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A B S T R A C T

One of the limitations of atomistic simulations is that many of the computational tools used to extract structural
information from atomic trajectories provide metrics that are not directly compatible with experiments for
validation. In this work, to bridge between simulation and experiment, a method is presented to produce
simulated Kikuchi diffraction patterns using data from atomistic simulations, without requiring a priori
specification of the crystal structure or defect periodicity. The Kikuchi pattern simulation is based on the
kinematic theory of diffraction, with Kikuchi line intensities computed via a discrete structure factor calculation.
Reciprocal lattice points are mapped to Kikuchi lines using a geometric projection of the reciprocal space data.
This method is validated using single crystal atomistic models, and the novelty of this approach is emphasized by
simulating kinematic Kikuchi diffraction patterns from an atomistic model containing a nanoscale dislocation
loop. Deviations in kinematic Kikuchi line intensities are explained considering the displacement field of the
dislocation loop, as is done in diffraction contrast theory.
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Specifications Table
Subject area Materials Science
Method name Simulated Kinematic Kikuchi Diffraction from Atomistic Simulation
Original
Method

S.P. Coleman, D.E. Spearot, L. Capolungo, Virtual diraction analysis of Ni[010] symmetric tilt grain
boundaries, Modeling and Simulation in Materials Science and Engineering.21 (2013) 055020. doi:10.1088/
0965-0393/21/5/055020

ethod details

This work demonstrates a method to generate simulated Kikuchi diffraction patterns directly from
tomistic simulation results using the kinematic theory of diffraction. The method aims to provide a
ool that can link experimental and modeling results, which can be difficult to compare. This approach
ay enable (1) improved crystal structure matching methods beyond existing diffraction pattern
atabases and (2) exploration of the role of defects on diffraction patterns without requiring
implifying assumptions regarding their spatial distribution.

eview of Coleman et al. diffraction calculations

The method is derived from the virtual diffraction algorithm developed by Coleman et al. [1,2],
hich computes diffraction intensities across a three-dimensional mesh of reciprocal lattice points
RELP), each described by a wave vector K. The wave vector K represents the difference between the
ncident and diffracted wave vectors for radiation passing through a sample [3]. Diffraction intensities
re strong for those RELP where the Bragg condition is satisfied,

jKj ¼ 1
dhkl

¼ 2sinðuBÞ
l

ð1Þ

here uB is the Bragg angle for the (hkl) plane of atoms, with inter-planar spacing, dhkl, and wavelength
f radiation, l. When the Bragg condition is met, K has direction ghkl, which is normal to the plane of
iffracting atoms with Miller indices (hkl). For electron diffraction, the magnitude of the diffraction
ntensity for any K is given by

I Kð Þ ¼ F Kð Þ � F Kð Þ�
N

ð2Þ

here N is the number of atoms in the simulation. F(K) is the atomic structure factor, given by

F Kð Þ ¼
XN

j¼1

f jðuÞ � exp 2piK�Rj
� � ð3Þ

here j is summed over the N atoms in the simulation cell and Rj gives the real space position of
he jth atom in the structure. The atomic scattering factor fj is a function that accounts for
ifferences in scattering from different atomic species as well as losses in intensity due to
ompton scattering [4]. The atomic scattering factor is unique for the species of each atom, the type of
adiation simulated, and the scattering angle u. Thus, the contribution to the diffraction intensity from
ll atoms in a simulation cell is calculated at each RELP. More detail on the atomic scattering factor is
vailable in Coleman et al. [1,2] and fundamental microscopy texts [3,4]. The method can be used to
alculate selected area electron diffraction (SAED) patterns as well as X-ray diffraction (XRD) patterns
nd has been incorporated as an algorithm in the LAMMPS molecular dynamics simulation
ackage [5].
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Kikuchi diffraction

Kikuchi diffraction is observed in the transmission electron microscope (TEM) when viewing
crystalline samples with thickness larger than typical for SAED pattern imaging, but thin enough that
electron transparency is maintained. The larger sample thickness allows multiple diffraction events
(which are nearly entirely elastic) during transmission [3]. These additional diffraction events scatter
the electrons in all directions, similar to having incident beams from all angles surrounding the sample
region. The Bragg condition for a single diffracting plane (hkl) is satisfied only for a subset of incident
beam orientations whose Ewald spheres intersect with the high intensity reflection associated with
the diffracting plane. In three-dimensions, this subset of incident orientations satisfying the Bragg
condition for a single diffracting plane generates a Kossel cone [3], as shown in Fig. 1. While in theory,
one could measure the entire cone with a spherical detector; in practice, two-dimensional detectors
are used to image a portion of the Kossel cone as it intersects a view screen resulting in a Kikuchi line

for each diffracting plane. Commonly, pairs of diffracting planes (hkl and hkl) satisfy the diffraction
conditions simultaneously resulting in two diverging Kossel cones in three-dimensions and Kikuchi
bands in two-dimensions, as shown in Fig. 1.

Simulated kinematic Kikuchi patterns can be generated using the electron diffraction intensities
computed at each RELP in three-dimensional reciprocal space [1]. Using the kinematic approach, the
intensity of each Kikuchi line is equal to the computed intensity of the RELP from which it was
mapped. The Kikuchi band appears on the detector screen where it intersects the Kossel cone that is
associated with the RELP [3].

In practice, a way to find these intersections is to use a construct similar to the Ewald Sphere [6]. A
sphere of radius l�1 is drawn, centered at the origin of reciprocal space, as illustrated in Fig. 2.
Henceforth, this sphere is referred to as the Kikuchi sphere. A second sphere of radius l�1, centered on
the RELP of interest, is constructed and the small circle created at the intersection of these two spheres
represents the Kikuchi line that would be obtained by a spherical detector. Similarly, the Kikuchi line
may also be located by finding the intersection of the Kikuchi sphere and a plane perpendicular to and
bisecting the wave vector K. Both of these methods describe the same, infinitely thin, small circle on
the surface of the Kikuchi sphere, as illustrated in Fig. 2. This process has some similarities with the
construction of dispersion surfaces, which are a pictorial representation of the relationship between
the wave vector K and the electron energy [3]. It appears similar because the dispersion surfaces are
created by considering two Bragg beams represented as spheres, separated by the wave vector, and
their plane of intersection does correspond to the trace of the diffracting plane. However, the
dispersion surfaces go far beyond this simple construction allowing one to visually understand how

Fig. 1. Kossel cone construction, showing Kikuchi lines from a diffracting plane at the intersection of the Kossel cone and the
view screen. Each cone is inclined by the associated Bragg angle u.
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lectrons in a periodic potential (crystal) lead to band diagrams and band gaps as they relate to the
ave vector. At a very basic level, the present approach has similarities with dispersion surfaces, but
he motivation behind the two approaches is very different.

Note, the Kossel cone can be observed in this construction by combining the small circle formed on
he Kikuchi sphere with the origin of the Kikuchi sphere, which acts as the cone vertex. This cone
epresents one of the two Kossel cones in Fig. 1, where the second would be formed from the RELP at
K. Each RELP sampled in the analysis of the atomistic simulation data mathematically defines one
nfinitely thin band mapped to the surface of the Kikuchi sphere. When all the RELP are considered,
ne can generate a kinematic Kikuchi diffraction pattern.

ixel mapping for visualization

Mapping a series of geometrically defined, infinitely thin circles onto a detector, modeled as a
iscrete pixel array, can be solved in numerous ways. For example, the entire Kikuchi sphere can be
isualized by generating a pixel array in the shape of a sphere, as demonstrated in Fig. 3 for diffraction
btained from an atomistic model of a perfect face-centered cubic (FCC) Ni single crystal. Likewise, a
wo-dimensional detector can be simulated by generating a planar pixel array and mapping RELP
ntensities onto those pixels using a gnomonic projection method. An ideal method for mapping the
ELP onto the surface of the Kikuchi sphere would do so in a way that represents the data contained in
he intensity values of the RELP accurately and without loss. There are a number of ways to
pproximate this ideal mapping, and one such method is presented here.
To map Kikuchi lines onto a two-dimensional detector using a gnomonic projection, a planar pixel

rray, representing the detector is first defined in real space at a distance D from the origin, as shown in
ig. 4. The location of each pixel may be defined by a vector P, which points from the origin to the

ig. 2. Schematic showing the construction of a Kikuchi line corresponding to a single RELP in a mesh of reciprocal lattice
oints. The Kikuchi line is located at the Bragg angle described by the magnitude of K and the wavelength of the electron beam
ccording to Bragg's Law (Eq. (1)). The Kikuchi line intersects the Kikuchi sphere at a plane perpendicular to and bisecting the
ave vector K. The Kikuchi line is also a small circle created by the intersection of the Kikuchi sphere and a sphere centered on
he RELP K.

190 A.D. Herron et al. / MethodsX 5 (2018) 1187–1203



location of the pixel on the detector. Each RELP should map to this pixel array as a line with a finite
thickness in order to avoid signal loss. Parallel Kikuchi lines mapped from RELP which represent
parallel planes should also not overlap, as this will cause artificially high intensity at regions of overlap.
To accommodate these requirements, the resolution of the pixel array must be sufficiently fine to
capture the signal contained in the RELP intensities without aliasing. In the present work, a finite
thickness of at least 2 pixel lengths is used to represent each Kikuchi line. The minimum resolution to
accommodate these requirements is given in units inverse to that of the screen offset distance D and is

Fig. 3. Spherical projection of Kikuchi lines for a perfect FCC nickel crystal.

Fig. 4. Schematic illustrating the gnomonic projection of a Kikuchi lines onto a flat pixel array. RELP are mapped onto the finite
pixel array by evaluating the Bragg condition for each pixel with a tolerance using a pair of parallel planes according to Eq. (5).
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 function of d, the distance between RELP,

Resolution � 4
Ddl

: ð4Þ

Each pixel P, when scaled by 1
l jPj, lies on the surface of the Kikuchi sphere and receives intensity

ontributions from each RELP K for which it meets the Bragg condition. Mathematically, this condition

s met when the vector component of P which lies in the direction of K is equal to jKj
2 . To map each RELP

o a Kikuchi line at least 2 pixels wide and ensure that parallel Kikuchi lines do not overlap, the Bragg
ondition is evaluated with a tolerance of � d

4, one half of the reciprocal space distance between
djacent RELP Kikuchi lines. This evaluation can be visualized as selecting pixels with normalized
osition that lie between two parallel planes, as depicted in Fig. 4, and can be represented
athematically by the following inequality,

jKj
2

� d
4
<

K�P
jKjl jPj <

jKj
2

þ d
4
: ð5Þ

Mapping m RELP onto an array containing n pixels requires (n * m) evaluations of this inequality and
an become quite computationally expensive. Intensity thresholding is an excellent way to reduce the
umber of RELP which are evaluated and thereby dramatically decrease the computational time
equired to generate a Kikuchi pattern without losing high intensity Kikuchi lines. Computational cost
an also be reduced by increasing the screen distance D. This reduces the solid angle defining the
ortion of the Kikuchi Sphere which appears on the two-dimensional image, effectively “zooming in”
n a portion of the sphere, thereby reducing the required pixel resolution.
For many reasons, it may be desirable to maintain a constant screen resolution between

omputations. It may also be desirable to reduce the resolution of a Kikuchi pattern for preliminary
nalyses where orientation information and speed are more important than relative line intensities. In
uch case, the resolution can be specified and Eq. (4) can be solved for a requisite effective d, yielding,

deff ¼
4

l D Resolution
: ð6Þ

If this deff is greater than the d which represents the distance between RELP, it can be substituted
nto Eq. (5), effectively setting the bandwidth of each Kikuchi line to two pixels length on the view
creen. This ensures that each RELP contributes to the Kikuchi pattern and that no RELP are missed by
alling into the gaps between pixels. It is noted, however, that using deff> d introduces aliasing into the
ignal, artificially increasing band intensities where parallel Kikuchi lines will overlap. In the case that
eff is smaller than the original d, the original d should be used and each RELP will contribute to a band
ore than two pixels wide without aliasing.
Since the images are a map of intensity, one can use any color map to represent the data. In this

ork, data is presented in grayscale or inverted grayscale. In the generation of experimental Kikuchi
atterns it is possible to get inverted patterns or band profiles depending upon the angle of incidence
nd the placement of the detector [7]. One could use known conditions to select an appropriate color
ap, but because the intensity units in this work are arbitrary, we select grayscale or inverted
rayscale maps for optimal comparison and viewing.

dditional information

The additional information provided with this method is divided into four sections. The first
ection provides a comparison of Kikuchi diffraction patterns created by this method with
xperimentally obtained Kikuchi diffraction patterns for a variety of crystal structures. The second
ection applies the technique to a single dislocation loop and analyzes the results in the context of
hat is known about the dislocation loop and what can be extracted from the simulated Kikuchi
attern. The third section provides context for the technique in relation to other work focused on
imulating diffraction patterns, along with a discussion of the limitations of the method. The final
ection provides concluding remarks on the method.

192 A.D. Herron et al. / MethodsX 5 (2018) 1187–1203



Simulated and experimental Kikuchi patterns of single crystals

Several different crystal structures are considered to provide basic verification of the technique to
simulate kinematic Kikuchi diffraction patterns from an ensemble of atoms arranged as a single
crystal, without manually specifying the crystal structure periodicity in the diffraction algorithm.
Verification is accomplished through visual comparison of the simulated Kikuchi patterns with
experimentally obtained Kikuchi patterns from the literature. Verification is also accomplished by
ensuring that the Kikuchi bands are at correct positions and angles from one another. The visual
comparison with the experimental Kikuchi patterns is not definitive validation, but the examination of
the band positions and angles ensures self-consistency.

Three different perfect crystal structures are examined using interatomic potentials for the
following materials: face-centered cubic (FCC) Ni using the Foiles-Hoyt embedded atom method
(EAM) potential [8], body-centered cubic (BCC) Fe using the Mendelev EAM potential [9], and
hexagonal close packed (HCP) Zr using another Mendelev EAM potential [10]. LAMMPS [5] is used to
create minimum energy crystal structures with 10 � 10 � 10 unit cells for each material. The approach
by Coleman et al. is used to determine diffraction intensities at each RELP with l = 0.0251 Å, a
wavelength corresponding to an excitation voltage of a 200 keV electron microscope. For these
simulated images, the reciprocal lattice was sampled with a resolution of one-half the lattice
parameter for each material, resulting in cubic reciprocal space meshes with spacing 0.056818 Å�1,
0.070045 Å�1, and 0.061900 Å�1 for Ni, Fe, and Zr respectively. The methodology described in the
previous sections is used to generate the simulated kinematic Kikuchi diffraction intensities and
patterns. These images are generated using a screen width of 6 in, height of 4 in, placed at a distance of
3 in from the origin, and pixel resolution of 512 dpi.

Figs. 5–7 present patterns and maps for FCC, BCC, and HCP structures, respectively. The simulated
kinematic Kikuchi diffraction patterns are compared to standard Kikuchi maps and experimental
Kikuchi diffraction patterns collected from the literature [3,11]. The simulated patterns have been
truncated to focus on the common regions in the maps and experimental patterns.

Fig. 5. Comparison of the (a) simulated Kikuchi pattern generated from a perfect FCC Ni crystal model, (b) standard textbook
FCC Kikuchi pattern and (c) experimentally collected and stitched TEM diffraction pattern. Parts (b) and (c) are reproduced with
permission from [3].

A.D. Herron et al. / MethodsX 5 (2018) 1187–1203 1193



p
{
B
0
f
t

e
e
K
I
a
p
e
b
l
b

e
d
m
a
f
A
i
b
a
s
K
t
p

F
B
p

1

In each case, the simulated kinematic Kikuchi patterns show all low-index bands in the expected
ositions and with the expected bandwidths. For example, in the case of the simulated Ni patterns, the
100} plane Kikuchi lines are separated by a band width of approximately 22 pixels, corresponding to a
ragg angle of 0.409 degrees and thus an interplanar spacing of 1.752 Å. This is a relative error of
.430% from the experimentally observed value of 1.760 Å for Ni {100} planes. This accuracy can be
urther improved by changing the pixel resolution or screen distance parameters for the simulation, at
he expense of computation time or field of view, respectively.

In the case of the FCC pattern in Fig. 5, the Kikuchi map (Fig. 5b) denotes the overlap of the
xperimental pattern (Fig. 5c) with the map in the light brown shaded region, so only part of the
xperimental pattern overlaps the simulated pattern. In the case of the BCC pattern in Fig. 6, the
ikuchi map (Fig. 6b) and experimental pattern (Fig. 6c) have bands on the boundary that are curved.
n contrast, the same bands in the simulated pattern (Fig. 6a) are perfectly straight. This discrepancy is
ttributed to the gnomonic projection of the bands on the surface of the Kikuchi sphere onto a flat
ixel array. For the HCP comparison in Fig. 7, different simulation images are used for the map and
xperimental comparison in an effort to identify similarities. The experimental pattern has curved
ands at the boundary while the Kikuchi map and simulated patterns do not. In all cases, the major
ow-index bands can be clearly identified in the simulated Kikuchi patterns and many higher-index
ands, not identified in the standard maps can be seen in the simulated and experimental patterns.
The intensity of the simulated bands is not generally in harmony with the intensity of the

xperimental diffraction patterns, though methods exist to correct these differences [12]. The
iscrepancies in intensity are attributed to the kinematic nature of the method and the discrete pixel
apping, which does not account for the complex nature of the diffracting signal and the constructive
nd destructive interference that can occur [13]. This simplification removes all phase information
rom the signal and simply sums the intensity contributions of each RELP at each detector pixel.
lthough somewhat non-physical in this respect, this has both benefits and weaknesses. For example,
n the simulated kinematic Kikuchi patterns, the identification of specific bands, and any changes to
and position will be more easily identified (compare Fig. 6a and c). As bands are generated from
tomistic data, this may enable unambiguous connections between Kikuchi patterns and atomic level
tructure. However, the kinematic nature could complicate efforts to interpret an experimental
ikuchi pattern using only simulated Kikuchi patterns of relevant atomistic structures. Nevertheless,
his method is able to produce patterns without a priori specification of the crystal structure
eriodicity, and thus could be advantageous in identifying discrete features of the crystal structure.

ig. 6. Comparison of the (a) simulated Kikuchi pattern generated from a perfect BCC Fe crystal model, (b) standard textbook
CC Kikuchi pattern, and (c) experimentally collected and stitched TEM diffraction pattern. Parts (b) and (c) are reproduced with
ermission from [11].
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Diffraction from a dislocation shear loop

To illustrate that the current method can produce kinematic Kikuchi diffraction patterns using
atomistic simulation data which includes defects, the method is applied to the analysis of an atomistic
model containing a nanoscale dislocation loop, as shown in Fig. 8. A dislocation loop with radius
8.10 nm is constructed on the ð111Þ½101� slip system using a modification of the approach presented
by Bitzek et al. [14]. Briefly, this method constructs dislocation loops via superposition of
displacement fields from eight triangular dislocations, which were derived originally by Barnett
[15]. The displacement field solution of Barnett does not describe the atom displacements close to the
dislocation core; thus, energy minimization (via the FIRE algorithm [16]) is performed after the
insertion of the octagonal dislocation geometry. Energy minimization is performed under an applied

Fig. 7. Comparison of the (a) simulated Kikuchi pattern generated from a perfect HCP Zr crystal model with the (b) standard
textbook HCP Kikuchi pattern, as well as (c) an inverted simulated diffraction pattern centered on a different zone for
comparison with (d) an experimentally collected and stitched TEM diffraction pattern. Parts (b) and (d) are reproduced with
permission from [3,11], respectively.

A.D. Herron et al. / MethodsX 5 (2018) 1187–1203 1195
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hear stress of 0.504 GPa in the Burger's vector direction to prevent the loop from collapsing. This
hear stress is in decent agreement with the theoretical prediction by Scattergood and Bacon [17] for
his size dislocation loop.

A cubic simulation cell with length 28.35 nm on each side (1.372 million atoms) is employed for
oth the dislocation loop model and a single crystal model without the dislocation loop. Periodic
oundary conditions are applied in all directions so that free surfaces are eliminated. For both
islocation loop and single crystal models, electron diffraction (l = 0.0251 Å) intensities are computed
cross a cubic reciprocal space mesh with spacing 0.007166 Å�1, resulting in approximately 58.589
illion RELP sampled. This reciprocal space mesh is sufficiently fine to capture all necessary kinematic
etails of the Kikuchi diffraction pattern. The scalar value of the intensity at each RELP is used to
etermine the intensity of each Kikuchi band as explained in the method details (Sections “Kikuchi
iffraction” and “Pixel mapping for visualization”).
Fig. 9 shows simulated kinematic Kikuchi diffraction patterns viewed on the [001] and ½110� zones

or the 8.10 nm dislocation loop model and a single crystal model under an identical state of stress
ithout the dislocation loop. Images are generated using a screen width of 4 in, screen height of 4 in,
laced at a distance of 4 in from the origin, and pixel resolution of 256 dpi. The raw diffraction
ntensities illustrate that the presence of the 8.1 nm radius dislocation loop generally reduces the
ntensities of the individual kinematic Kikuchi bands, especially for the higher-index bands. This is
ecause the displacement field of the dislocation loop provides a gradient of displacements to the
egular atom positions, which gradually changes the spacing between lattice planes. Thus, a
easurable reduction in the intensities, especially for the higher-index planes, and a blurring of the
ikuchi lines is expected.
Since the kinematic Kikuchi patterns are computed using an identical number of atoms and

dentical number of RELP, one can directly compare specific features of the two simulated patterns.
he change in the diffraction pattern due to the presence of the dislocation loop can be visualized by
ubtracting the diffraction intensities at each pixel. This difference is shown in Fig.10. In this difference
gure, darker bands represent crystallographic planes that are influenced to a greater extent by the
isplacement field of the dislocation loop; in other words, the darker the band is in the difference
mage, the larger the decrease in intensity in the dislocation loop diffraction patterns in Fig. 9. There is

ig. 8. Dislocation loop geometry with 8.10 nm radius and Burgers vector ½101� constructed using an energy minimization
rocedure. Atoms with centrosymmetry parameter less than 2.0 Å2 are removed so that the dislocation core structure
s visible.

196 A.D. Herron et al. / MethodsX 5 (2018) 1187–1203



a clear asymmetry in the way that the intensities of the different Kikuchi bands within the same family
are influenced. For example, in Fig. 10a, the (010) band is less influenced than the (100) band; while in
Fig. 10b, the (111) band is less influenced than the ð111Þ band. Table 1 lists the intensity values, in
arbitrary units, for the single crystal, ISX, and the dislocation loop, IDL, for the {100}, {110}, and {111}
families of planes. Table 1 also lists the difference in intensities, and percent change in intensities,
between the two models.

Fig. 9. Kikuchi diffraction patterns for the dislocation loop model and the single crystal model focused on the [001] zone in (a)
and (b), respectively, and the ½110� zone in (c) and (d), respectively.

A.D. Herron et al. / MethodsX 5 (2018) 1187–1203 1197
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These observations can be related to the displacement field of this specific dislocation loop, which
s a function of the Burger's vector, b ¼ ½101�. Consider the screw segment of the dislocation loop
here atomic displacements due to the defect are solely in the direction of the Burger's vector. Thus,
rystal planes that contain the Burger's vector, such as (010) or (111) will be displaced in the direction
f b, but the spacing between these atomic planes will not change, meaning their diffraction intensity
ill not change (ignoring effects from the dislocation core). This observation is in agreement with the

 � b contrast theory used to image screw dislocations in a TEM.
However, these planes are not completely unaffected by the dislocation shear loop. The edge

egment of the dislocation loop will induce atomic displacements in a plane perpendicular to the

ig. 10. Scaled difference between Kikuchi diffraction patterns from a single crystal and the dislocation loop model for the (a)
001] zone and (b) ½110� zone. Stronger intensities indicate a larger difference between the single crystal and dislocation
oop Kikuchi diffraction patterns.

able 1
omparison of simulated Kikuchi diffraction intensity values and atomic displacements resulting from the dislocation loop for
ow-index planes. Units for the diffraction intensity values are arbitrary.

Family hkl ISX IDL ISX� IDL ISX�IDL

ISX
½%� Dhkl [Å] fhkl [%]

100 (100) 4.10E+6 3.19E+6 9.13E+5 22% 1.31E+5 57%
(010) 4.28E+6 4.02E+6 2.59E+5 6% 8.08E+4 35%
(001) 4.45E+6 3.48E+6 9.74E+5 22% 1.33E+5 58%

110 (110) 1.67E+6 1.19E+6 4.80E+5 29% 1.17E+5 51%
(101) 1.70E+6 1.52E+6 1.79E+5 11% 6.72E+4 29%
(011) 1.74E+6 1.21E+6 5.22E+5 30% 1.23E+5 54%
ð110Þ 1.67E+6 1.27E+6 4.00E+5 24% 1.03E+5 45%

ð101Þ 1.70E+6 1.03E+6 6.74E+5 40% 1.83E+5 80%

ð011Þ 1.74E+6 1.37E+6 3.65E+5 21% 9.80E+4 43%
111 (111) 6.17E+6 5.72E+6 4.52E+5 7% 9.60E+4 42%

ð111Þ 6.17E+6 4.88E+6 1.29E+6 21% 1.50E+5 66%

ð111Þ 6.17E+6 6.10E+6 7.27E+4 1% 3.99E+4 17%

ð111Þ 6.17E+6 4.80E+6 1.37E+6 22% 1.56E+5 68%

198 A.D. Herron et al. / MethodsX 5 (2018) 1187–1203



dislocation core. Thus, the displacement field associated with the edge component of the dislocation
loop will influence the spacing between (010) and (111) planes, leading to a reduction in the kinematic
Kikuchi pattern intensities. Similar reasoning can be used to explain why the ð101Þ plane is strongly
affected since the Burger's vector of the dislocation loop lies perpendicular to this plane and will create
a gradient of displacement perpendicular to this plane, influencing plane spacing and hence
diffraction intensity. This observation is in agreement with the g � b � u contrast theory used to image
dislocations with edge or mixed characters in a TEM.

To further explain the intensity difference asymmetry in terms of the displacement field of the
dislocation shear loop, we examine the displacements of the atoms in the dislocation loop model
relative to the atoms in the single crystal model. Here we define the cumulative displacement of the
atoms between the two models in specific directions that correspond to normals, ĝhkl, for the (hkl)
planes. Note that here ĝhkl is a unit vector in the direction of ghkl. This is accomplished by finding the
difference in atomic positions between the two models and then dotting this displacement into
specific ĝhkl normals with unit length,

Dhkl ¼
XN

j¼1

j RDL
j � RSX

j

� �
�ĝhklj ð7Þ

where R are the positions of atoms in the dislocation loop (DL) and single crystal (SX) models, as
designated by the superscript. Dhkl describes the cumulative displacement magnitude of all atoms in a
specific crystallographic direction, including those in the inverse direction. The dot product between
the displacement field and the diffraction vector appears in the Howie-Whelan equations [3], which
relates the change in diffraction amplitude (intensity) to a known displacement field. To extend this
concept, we define the quantity,

f hkl ¼
DhklPN

j¼1 k RDL
j � RSX

j k
: ð8Þ

In other words, fhkl accounts for the fractional magnitude of the atomic displacements that point in a
specific direction. The values of Dhkl and fhkl are given for the different planes in Table 1.

From this tabulated data, it is clear that there is a general correlation between the percentage
change in a plane's diffraction intensity and the fraction of atomic displacements in the same direction
as the normal to the plane, as is expected from the Howie–Whelan equations. This is illustrated
graphically in Fig. 11.

The presented kinematic Kikuchi diffraction method clearly captures changes in the diffraction
patterns associated with an extended defect. It is important to note, however, that while this method
is physically based, it uses the kinematic theory and not the dynamical theory of diffraction to provide
intensities for the simulated patterns. Prior work, noted in Section “Context, limitations, and
capabilities of the method” that follows, has shown that dynamical models for Kikuchi pattern
simulation provide images in better agreement with experiment; however, at present there are no
known methods to simulate dynamical Kikuchi patterns for extended defects. Thus, the intensity
differences in Fig. 10 will likely be different in the case of dynamical diffraction, but the observation of
crystallographic asymmetries in the way that a dislocation loop with known slip system influences
diffraction intensities is valid and in agreement with contrast imaging theory. Thus, this observation
has relevance to diffraction-based analyses of a textured metallic material, for example, where the
majority of the dislocations are on a given slip system. This important first step to connect atomistic
simulation and Kikuchi diffraction will motivate future work towards simulated Kikuchi patterns
using dynamical theories of diffraction from multimillion atom atomistic simulation data, which
remains an open challenge.

Context, limitations, and capabilities of the method

Diffraction is well established as a key experimental characterization method used to resolve and
understand the structure of materials. Techniques for both X-ray and electron diffraction analysis of
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rystalline structures are well known and well documented [3,4]. Conversely, atomistic simulation has
merged more recently as a powerful computational tool to investigate the atomic structure and
ehavior of materials [18]. Unfortunately, many of the tools used to analyze atomistic simulation
tructures are not directly compatible with experiment. For example, the centrosymmetry parameter
19] is a powerful tool to identify defects, but does not provide a metric that can be measured
xperimentally for validation purposes. Thus, it is necessary to develop advanced techniques to
onnect atomistic simulations with experiment.
Initial efforts to produce kinematic diffraction patterns from atomistic simulation data required prior

pecification of the crystal structure or the atomic periodicity of the defect in the sample [20–22]. These
orks provided important verification of the periodicity of grain boundary structures in metallic
aterials via experimental/computational comparisons. Removingtheneed to a priorispecify the crystal
r defect periodicity, several authors have developed implementations of the Debye equation to
enerate XRD 2u line profiles of nanocrystalline atomistic samples [23–25]. These approaches enabled
he prediction of average grain size and an analysis of microstrain from the broadening of the diffraction
eaks. More recently, new models that explore three-dimensional reciprocal space using kinematic
iffraction theory were developed to compute XRD line profiles and SAED patterns from multimillion
tom molecular dynamics simulations [1,2,26–30]. All these methods are reminiscent of earlier direct
ourier transform methods [31], but leverage high performance parallel computing and do not require a
riori assumption of the crystal structure or defect periodicity in the sample. They have been applied to
tudy the structure of shocked crystalline metals [26], metal and ceramic grain boundaries, composite
nterfaces [1,2,29,30], and magnetic contributions to the diffraction pattern [27]. With these new
omputational tools, researchers can better understand how atomic-scale structure, including defect
ontent, influences diffraction patterns in complex material systems, and can validate atomistic
imulations through comparison with complementing experimentation.
Using kinematic diffraction calculations, Coleman et al. computed X-ray and electron diffraction

ntensities in the reciprocal space domain. XRD line profiles representing powder diffraction
onditions were generated by spherically binning the three-dimensional diffraction data from the
rigin of reciprocal space, accounting for all possible orientations. SAED patterns were generated by
aking a slice (with small numerical thickness) of the three-dimensional diffraction data representing
he intersection of the Ewald sphere for a given wavelength of radiation.

Kikuchi diffraction patterns, and their related electron backscatter diffraction (EBSD) patterns,
ave also been simulated using kinematic and dynamical theories of diffraction [12,13,32–39].

ig. 11. Plot of change in diffraction intensity between the two atomistic models, ISX � IDL
� �

=ISX , as a function of the
ractional magnitude of displacement between the two atomistic models, fhkl, for specific (hkl) planes. Note the general
orrelation between the two metrics, and the fact that a measurable displacement, fhkl, must be accumulated before
he intensity is affected.

200 A.D. Herron et al. / MethodsX 5 (2018) 1187–1203



Dynamical diffraction approaches, including Bloch waves and the scattering matrix formalism,
generate simulated patterns with a high degree of fidelity, as indicated by comparison with
experimental patterns [40]. However, these methods can be computationally expensive and are
limited to modeling defect structures that can be represented as displacement fields. De Graef et al.
have addressed the computational expense by creating a dictionary of previously computed
diffraction patterns in order to make indexing simpler [41], but these are still unable to address
complex, atomic-scale defects in large-scale models. In contrast, kinematic techniques generate
patterns which, while less accurate than dynamical patterns, can be produced on the fly [32] and from
large-scale atomistic models.

As discussed in the method details above, the method of Coleman et al. [2] is extended here to
generate kinematic Kikuchi diffraction patterns directly from large atomistic structures of unknown
orientation and defect content. Of course, because kinematic diffraction theory considers only a single
diffraction event from a plane of atoms, there are known limitations to the interpretation of computed
kinematic intensities [13]; where applicable, these limitations have been noted throughout the
manuscript, but a comprehensive list is given here. First, all the bands in the patterns shown here are
constructive; no destructive interference is possible as we sum the intensity of different bands at each
pixel. Second, the computed bands have square profiles equal to the intensity of the corresponding
RELP. The computed bands do not have profiles like those seen in experimentally obtained Kikuchi
patterns or the solid bands obtained in electron backscatter diffraction (EBSD) patterns from thicker
samples [7]. Third, there are no differences in intensity between two bands that would otherwise
exhibit Excess and Deficient lines [3]. Fourth, there are no dynamic effects so the present method
cannot capture complex interactions that allow simulated patterns to mimic experimentally obtained
patterns [12]. It is possible that these complex changes could be misinterpreted in a kinematic Kikuchi
pattern simulated by the present technique. Fifth, the method does not capture the fact that one can
obtain inverted EBSD patterns depending upon the position of the detector.

Despite these limitations, the positions of the diffraction bands from kinematic Kikuchi and EBSD
patterns are not influenced by multiple diffraction events and these positions have been used for
orientation identification as well as for measurement of lattice strain and distortion [42]. Dynamic
pattern simulation would be more accurate than the present method, but to the authors’ knowledge
this is the only known method that can simulate Kikuchi patterns of extended defects within large-
scale atomic models. The ability to capture features of these extended defects is demonstrated in the
analysis of the dislocation loop, where the Kikuchi pattern captures changes in the structure that are
verified by other means. It is hoped that that this method will serve as a useful tool until such time as a
dynamical diffraction method can be developed that can examine the effects of extended defects.

Concluding remarks

The present work demonstrates a technique for producing simulated kinematic Kikuchi diffraction
patterns from atomistic data, building upon prior work by Coleman et al. that enables the creation of
X-ray and selected area electron diffraction patterns from atomic positions and species [1,2]. The
current work uses Bragg's Law to construct Kikuchi bands from diffracting wave vectors in reciprocal
space. Methods for image creation based on the data are presented. Results are validated against
standard Kikuchi maps and experimentally obtained Kikuchi diffraction patterns for FCC, BCC, and
HCP crystal structures. To emphasize the value of this work towards the analysis of atomistic
structures containing defects, the method is extended to study the effect of a nanoscale dislocation
loop on a kinematic Kikuchi diffraction pattern. Based on this work the following conclusions are
obtained about the simulated kinematic Kikuchi diffraction patterns:

	 The simulated patterns from single crystal atomistic samples exhibit all low-index planes included
on standard Kikuchi maps. In addition, the position of planes in the simulated Kikuchi patterns for a
given zone axis are in good agreement with experiments. The simulated patterns exhibit proper
band width in agreement with the expected Bragg angles from the ideal unit cell of the material.

	 The kinematic construction leads to patterns that resemble the Kikuchi maps more than the
experimental patterns. This is a well-known limitation of the kinematic model for simulating
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Kikuchi diffraction patterns [13]. Future work must bridge this divide connecting simulated
dynamical Kikuchi diffraction with atom positions and species from atomistic simulation results.

 Changes in the Kikuchi patterns due to the presence of a nanoscale dislocation shear loop are
observed. Generally, a decrease in the kinematic intensity of each low-index band in the Kikuchi
pattern is observed. However, certain bands are influenced more strongly than others. These
observations can be linked to the measured displacement field of the dislocation loop in agreement
with contrast imaging theory.

The method presented here may have additional applications within the fields of atomistic and
olecular dynamics simulation. It may be particularly useful for large, noisy data sets where crystal
tructure or orientation is unknown and difficult or impossible to determine via other means, such as
ommon Neighbor Analysis. Such areas could include atom probe tomography, grain boundary
odeling and characterization, structure identification in biological fields, and thermodynamic
tudies of highly-disordered or fluctuating materials.
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