRODUCTION

While many studies on the intra-species genetic diversity of
bacteria have been conducted, this research area is at a turn-
ing point in terms of molecular typing technologies. Whole-
genome sequencing (WGS) is now often used instead of
conventional methods such as multi-locus sequence typing
(MLST) or pulsed-field gel electrophoresis (PFGE). WGS
enables the differentiation of the genetic features of isolates,
even when conventional methods cannot identify differen-
ces owing to the exceedingly high similarity between isolates
[1, 2]. WGS is not only used to identify genetic variants
causing phenotypic differences, but also to infer the

infection routes of pathogenic bacteria in outbreaks where
the target isolates are extremely closely related, sometimes
indicating possible infection routes not identified by epide-
miological data [2, 3].

In such WGS-based studies, the most basic analysis consists
of identifying single-nucleotide polymorphisms (SNPs)
among target isolates; these are variants that may explain
phenotypes and provide the basis for phylogeny inference
or other downstream analyses. Various SNP callers, includ-
ing SAMtools [4], GATK [5], Freebayes [6], VarScan [7]
and Cortex [8] have been developed and used in many com-
parative genomic studies of bacteria (e.g. SAMtools, [9, 10];
GATK, [11, 12]; Freebayes, [13, 14]; VarScan [15, 16], Cor-
tex, [17, 18]). While SAMtools, GATK, Freebayes and Var-
Scan are mapping-based tools that require the result of
sequence-read mapping as their input, Cortex is a de Bruijn
graph-based tool that detects SNPs by directly loading the
reads of multiple samples into the same de Bruijn graph [8].
As WGS has become popular in bacterial comparative
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genomics, some dedicated pipelines, such as CFSAN SNP
Pipeline (CFSAN) [19], NASP [20], PHEnix [21], and
Snippy [22] have been developed for SNP calling among
bacterial isolates. In general, these pipelines require the
reads of target isolates and a reference genome as input and
execute an external mapping tool and variant caller, fol-
lowed by some filtering steps to remove low-quality SNPs.

In spite of the importance of SNP calling and the increasing
number of SNP callers, the accuracy of SNP-calling methods
has not been validated sufficiently. In particular, when
researchers focus on closely related isolates, the accumula-
tion of false-positive SNPs between each isolate and the ref-
erence isolate easily leads to a high number of false-positive
SNPs compared with the limited number of true SNPs
among isolates. To our knowledge, there have been no stud-
ies that have benchmarked the sensitivity and accuracy of
SNP calling methods among bacterial isolates.

Here, we describe realistic benchmarks of these tools in call-
ing SNPs among closely related isolates and reveal that
some of them often exhibit low accuracy. In addition, we
present a novel pipeline BactSNP. Though BactSNP, like the
above-mentioned pipelines, also uses mapping information,
it simultaneously de novo assembles the input reads and
uses the alignment information between the assembled con-
tigs and the reference genome to avoid false positives. Our
benchmarks demonstrate that BactSNP achieves highly sen-
sitive and accurate SNP calling.

METHODS

Benchmarking of SNP callers

When researchers call SNPs among isolates, they generally
use a known reference genome, and SNPs are called at posi-
tions along this genome. We simulated this situation as
shown in Fig. 1.

First, the complete genomes of Staphylococcus aureus, Neis-
seria meningitidis and Escherichia coli were downloaded
from the NCBI database [23], and paired root and reference
sequences exhibiting approximately 97, 98, 99 and 99.9%
identity were selected for each species (Table S1, available in
the online version of this article) to simulate various cases.
Next, for each reference-root pair, the genomes of 10 virtual
isolates (A1–A10) were simulated by introducing variants to
the root sequence. In order to reproduce the situation where
target isolates are closely related, variants were introduced
using EvolveAGene [24] so that each edge on the tree con-
tains approximately 10 substitutions, 1 insertion and 0.25
deletions on average.

Simulated substitutions were moved to random positions in
regions where nucmer [25] generated one-to-one
alignments�1 kbp in length between the pair sequences
using our in-house program. This procedure was used so
that we could check whether the detected SNP positions in
the reference sequence corresponded to the true SNP posi-
tions simulated in the root sequence. Then, Illumina paired-
end reads with sequencing errors were simulated from the

genome of each virtual isolate using ART [26]. Finally, we
called SNPs among isolates A1–A10 using the simulated
reads and the reference genome with the above-mentioned
SNP callers. See Supplementary Notes for a detailed descrip-
tion of this benchmark and the executed commands.

The advantage of this benchmark is that variants between
the reference and the target isolates are not simulated but
real, complicated ones, except for the substitutions intro-
duced against the root to simulate each target isolate’s
sequence. These complicated variants make SNP calling

IMPACT STATEMENT

While a number of SNP-calling methods have been

developed, their performance in calling SNPs among

closely related bacterial isolates have not been validated

sufficiently. This study represents realistic benchmarks

to reveal that some of those methods exhibit low-accu-

racy results. As an alternative method, we developed a

novel pipeline, BactSNP, which can detect SNPs both

accurately and sensitively. BactSNP provides every

researcher, even those lacking well-trained bioinformatic

skills, a user-friendly tool to identify SNPs highly accu-

rately, and will accelerate microbial genomic research.

Fig. 1. Conceptual diagram of analysis situation simulated in bench-

mark. Reference and root sequence pairs exhibiting approximately

97%, 98%, 99% and 99.9% identity were chosen from complete

genomes in the NCBI database and the genomes of 10 virtual isolates

and their reads were simulated.

Yoshimura et al., Microbial Genomics 2019;5

2



Table 1. Benchmarks using simulated sequence data

Public complete genomes of three species, including (a) S. aureus, (b) N. meningitidis and (c) E. coli, were used for the benchmark. Identity, sequence

identity between the root and reference isolates; positive predictive value (PPV), ratio of true-positive detected SNP sites to all detected SNP sites;

Sensitivity, ratio of true-positive detected SNP sites to all true SNP sites; Called-sites, ratio of sites where a nucleotide was determined unambigu-

ously in all isolates to the reference-genome size. All stats are averaged values among ten duplications. Called-sites ratio was not calculated for Cor-

tex and CFSAN and was represented as ‘–’, because they do not output information for non-variant regions.

(a) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

PPV (%) 99.9 99.07 74.35 73.04 93.36 96.27 58.05 99.78 100.00 99.94 100.00

99 98.16 38.69 26.75 63.68 78.22 7.13 95.45 100.00 99.89 100.00

98 98.59 31.71 25.18 53.33 72.04 3.31 96.22 100.00 99.67 100.00

97 98.37 27.55 21.17 46.73 71.34 2.13 95.34 99.94 99.44 100.00

Common-region

PPV (%)

99.9 100.00 100.00 98.79 99.91 100.00 94.24 100.00 100.00 100.00 100.00

99 99.89 98.05 93.55 98.76 98.50 48.47 100.00 100.00 100.00 100.00

98 100.00 98.46 95.34 97.63 99.48 33.57 100.00 100.00 100.00 100.00

97 100.00 99.17 89.87 96.88 98.60 24.31 99.84 100.00 100.00 100.00

Sensitivity (%) 99.9 95.37 99.15 99.71 99.83 99.39 99.66 99.04 97.81 99.83 99.55

99 85.63 94.83 99.56 99.56 99.45 98.62 97.29 97.79 99.45 99.06

98 77.55 87.97 98.04 98.99 98.59 96.98 90.85 96.74 98.76 98.54

97 73.24 81.09 97.60 98.82 97.60 95.42 81.25 94.97 98.49 97.71

Called-sites (%) 99.9 – 88.92 95.36 64.40 95.96 94.19 – 91.91 94.78 93.69

99 – 84.31 90.11 61.24 89.88 87.80 – 87.16 89.37 88.25

98 – 84.96 90.40 61.86 89.97 86.69 – 87.27 89.42 88.30

97 – 84.38 89.65 61.71 88.90 84.66 – 86.39 88.39 87.12

(b) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

PPV (%) 99.9 96.08 94.94 96.21 98.61 98.91 47.46 99.56 100.00 100.00 100.00

99 96.38 50.35 41.42 71.33 80.49 5.77 96.10 100.00 99.66 100.00

98 96.57 27.24 19.41 46.44 61.13 2.72 91.34 99.83 99.89 100.00

97 96.81 23.68 16.88 43.20 64.76 2.12 91.29 100.00 99.66 100.00

Common-region

PPV (%)

99.9 99.38 100.00 99.89 99.89 100.00 97.47 100.00 100.00 100.00 100.00

99 99.41 99.44 98.04 99.18 99.79 81.17 99.78 100.00 100.00 100.00

98 99.35 98.64 93.38 98.11 99.67 69.99 99.38 100.00 100.00 100.00

97 99.51 98.67 89.41 98.14 99.74 62.64 99.70 100.00 100.00 100.00

Sensitivity (%) 99.9 95.43 99.16 99.55 99.49 99.33 98.61 97.33 96.09 98.94 97.32

99 89.44 94.30 99.17 98.95 98.89 98.17 93.26 96.30 98.78 98.01

98 82.86 88.95 98.41 98.69 97.97 96.04 84.91 95.43 98.30 97.36

97 74.35 84.05 97.54 97.70 96.53 94.26 76.42 94.40 97.65 96.65

Called-sites (%) 99.9 – 91.19 97.74 66.25 99.30 95.21 – 88.05 96.47 91.41

99 – 88.64 94.50 64.33 96.14 90.67 – 85.89 92.95 89.20

98 – 86.79 91.86 63.25 92.30 85.30 – 82.38 89.29 85.60

97 – 81.61 86.06 59.54 86.04 78.85 – 78.48 83.62 80.90

(c) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

PPV (%) 99.9 98.60 35.81 35.04 89.98 83.32 56.27 99.89 100.00 100.00 100.00

99 98.43 28.60 21.72 74.45 76.59 5.38 96.78 100.00 99.94 100.00

98 98.70 15.03 9.95 42.77 52.34 2.39 94.90 100.00 99.78 100.00

97 99.05 23.64 18.70 70.21 81.90 1.54 94.24 99.94 99.83 100.00

Common-region

PPV (%)

99.9 100.00 99.30 94.66 99.89 99.89 96.48 100.00 100.00 100.00 100.00

99 99.76 98.76 89.64 99.48 99.78 76.46 99.76 100.00 100.00 100.00

98 100.00 96.56 78.04 98.63 98.84 54.01 99.74 100.00 100.00 100.00

97 100.00 97.35 84.23 99.31 99.86 52.38 98.98 100.00 100.00 100.00

Sensitivity (%) 99.9 97.47 99.22 99.72 99.67 99.50 99.33 98.39 98.78 99.50 99.33

99 93.67 95.12 99.66 99.49 98.87 98.48 97.08 98.09 99.61 99.16

98 87.30 88.01 98.95 99.17 98.73 98.21 91.78 97.10 99.33 99.00

97 83.21 78.37 98.70 99.21 98.20 96.79 80.94 95.31 98.93 98.81
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realistically difficult, therefore this benchmark can precisely
evaluate the accuracy of each tool.

RESULTS

Benchmarking of general SNP callers

First, we validated the above-mentioned general SNP callers,
i.e., Cortex, Freebayes, GATK, SAMtools, and VarScan,
which are not dedicated to calling SNPs among bacterial
isolates (Table 1, Figs 2 and S1).

Surprisingly, with the exception of Cortex, they exhibited
low positive predictive values (PPVs), even though their
results were filtered following the respective manuals. It is
worth noting that these tools exhibited low PPVs (<90) even
when the identity between the reference and the target iso-
lates was relatively high. Cortex showed a PPV �90 for all
cases, but its sensitivity was relatively low, especially in the
case of low identity. This benchmark tends to overestimate
sensitivity because SNPs among isolates were simulated
only in regions where SNP calling should be easy (i.e. a one-
to-one alignment was generated between the reference and
the root isolate), indicating that the sensitivity of Cortex in
real analyses would be even lower.

To overcome this overestimation problem, as an alternative
index of sensitivity, we calculated the called-sites ratio
which is the ratio of sites where the nucleotide was deter-
mined unambiguously in all isolates to the genome size. In

the case where a phylogenetic tree is inferred with complete
deletion (i.e. sites containing missing data or alignment
gaps are discarded), the called-sites ratio determines the
number of SNPs used in the phylogenetic analysis. This
index revealed that SAMtools would be less sensitive in real
analyses.

The common feature of the low-accuracy general SNP call-

ers is that they use mapping information. In order to reveal

the reason for these low-accuracy results, we checked how

reads were mapped around the false-positive SNPs. The

majority of false-positive SNPs turned out to be located in

‘soft-clip regions’ where many reads were soft-clipped (i.e. a

read was partially not aligned because it was difficult to align

the whole read to a single region) (Table 2, Fig. S2). It is con-

sidered that such dense soft-clipping is caused by structural

variants (SVs), e.g. copy number variations (Fig. S3). PPVs

could be increased by masking ‘soft-clip regions’, but sensi-

tivities significantly decreased (Table S3). We also tried

removing soft-clipped reads from the input bam files, but

the performance did not improve (Table S4). In contrast,

Cortex is designed to filter false positives related to copy

number variations; it loads the reads of multiple isolates

into the same de Bruijn graph and detects variants as bubble

structures in the graph; it then filters bubbles that are pres-

ent in all target isolates or the reference isolate as repeat-

induced bubbles [8].

Table 1. cont.

(c) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

Called-sites (%) 99.9 – 88.78 95.09 64.12 96.55 93.01 – 90.19 94.02 92.40

99 – 82.60 88.20 59.80 88.39 86.07 – 85.56 87.39 86.44

98 – 78.74 83.60 56.95 83.49 79.77 – 79.59 82.19 81.00

97 – 74.93 79.52 54.62 80.10 76.24 – 77.28 78.68 77.89

Fig. 2. Benchmarks using simulated sequence data. PPV and Sensitivity in Table 1(a) were represented graphically (Those in Table 1

(b) and (c) are represented in Fig. S1). The values 7, 8, 9 and 9.9 in the graph represent 97, 98, 99 and 99.9% identity between the ref-

erence-root pair, respectively. (a) PPV and sensitivity of SNP callers that exhibited low PPV (<99) in at least one identity. (b) PPV and

sensitivity of SNP callers that exhibited high PPV (�99) in all identities.

Yoshimura et al., Microbial Genomics 2019;5

4



PPVs occasionally did not show monotonic decline with

identity, and this is assumed to be an effect of SVs and

repetitive regions where SNP calling is difficult. Identity was

calculated using substitutions in one-to-one alignment

regions, but the frequency of SVs and repetitive regions

does not necessarily increase monotonically, and one SV or

repetitive region sometimes causes a large number of dense

false positives.

SNP callers often mask regions where it is difficult to call

SNPs correctly. Importantly, the larger the masked region,

the easier it becomes to achieve high PPVs. In order to com-

pare PPVs among tools that mask some regions in different

ways, we introduced ‘Common-region PPV’, i.e. PPV calcu-

lated only in regions where all tools determined alleles for

all isolates without masking (Tables 1 and S5). Because it

should be easy to correctly call SNPs in such a region, the

Common-region PPVs were much higher than the raw

PPVs; however, GATK exhibited relatively low Common-

region PPVs.

We also carried out another supplementary benchmark in

which variants between the reference and the target isolates

were simulated by TreeToReads [27] (Supplementary

Notes). General mapping-based SNP callers exhibited

higher PPVs in this benchmark than in the first benchmark

(Table S6). Considering that TreeToReads does not simulate

SVs, this result indicates that real, complex variants between

the reference and root sequence used in the first benchmark

surely caused many false-positive SNP calls and enabled

realistic evaluation of the accuracy.

Benchmarking of dedicated SNP calling pipelines

We validated CFSAN, NASP, PHEnix and Snippy as SNP
calling pipelines dedicated for use with multiple bacterial
isolates.

Table 2. Ratio of false-positive SNP sites in ‘soft-clip regions’ to all false-positive SNP sites

Public complete genomes of three species including (a) S. aureus, (b) N. meningitidis and (c) E. coli were used for the benchmarks. The definition of

‘soft-clip region’ is described in Fig. S2. In the middle nine columns, the numerator of the fraction denotes the number of false-positive SNP sites in

‘soft-clip regions’; the denominator, the number of all false-positive SNP sites; the number in parentheses, the value of the fraction. In the rightmost

column, the numerator of the fraction denotes the total size of ‘soft-clip regions’; the denominator, the reference-genome size; the value in parenthe-

ses, the value of the fraction. This table is based on the results for the first reference-root pair among ten pairs in each species and identity

(Table S1). Results for BactSNP were not shown, because they did not detect any false-positives.

(a) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN PHEnix NASP Soft-clip region

99.9

0/0 31/33 40/42 3/3 1/1 143/222 2/2 0/0 0/0 62,258/2,824,404

(–) (93.00) (95.00) (100.00) (100.00) (64.00) (100.00) (–) (–) (2.20)

99

0/6 264/280 497/514 70/73 35/35 1,739/2198 6/6 0/0 0/0 282,639/2,742,807

(0.00) (94.00) (96.00) (95.00) (100.00) (79.00) (100.00) (–) (–) (10.30)

98

0/0 380/402 602/624 127/139 46/52 4,543/5262 4/4 0/0 0/0 545,715/3,046,545

(–) (94.00) (96.00) (91.00) (88.00) (86.00) (100.00) (–) (–) (17.91)

97
2/8 226/233 466/475 125/129 49/49 7,211/8146 8/9 3/3 0/0 754,175/2,778,079

(25.00) (96.00) (98.00) (96.00) (100.00) (88.00) (88.00) (100.00) (–) (27.14)

(b) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN PHEnix NASP Soft-clip region

99.9

0/8 5/8 2/4 0/0 0/0 253/263 1/1 0/0 0/0 46,468/2,162,199

(0.00) (62.00) (50.00) (–) (–) (96.00) (100.00) (–) (–) (2.14)

99

0/4 146/179 199/244 43/58 23/30 3,258/3432 12/12 0/0 0/0 393,578/2,188,020

(0.00) (81.00) (81.00) (74.00) (76.00) (94.00) (100.00) (–) (–) (17.98)

98

0/10 292/344 491/557 91/116 40/50 5,525/6008 9/9 0/0 0/0 701,290/2,273,677

(0.00) (84.00) (88.00) (78.00) (80.00) (91.00) (100.00) (–) (–) (30.84)

97
1/3 378/445 715/783 222/252 89/99 7,667/8191 12/13 1/1 0/0 888,197/2,188,020

(33.00) (84.00) (91.00) (88.00) (89.00) (93.00) (92.00) (100.00) (–) (40.59)

(c) Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN PHEnix NASP Soft-clip region

99.9

0/3 185/271 235/323 10/22 36/57 128/136 0/0 0/0 0/0 123,933/5,438,591

(0.00) (68.00) (72.00) (45.00) (63.00) (94.00) (–) (–) (–) (2.27)

99

0/4 161/211 184/246 10/27 12/20 2,443/3163 2/2 0/0 0/0 372,887/4,682,086

(0.00) (76.00) (74.00) (37.00) (60.00) (77.00) (100.00) (–) (–) (7.96)

98

0/3 744/918 1,376/1593 183/234 136/170 7,624/9419 6/6 1/1 0/0 957,794/5,310,511

(0.00) (81.00) (86.00) (78.00) (80.00) (80.00) (100.00) (100.00) (–) (18.03)

97
0/1 358/393 747/785 68/72 18/23 9,227/11190 14/14 0/0 0/1 1,087,260/4,658,583

(0.00) (91.00) (95.00) (94.00) (78.00) (82.00) (100.00) (–) (0.00) (23.33)
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CFSAN, NASP and PHEnix achieved higher PPVs com-
pared with their internal variant callers (CFSAN used Var-
Scan, and NASP and PHEnix used GATK; Supplementary
Notes). These pipelines filter ambiguous SNPs with low cov-
erage depth or low allele frequency, and thus these filters are
considered to be effective against false positives called by
VarScan and GATK (Supplementary Notes). CFSAN still
called a relatively large number of false positives, though it
additionally filters high-density SNPs; therefore, further fil-
tering procedures may be required for VarScan.

In contrast, Snippy exhibited low PPVs though it also fil-
tered SNPs with low coverage depth or allele frequency,
indicating that the internal variant caller, Freebayes, called
many false positives that were not filtered by these criteria.

Development of BactSNP

Although PHEnix exhibited high PPVs, it often called a few
false positives. NASP did not call any false positives in most
cases; however, it exhibited lower sensitivities than PHEnix.
Regarding usability, when the reference genome was a draft
one, the vcf2fasta command of PHEnix, which converts the
VCF files of multiple isolates into a multi-FASTA file to
obtain SNPs among them, did not work. We developed a
novel assembly-based pipeline, BactSNP, and verified
whether it settled these problems. BactSNP also uses the
mapping information secondarily, but it is mainly based on
the alignment information between the reference genome
and the contigs of the target isolates which are de novo
assembled internally.

BactSNP uses reads of each isolate and a reference genome
as input. First, the reads are de novo assembled by Platanus
[28] for each isolate, and then the assembled contigs are
aligned against the reference genome by nucmer. Second,
the nucleotide corresponding to the reference genome at
each site is determined to generate the ‘pseudogenome’ (i.e.
a sequence in which each site corresponds to the reference
genome in one-to-one manner) for each isolate. The varia-
bles nallele and dindel represent the number of alleles aligned

at the site and the distance from the nearest indel to the site,
respectively. At each site in the reference genome, the corre-
sponding allele is determined as the aligned allele if the site
satisfies both of the following conditions:

(1)nallele=1

(2)dindel >5 bp

In addition to assembling the reads, they are mapped to the
reference genome by BWA-MEM [29] and duplicate reads
generated by PCR duplication are removed by MarkDupli-
cates [30]. By using the mapping information, unreliable
alleles of the pseudogenome are masked. The variables call
and callele represent the coverage depth of all reads mapped
to the site and that of the reads supporting the allele of the
pseudogenome at the site, respectively. The corresponding
allele of the pseudogenome is masked if the reference site
does not satisfy either of the following conditions:

(3)callele �10

(4)callele/call�0.9

Lastly, SNPs among isolates are determined by using the
pseudogenomes generated in one-to-one manner.

BactSNP works well, even when the reference genome is a
draft one. A detailed description of the algorithm is pro-
vided in the Supplementary Notes.

Benchmarking of BactSNP

We evaluated BactSNP using the above-mentioned
benchmark (Table 1). While PHEnix often called some
false positives, BactSNP did not detect even one false-
positive SNPs among all cases. In addition, it achieved
higher sensitivities and a larger number of called-sites
than NASP in all cases.

Application to real data

In order to validate the performance of these SNP callers in
real data analysis, we applied them to the read data

Fig. 3. Number of detected SNP sites in real sequence data analysis. The relationship between the identity between the reference iso-

late and the target isolates and the number of detected SNP sites among the target isolates is shown. (a) SNP callers that exhibited

relatively low PPV (<95) in at least one identity. (b) SNP callers that exhibited relatively high PPV (�95) in all identities.
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sequenced in a comparative genomic study on N. meningiti-
dis [31]. We downloaded the sequence data of 45 closely-
related isolates which caused outbreaks in Ghana (Supple-
mentary Notes). Because the true SNPs cannot be known,
we compared the number of detected SNP sites among tar-
get isolates when multiple reference genomes were used.
Basically, the number of detected SNP sites should be at
most constant and will probably slightly decrease in the
low-identity cases, as the common region between the target
isolates and the reference genome gets smaller. We tested
five reference genomes with various identities from the tar-
get isolates (Supplementary Notes) and obtained results
consistent with the benchmark (Fig. 3, Table S7). SNP call-
ers that exhibited low PPVs in the benchmark tended to
detect more SNPs in the low-identity cases, probably due to
an increase in false-positive SNPs. In contrast, tools with
high PPVs in the benchmark tended to call a smaller num-
ber of SNPs in the low-identity cases.

DISCUSSION

Our benchmark revealed that some SNP callers detect a large
number of false positives. In contrast, some dedicated pipe-
lines including NASP, PHEnix, and our novel pipeline
BactSNP achieved both highly accurate and sensitive SNP
calling, regardless of the identity between the reference and
target isolates. Therefore, these pipelines are powerful even
when a reliable and well-annotated reference genome closely
related to the target isolates is not available or when a subset
of target isolates is not closely related to the others and the
user cannot therefore use a reference genome close to all
of them.

BactSNP did not call even one false positive, while PHEnix
often called some false positives. The sensitivity of BactSNP
was slightly lower than that of PHEnix, but it exceeded that
of NASP in all cases involving various species and identities.

As for usability, the filtering parameters of BactSNP are well
optimized and set as the default, whereas the user is
required to consider the parameters or even the internal
mapper and variant caller in the other pipelines. Unlike
PHEnix, BactSNP is also usable when the reference genome
is a draft one. In addition, BactSNP can be used even when
the user does not specify a reference genome; in this case, it
de novo assembles one of the target isolates, which the user
can specify, and uses it as the reference genome automati-
cally. This function is useful when the user only needs the
phylogeny of the target isolates and does not require the
SNP position to be well annotated in the reference genome.
In this case, the assembled reference genome, which is
exceedingly closely related to the other target isolates in out-
break studies, would enable highly sensitive SNP calling,
and the user does not need to consider the proper reference
genome. BactSNP creates a TSV file containing SNP infor-
mation and an alignment FASTA file containing the con-
structed pseudogenomes of target isolates in a single step.
The alignment FASTA file can be input to Gubbins [32] to
predict recombination regions containing a statistically

elevated density of SNPs and reconstruct a phylogenetic tree
using SNPs outside those regions.

BactSNP is expected to enable every researcher, even those
who do not have proficient bioinformatic skills, to obtain
accurate SNP information easily and to aid and accelerate
microbial genomic research.
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