
Transcutaneous Cervical Vagal Nerve Stimulation in Patients 
with Posttraumatic Stress Disorder (PTSD): A Pilot Study of 
Effects on PTSD Symptoms and Interleukin-6 Response to 
Stress

J. Douglas Bremnera,b,c,*, Matthew T. Wittbrodta, Nil Z. Gureld, MdMobashir H. Shandhid, 
Asim H. Gazid, Yunshen Jiaoe, Oleksiy M. Levantsevyche, Minxuan Huange, Joy Beckwitha, 
Isaias Herringa, Nancy Murrahe, Emily G. Driggersa,e, Yi-An Kof, MhmtJamil L. Alkhalafe, 
Majd Soudane, Lucy Shallenbergere, Allison N. Hankuse, Jonathon A. Nyeb, Jeanie Parkc,g, 
Anna Woodburyc,h, Puja K. Mehtai, Mark H. Rapaportj, Viola Vaccarinoe,i, Amit J. Shahc,e,i, 
Bradley D. Pearcee, Omer T. Inand,k

aDepartment of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, 
Georgia

bDepartment of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, 
Georgia

cAtlanta VA Medical Center, Decatur, Georgia

dSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia

eDepartment of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia

fDepartment of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 
Atlanta, Georgia

gDepartment of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia

hDepartment of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia

iDepartment of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, 
Georgia

jHuntsman Mental Health Institute, Department of Psychiatry, University of Utah School of 
Medicine, Salt Lake City, Utah

kCoulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia

Abstract

This is an open access article under the CC BY-NC-ND license, (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author at: Emory University, Department of Psychiatry, 12 Executive Park Dr NE, Rm 333, Atlanta, GA 30329, 
United States, jdbremn@emory.edu (J.D. Bremner). 

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jadr.2021.100190.

HHS Public Access
Author manuscript
J Affect Disord Rep. Author manuscript; available in PMC 2021 December 01.

Published in final edited form as:
J Affect Disord Rep. 2021 December ; 6: . doi:10.1016/j.jadr.2021.100190.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Background: Posttraumatic stress disorder (PTSD) is a highly disabling condition associated 

with alterations in multiple neurobiological systems, including increases in inflammatory and 

sympathetic function, responsible for maintenance of symptoms. Treatment options including 

medications and psychotherapies have limitations. We previously showed that transcutaneous 

Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in 

PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and 

inflammatory responses to stress.

Methods: Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) 

or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts 

immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of 

inflammation. Patients then self administered active or sham tcVNS twice daily for three months. 

PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered 

PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with 

the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of 

measurement of biomarkers with traumatic scripts. After three months patients self treated with 

twice daily open label active tcVNS for another three months followed by assessment with the 

CGI.

Results: Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS 

(p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD 

symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal 

symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline 

in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI 

compared to the sham treatment period p<0.05).

Conclusions: These preliminary results suggest that tcVNS reduces inflammatory responses to 

stress, which may in part underlie beneficial effects on PTSD symptoms.

1. Introduction

Posttraumatic Stress Disorder (PTSD) is a disabling disorder that affects the quality of 

life and productivity of millions of Americans (Bremner, 2016). The standard of care for 

PTSD includes psychotherapy and/or medication (Ballenger et al., 2000; Foa et al., 1999; 

Foa et al., 2007; Foa and Rothbaum, 1998; Hembree et al., 2003; Lancaster et al., 2016; 

Schnurr et al., 2007), however current treatments are characterized by high rates of non­

completion and/or limitations in efficacy (Ballenger et al., 2004; Davis et al., 2016; Hembree 

et al., 2003; Schottenbauer et al., 2008). Some reports concluded that there is insufficient 

evidence to conclude that first line medication treatment with Selective Serotonin Reuptake 

Inhibitors (SSRIs) are effective for PTSD (Institute of Medicine of the National Academies, 

2014). New approaches to treatment are needed, especially those that target the underlying 

psychobiology of PTSD, involving core changes in brain and autonomic nervous system 

(Reinertsen et al., 2017; Shah et al., 2013) and immune function (Neigh and Ali, 2016), that 

maintain symptoms of the disorder (Bremner, 2016; Shah et al., 2013).

Neuromodulation is a new approach that may be particularly useful in addressing the 

underlying psychobiology of stress-related psychiatric disorders (Adair et al., 2020; Bikson 
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et al., 2016; Bikson et al., 2017b; Bremner et al., 2020b; Krames et al., 2018; Schachter 

and Saper, 1998; Tortella et al., 2015; Woods et al., 2016). Vagal Nerve Stimulation (VNS) 

is a form of neuromodulation that has been shown to be efficacious in the treatment of 

epilepsy (Ben-Menachem et al., 1999; Ben-Menachem et al., 1994; George et al., 1994; 

Handforth et al., 1998; Salinsky et al., 1999; The Vagus Nerve Stimulation Study Group, 

1995) and treatment-refractory major depression (Aaronson et al., 2017; Berry et al., 2013; 

Dell-Osso et al., 2013; George et al., 2005; George et al., 2003; George et al., 2000; 

Marangell et al., 2002; Rush et al., 2000; Rush et al., 2005a; Rush et al., 2005b; Sackeim 

et al., 2007; Sackeim et al., 2001a; Sackeim et al., 2001b). Implantable VNS devices are 

currently approved by the Food and Drug Administration (FDA) for treatment resistant 

major depression (Aaronson et al., 2017; George et al., 2003; Terry, 2014). Beneficial effects 

of VNS that may be particularly useful for stress-related psychiatric disorders including 

blocking of sympathetic (Pena et al., 2014; Peña et al., 2013; Schomer et al., 2014) 

and immune function (Bansal et al., 2012; Borovikova et al., 2000), and enhancement of 

cognition (Clark et al., 1999; Jacobs et al., 2015; Sackeim et al., 2001a; Sjögren et al., 

2002; Smith et al., 2005; Sun et al., 2017; Vonck et al., 2014). Implantable devices have not 

been widely implemented in psychiatry, however, in part due to lack of reimbursement by 

Medicare and private insurers (Feldman et al., 2013).

A new generation of non-implantable VNS devices has the potential to be more widely 

implemented in psychiatry due to lower cost and greater convenience (Bremner and 

Rapaport, 2017). VNS can be applied to branches of the vagus nerve in the ear 

(transcutaneous auricular VNS, or taVNS) or in the neck, where it travels through the carotid 

sheath (transcutaneous cervical VNS, or tcVNS) (Adair et al., 2020; Badran et al., 2019; 

Bremner et al., 2020b). PTSD is associated with an increase in the blood concentrations 

of the inflammatory marker interleukin (IL)-6 at baseline (Gill et al., 2010; Gill et al., 

2008; (Guo et al., 2012); Li et al., 2014; Lindqvist et al., 2017; Miller et al., 2001; 

Passos et al., 2015; Sutherland et al., 2003; Tucker et al., 2010; Vidovic et al., 2011; von 

Kanel et al., 2010) and in response to mental stress such as public speaking (Lima et al., 

2019) or exposure to personalized traumatic scripts (Bremner et al., 2020a) as well as in 

diurnal cerebrospinal fluid (CSF) (Baker et al., 2001). Studies have shown increased blood 

concentrations of interferonγ (IFNγ) at baseline ( Guo et al., 2012; Hoge et al., 2009; 

Lindqvist et al., 2014; Passos et al., 2015; Woods et al., 2005; Zhou et al., 2014) and in 

response to traumatic script stress in PTSD (Bremner et al., 2020a). Other studies showed 

increased baseline Tumor Necrosis Factor (TNF)-α blood concentrations in PTSD (Gill et 

al., 2010; Lindqvist et al., 2017; Lindqvist et al., 2014; Passos et al., 2015; Sutherland et 

al., 2003; Vidovic et al., 2011; von Känel et al., 2007). Animal studies show VNS decreases 

both IL-6 (Borovikova et al., 2000; Brock et al., 2017; Corsi-Zuelli et al., 2017; Das and 

Basu, 2008; Das, 2007, 2011; Jan et al., 2010; Li and Olshansky, 2011; Marsland et al., 

2007) and TNF-α (Bansal et al., 2012; Jan et al., 2010; Marsland et al., 2007). Studies 

using both implantable devices (De Herdt et al., 2009) and tcVNS (Brock et al., 2017; 

Lerman et al., 2016) show VNS also decreases TNF-α in human subjects, while another 

study showed long term treatment with tcVNS lowered both TNF-α and IL-6 in patients 

with Sjögren’s Syndrome (Tarn et al., 2019). We showed that tcVNS blocks IL-6 and IFNγ 
response to traumatic script stress in PTSD (Bremner et al., 2020a) and blocks the rise in 
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Pituitary Adenylate Cyclase Activating Peptide (PACAP) over three days of stressful tasks 

in traumatized subjects with and without PTSD (Gurel et al., 2020c). We also previously 

reported that tcVNS in traumatized healthy human subjects with and without PTSD blocked 

peripheral sympathetic and enhanced parasympathetic responses both at baseline and in 

response to both personalized traumatic scripts and mental stressors (Gazi et al., 2020; 

Gurel et al., 2020a; Gurel et al., 2020b; Gurel et al., 2018; Gurel et al., 2020d; Gurel et 

al., 2020e) and modulated brain response to traumatic scripts (Wittbrodt et al., 2020), and 

other studies reported that tcVNS blocked sympathetic function in healthy subjects (Brock 

et al., 2017; Lerman et al., 2019) while taVNS blocked sympathetic function in healthy 

human subjects (Badran et al., 2018b; Bretherton et al., 2019; Clancy et al., 2014) and 

patients with co-morbid mild Traumatic Brain Injury (mTBI) and PTSD (Lamb et al., 2017). 

This work replicated findings in healthy subjects using implanted VNS (Schomer et al., 

2014). A nonrandomized study of taVNS in patients with depression showed efficacy at four 

weeks for symptoms of depression when compared to sham stimulation (Rong et al., 2016). 

Other studies in patients with depression showed taVNS resulted in changes in brain regions 

implicated in that disorder (Fang et al., 2017; Fang et al., 2016; Liu et al., 2016; Tu et al., 

2018; Wang et al., 2018). The purpose of the current study was to assess the efficacy of 

tcVNS, delivered in a longitudinal study, compared to sham stimulation for the treatment 

of PTSD, and to assess the effects on stress-induced inflammation. We hypothesized 

that tcVNS would be associated with improvement in symptoms associated with PTSD, 

in particular those driven by increased sympathetic function including hyperarousal and 

somatic anxiety, and a reduction in stress-induced IL-6 activation.

2. Materials and Methods

2.1. Human Subjects

The research reported here was approved by the Institutional Review Boards of Emory 

University, Georgia Institute of Technology, and the Space and Naval Warfare Systems 

Command (SPAWAR) Systems Center of the Pacific and the Department of Navy Human 

Research Protection Program. Patients were studied between February 2019 and March 

2020 at the Emory University School of Medicine. Subjects provided written, informed 

consent for participation. Subjects included physically healthy adults age 18–70 with 

a history of psychological trauma and the current diagnosis of posttraumatic stress 

disorder (PTSD) (Figure 1). Subjects were excluded with the diagnosis of schizophrenia, 

schizoaffective disorder, bipolar disorder, bulimia or anorexia, as defined by The Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 

2013) (American Psychiatric Association, 2013). Subjects were also excluded with current 

pregnancy, traumatic brain injury (TBI), meningitis, active implanted device, evidence or 

history of serious medical or neurological illness, such as cardiovascular, gastrointestinal, 

hepatic, renal, or other systemic illness; carotid atherosclerosis, cervical vagotomy or 

positive toxicology screen. Psychiatric diagnosis was evaluated with the Structured Clinical 

Interview for DSM (SCID) (First and Gibbon, 2004). The Clinician Administered PTSD 

Scale-5 (CAPS-5) was administered to evaluate for presence and severity of both current 

and lifetime PTSD (Blake et al., 1995; Weathers et al., 2018). The PTSD Checklist (PCL)­

Civilian version was used to assess self-reported levels of PTSD symptoms (Ruggiero et al., 
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2003). Anxiety was measured with the Hamilton Anxiety Scale (Ham-A) (Hamilton, 1959) 

and depression with the Hamilton Depression Scale (Ham-D) (Hamilton, 1960). Somatic 

anxiety was measured by adding the Ham-A items for “gastrointestinal” (Item 11, nausea, 

heartburn, abdominal pain) and “autonomic” (item 13, flushing, rapid heart rate, faintness, 

sweaty skin, dry mouth) (Maier et al., 1988). Clinical improvement was assessed by study 

personnel using the Clinical Global Impressions (CGI) scale, a 7 point scale ranging from 

1 for very much improved, 2 much improved, 3 minimally improved to 4 for no change 

and 7 very much worse (Busner and Targum, 2007; NIMH, 1970). Among 64 individuals 

who were screened for eligibility, 20 were enrolled and randomized to active (N=9) or sham 

(N=11) stimulation. Pre-treatment inflammatory biomarker data was previously reported in 

three patients randomized to sham {Bremner, 2020 #11163}. One in the tcVNS group and 

three in the sham group dropped out after starting the protocol and follow-up assessments 

were not attainable (Figure 1). In the active tcVNS group, three (33%) met criteria for 

current co-morbid major depression and six (66%) for a lifetime history of major depression, 

four (44%) for current generalized anxiety disorder, one (11%) for current panic disorder 

with agoraphobia, two (22%) for current panic disorder without agoraphobia, two (22%) 

for current social phobia, and one (11%) for current body dysmorphic disorder. In the 

sham stimulation group, four (36%) met criteria for lifetime major depression, one (9%) for 

current major depression, three (27%) for current generalized anxiety disorder, and one (9%) 

for current obsessive-compulsive disorder.

2.2. Study Design

The participants provided their own traumatic experiences, and personalized voice 

recordings based on these experiences were presented as traumatic stress (Bremner et al., 

1999; Orr et al., 1998). Subjects underwent exposure to personalized traumatic scripts in 

conjunction with tcVNS or sham on day 1, and “neutral” stressful tasks with tcVNS or sham 

on days 2 and 3 including public speech and mental arithmetic (Figure 2) (Bremner et al., 

2009; Bremner et al., 2003; Burg and Soufer, 2014). We have described these paradigms 

in detail before and they have been shown to reliably produce behavioral and physiological 

responses consistent with a stress response (Bremner et al., 2009; Bremner et al., 2003; 

Hammadah et al., 2017b). The first day included six traumatic recall scripts (approximately 

one-minute each) and six neutral scripts presented audibly through headphones. The neutral 

scripts were designed to induce positive feelings to the subject, such as the description of 

pleasant scenery. Immediately after the traumatic stress recording ended, stimulation (active 

or sham) was applied by the researcher from the left side of the neck. Behavioral ratings 

after each task were performed using Visual Analogue Scales (VAS) rating subjective anger 

on a 0–100 scale with 100 being most extreme anger and 0 not at all (Southwick et al., 

1993). On the same day two stimulation administrations (active or sham) were applied 

without any stressor. Blood draws were taken on the start of the day (baseline) and at 

multiple time points after. The second and third days were identical to each other. Baseline 

blood draws were taken both mornings. Afterwards, participants underwent a public speech 

task and mental arithmetic task, as previously described (Gurel et al., 2020b; Hammadah et 

al., 2017a). Participants were then instructed in use of the device for self-administration at 

home and received active or sham devices to take home. They were instructed to stimulate 

for two minutes on the left side, followed a one minute rest, and two minutes on the right 
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side, and to do this once in the morning and once at night. They were further instructed 

to stimulate while listening to personalized traumatic scripts twice a week. Participants 

continued twice daily stimulation for three months and returned for behavioral assessments 

once a month. At the end of the three month period they were given an active device and 

instructed to continue twice daily stimulation treatments.

2.3. Blinding

The participants were randomized into active tcVNS or sham groups with pre-numbered 

devices by the manufacturer who were not involved in the research. Random allocation 

was carried out by personnel who did not take part in data collection or analyses. The 

participants and researchers were blinded to the stimulus type. Statistical analyses were 

carried out by a biostatistician who did not take part in data collection or processing. 

Stimulus groups was un-blinded for the interpretation of statistical analysis.

2.4. Transcutaneous Cervical Vagal Nerve Stimulation

Both active tcVNS and sham stimuli were administered using hand-held devices that target 

the cervical portion of the vagus nerve from the skin (GammaCore, ElectroCore, Basking 

Ridge, New Jersey). Stimulation was applied using collar, stainless steel electrodes with 

a conductive electrode gel placed on the left side of the neck over the carotid sheath as 

determined by palpation of the carotid artery (Figure 3). Active tcVNS devices produced 

an alternating voltage signal consisting of five 5kHz sine bursts (1 ms of five sine waves 

with pulse width of 40 ms) repeating at a rate of 25 Hz envelopes. The frequency of 25 Hz 

was chosen based on prior studies showing optimization of effects on autonomic function 

and other measures at this frequency (Adair et al., 2020; Badran et al., 2019; Badran et 

al., 2018a; Badran et al., 2018b; Bikson et al., 2017a; Hays et al., 2014; Hays et al., 

2013; Hulsey et al., 2017). The sham devices produce an alternating biphasic voltage signal 

consisting of 0.2 Hz square pulses (pulse width of 5 s) eliciting a mild sensation. The peak 

voltage amplitudes for active and sham device are 30V and 14V, respectively. An active 

stimulation amplitude higher than 15V using the studied device was previously reported to 

create vagal somatosensory evoked potentials associated with vagal afferent activation, that 

are also activated with VNS implants (Nonis et al., 2017). Both active and sham devices 

delivered two minutes of stimulation. The stimulation intensity (amplitude of the voltage 

wavefront) was adjustable using a roll switch that ranged from 0 to 5 a.u. (arbitrary units) 

with a corresponding peak output ranging from 0 to 30V for active tcVNS, and from 0 to 

14 V for the sham device. During each application, the amplitude of the voltage waveform 

was increased to the maximum the subject could tolerate, without pain. The stimulation 

continued at the selected intensity.

The rationale behind the frequency difference between active (5kHz) and sham (0.2Hz) 

device waveforms is based on the fact that high frequency voltage signals (such as the 

active stimulus, 5kHz) pass through the skin with minimal power dissipation due to the low 

skin-electrode impedance at kHz frequencies. In contrast, lower frequency signals (such as 

the sham stimulus, 0.2Hz) are mainly attenuated at the skin-electrode interface due to the 

high impedance (Rosell et al., 1988). Accordingly, the active device operating at higher 

frequencies can deliver substantial energy to the vagus nerve to facilitate stimulation, while 
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the voltage levels appearing at the vagus would be expected to be orders of magnitude lower 

for the sham device and thus stimulation is unlikely. Nevertheless, since the sham device 

does deliver relatively high voltage levels directly to the skin, it activates skin nociceptors, 

causing a similar feeling to a pinch. This sensation is considered to be necessary for blinding 

of the participants, particularly longitudinal protocols such as in this manuscript.

2.5. Biomarker Assay

We employed the MesoScale system (MSD, Rockville, MD) multiplex assay to quantitate 

IL-6, IL-13, IL-22, IL-5, IL-12p70 and IFN-γ in EDTA plasma. The MesoScale system 

(https://www.mesoscale.com/) was performed according to the protocols supplied by the 

manufacturer, and uses electrochemiluminescence for high sensitivity and broad dynamic 

range. Intra-assay CVs were 5.5% for IL-6.

2.5.1. Statistical Analysis—Analysis of variance (ANOVA) and chi-square tests were 

used to compare the demographic and retention characteristics across the tcVNS treatment 

or sham stimulation group among patients with PTSD. Independent t-tests were used to 

compare the demographic characteristics across the tcVNS treatment or sham stimulation 

groups. Paired t-tests were used to compare behavioral responses before and after treatment 

with p<0.05 denoting statistical significance. CAll statistical analyses were performed using 

SAS 9.4 (SAS Institute, Cary, NC) and MATLAB (R2017b, Natick, MA).

3. Results

Participant groups were similar in age, body mass index, race, sex, education level and 

marital status (Table 1). There were no statistically significant differences in baseline PTSD 

symptom levels as measured by the CAPS or PCL, depression as measured by the Ham-D or 

anxiety as measured by the Ham-A. Participants in the tcVNS and sham stimulation groups 

experienced similar primary traumas, including one in each group with combat trauma, three 

in each group with childhood sexual abuse, two in each group with rape in adulthood, one 

in tcVNS and two in sham with physical assault in adulthood, two in tcVNS and one in 

sham with injury or death of someone close to them, and one in sham with a traumatic failed 

suicide attempt (Table 2).

TcVNS was associated with greater retention, 8/9 (89%) completing three months of 

treatment versus 8/11 (73%) in the sham stimulation group. These patients dropped out 

of the protocol and further assessments were not attainable. Active tcVNS resulted in a 

31% greater decrease in PTSD symptoms measured with the PCL (pretreatment: 62 (14 

SD); posttreatment: 51 (18 SD), p=.013, effect size .79) compared to sham stimulation 

(pretreatment: 59 (15 SD); posttreatment: 51 (20 SD), p=.08) (Figure 4). There was a 31% 

decrease in PTSD symptoms on the CAPS in the tcVNS group (pretreatment: 46 (8 SD), 

posttreatment: 32 (17 SD)) versus a 23% decrease for sham (pretreatment: 38 (8 SD), 

posttreatment: 29 (11 SD), p<.05 for both groups). tcVNS resulted in a 21% decrease in 

hyperarousal symptoms measured with the PCL (pretreatment: 19 (4 SD), posttreatment: 15 

(5 SD), p=.008, effect size 1.0) versus a 17% decrease with sham stimulation (pretreatment: 

20 (4 SD), posttreatment: 16 (6 SD), p = .06) (Figure 5). tcVNS decreased overall anxiety 

as measured by the Ham-A in tcVNS (pretreatment: 23 (11 SD), posttreatment: 20 (9 SD), 
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p=.10) and sham stimulation groups (pretreatment: 21 (6 SD), posttreatment: 16 (10 SD), 

p=.09). Active tcVNS resulted in a 46% decrease in somatic anxiety symptoms (autonomic/

gastrointestinal) (pretreatment: 3.3 (2.4 SD), posttreatment: 1.8 (2.1 SD), p=.035, effect size 

.63) versus a 35% decrease with sham (pretreatment: 2.4 (1.9 SD), posttreatment: 1.6 (1.7 

SD), p=.22) (Figure 6). Treatment did not result in significant changes in depression as 

measured by the Ham-D in either the tcVNS (pretreatment: 19 (12 SD), posttreatment: 17 

(8 SD), p=.53) or sham stimulation groups (pretreatment: 18 (6 SD), posttreatment: 15 (8 

SD), p=.23). The CGI showed a pattern of greater improvement in tcVNS versus sham at 

one month (3.83 (1.33 SD) versus 4.00 (0.82) and three months (3.29 (1.11 SD) versus 4.00 

(0.82)) and significant improvement after three months of open label treatment following 

the double blind phase compared to three months of sham treatment (2.75 (0.71) versus 

4.00 (0.82 SD) (p=0.003) (intermediate between 2 for much improved and 3 for minimally 

improved (Figure 7). Both active tcVNS and sham stimulation were well tolerated and there 

were no adverse effects.

Exposure to personalized traumatic scripts in PTSD patients in conjunction with sham 

stimulation (but not tcVNS) resulted in a significant increase in IL-6 both pre-treatment 

(Figure 8) post-treatment (Figure 9). There were no statistically significant differences 

between tcVNS and sham stimulation groups in Interferon Gamma, IL-12, IL-13, IL22, or 

IL-5 (Supplementary Table).

4. Discussion

Non-invasive tcVNS in this study was associated with a decrease in PTSD symptoms with 

the greatest effects on hyperarousal and autonomic or somatic anxiety symptoms. tcVNS 

also blocked the interleukin (IL)-6 response to traumatic script stress in PTSD patients. 

tcVNS was well tolerated and there were no adverse effects of administration over three 

months. tcVNS may be useful for some patients with PTSD, including those who do not 

respond to medication treatments and patients with increased symptoms of hyperarousal 

and/or autonomic imbalance or patterns of elevated inflammatory biomarkers.

These findings suggest that tcVNS may target the underlying neurobiology of PTSD, in 

particular noradrenergic and peripheral sympathetic nervous system function. The findings 

are consistent with our prior studies showing a decrease in sympathetic nervous system 

activity when tcVNS is paired with traumatic reminders in traumatized individuals (Gazi 

et al., 2020; Gurel et al., 2020a; Gurel et al., 2020b; Gurel et al., 2020e), as well as 

numerous studies showing nVNS (taVNS) blocks peripheral sympathetic nervous system 

function and startle reflex (Bretherton et al., 2019; Clancy et al., 2014; Lamb et al., 2017). 

Symptoms of hyperarousal reduced by tcVNS in this study include increased attention and 

vigilance, being on guard, poor concentration and sleep. Autonomic symptoms captured by 

the Ham-A that were reduced by tcVNS include those in the somatic anxiety categories 

of “gastrointestinal” (nausea, heartburn, abdominal pain) and “autonomic” (flushing, rapid 

heart rate, faintness, sweaty skin, dry mouth). These symptoms are known to be associated 

with increased peripheral sympathetic nervous system function.
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A key role of VNS is modulation of norepinephrine (NE) centrally in the brain and 

peripherally through the sympathetic nervous system (Follesa et al., 2007; Krahl et al., 1998; 

Manta et al., 2009a, 2009b; Manta et al., 2013). VNS modulates NE in the brain through 

effects on the locus coeruleus (LC), an area in the brainstem where the majority of NE 

neurons are located (Hulsey et al., 2017). The vagus nerve has efferent fibers that project to 

the periphery and modulate organ function and afferent fibers that relay through the Nucleus 

Tractus Solitarius (NTS) in the brainstem to affect central brain function (Roosevelt et al., 

2006; Ura et al., 2013). The NTS has inputs to the LC and VNS acts through the LC to 

increase NE release in key brain areas implicated in stress, emotion, and PTSD, including 

the medial prefrontal cortex, amygdala and hippocampus (Hassert et al., 2004; Hulsey et 

al., 2017; Manta et al., 2009a; Roosevelt et al., 2006). Increased NE has a secondary effect 

on neurochemical systems that have been the target of medication treatments for PTSD, 

including the serotonin (5HT) system. NE acts through excitatory alpha-1 adrenoreceptors 

on serotonergic neurons to increase 5HT in the dorsal raphe, the major site of serotonin cell 

bodies in the brainstem, with secondary effects on the same target brain regions modulated 

by NE (Manta et al., 2009a, 2009b; Manta et al., 2013; McGaugh, 1985). Animal studies 

show that chronic VNS treatment increases firing rates of both NE neurons in the LC 

and 5HT neurons in the dorsal raphe (Dorr and Debonnel, 2006), resulting in increased 

extracellular NE in the hippocampus and prefrontal cortex, and 5HT in the dorsal raphe 

(Manta et al., 2009a; Manta et al., 2013; Nichols et al., 2011). Chronic VNS treatment 

increases metabolites of dopamine and 5HT in the cerebrospinal fluid (CSF) in patients 

with epilepsy (Hammond et al., 1992). VNS acts through these central brain areas in ways 

that are incompletely understood to decrease peripheral sympathetic function and enhance 

parasympathetic function (Brock et al., 2017; Clancy et al., 2014; Hammond et al., 1992; 

Pagani et al., 1986; Thayer and Lane, 2007; Weber et al., 2010). This fits with our findings 

that tcVNS blocks peripheral sympathetic activation and enhances parasympathetic tone 

(Gurel et al., 2020b).

Alterations in noradrenergic and peripheral sympathetic function play an important role in 

the maintenance of symptoms of PTSD (Bremner et al., 1996a, 2009b; Southwick et al., 

1997). These systems represent key components of the stress response that ready the body 

to prepare to deal with potential threat (Bremner et al., 1996a, 1996b). NE cell bodies in 

the LC have axons that extend throughout the rest of the brain and are activated by stress, 

resulting in release of NE in the brain with associated increased attention, fear, and anxiety 

behaviors, as well as activation of the peripheral sympathetic system with increased heart 

rate, blood pressure, and respiration (Abercrombie and Jacobs, 1987a, 1987b; Aston-Jones 

et al., 1991; Foote et al., 1983; Jedema et al., 2001; Levine et al., 1990; Nisenbaum and 

Abercrombie, 1993; Redmond and Huang, 1979). Chronically stressed animals re-exposed 

to stress show a potentiated release of NE in brain areas involved in emotion and the stress 

response which is associated with anxiety like behaviors (Aston-Jones et al., 1991; Finlay 

et al., 1995; Miner et al., 2006; Nisenbaum et al., 1991; Petty et al., 1993; Tanaka et al., 

2000; Torda et al., 1984; Weiss et al., 1981). Multiple lines of evidence support increased 

noradrenergic function in PTSD, including the fact that drugs of abuse and medications 

that inhibit LC firing reduce symptoms of hyperarousal, including opioids (Bremner et al., 

1996c), and agonists of the α2 NE inhibitory autoreceptor on the LC, such as clonidine 
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(Kinzie and Leung, 1989), while α2 NE antagonists, like yohimbine, have the opposite effect 

(Southwick et al., 1997; Southwick et al., 1993). Other studies in PTSD found increased 

peripheral concentrations of NE and its metabolites in urine and plasma (De Bellis et al., 

1999; De Bellis et al., 1994; Lemieux and Coe, 1995; Mason et al., 1988; Yehuda et al., 

1998) as well as cerebrospinal fluid at baseline (Geracioti et al., 2001). In PTSD patients, 

exposure to traumatic reminders increased symptoms of PTSD and increased NE and its 

metabolites, in addition to increasing heart rate, blood pressure, and skin conductance 

(Blanchard et al., 1986; Blanchard et al., 1982; Blanchard et al., 1991; Malloy et al., 1983; 

McFall et al., 1990; McFall et al., 1992; Orr et al., 1998; Orr et al., 1995; Orr et al., 1993; 

Orr and Roth, 2000; Shalev et al., 1998). Challenge to the NE system of patients with PTSD 

with the alpha2 adrenergic receptor antagonist, yohimbine, had similar effects (Bremner et 

al., 1997; Southwick et al., 1997; Southwick et al., 1993). These findings show that altered 

NE and sympathetic system function play an important role in PTSD symptoms, especially 

in the hyperarousal category, highlighting the potential utility of interventions such as tcVNS 

that modulate NE and block peripheral sympathetic function.

The current study is a partial replication of our prior report on its effects on IL-6 response 

to traumatic script stress in PTSD (Bremner et al., 2020a). IL-6 is linked to autonomic 

function, so it makes sense that VNS has effects on peripheral inflammation (Jan et al., 

2010; Marsland et al., 2007). Our findgs add to the growing literature that VNS blocks 

inflammatory and autonomic responses in human (Frangos et al., 2015; Frangos and 

Komisaruk, 2017; Gurel et al., 2020b; Gurel et al., 2020e;; Lerman et al., 2019; Lerman 

et al., 2016; Yakunina et al., 2017) and animal studies (Brock et al., 2017; Chen et al., 

2016; Oshinsky et al., 2014). Increased inflammatory function is increasing seen as being a 

response to stress and playing a role in stress-related psychiatric disorders like PTSD and 

depression (Miller et al., 2009; Miller and Raison, 2016; Raison and Miller, 2013). Studies 

in both animals and humans showed that catecholamines released during stress act through 

the adrenergic receptor to activate the transcription factor, nuclear factor-κB (NF-κB), which 

leads to increases in cytokines, including IL-6 (Bierhaus et al., 2003). Intervention at the 

level of IL-6 with VNS may be a useful intervention that reduces symptoms by targeting the 

underlying neurobiology of PTSD(Bremner et al., 2020b; Noble et al., 2019; Souza et al., 

2019).

This is a pilot study with a small sample size that needs to be replicated with larger numbers 

of patients. The small sample size and multiple outcome measures could lead to spurious 

results. We also had imperfect follow-up, which is consistent with the highly symptomatic 

nature of the PTSD patients in this study. Future studies need to be performed with larger 

numbers of patients to replicate and extend these results.
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Figure 1. 
CONSORT diagram showing flow of study participants screened, enrolled, and completing 

the protocol.
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Figure 2. 
Diagram of the baseline study protocol. PTSD patients underwent three days of stress, 

one day (Day 1) with neutral scripts (NS) and personalized traumatic scripts (TS), and 

two days (Days 2 and 3) with mental stress (MS) involving public speaking and mental 

arithmetic tasks. Participants underwent randomized, double-blind assignment to tcVNS or 

sham stimulation which was paired with stress tasks (or no task) on Days 1, 2 and 3. On 

Day 1 neutral and traumatic scripts lasted about one minute and occurred in pairs with 10 

minutes in between. Stress tasks were paired with stimulation with tcVNS or sham which 

began immediately after termination of the task and continued for two minutes followed by a 

blood draw (purple/blue boxes signify pairing of task/stimulation/blood draw but blood draw 

actually occurred at the termination of stimulation). On Day 1 participants also underwent 

stimulation with tcVNS or sham for two minutes in the absence of a task (N) repeated twice 

with 10 minutes in between followed by a blood draw. Neutral and traumatic script pairs 

were repeated followed by a 60 minute rest and lunch break, with a repeat of neutral and 

traumatic script pairs in the afternoon each paired with blood draws. The neutral scripts 

tasks #11 and #12 were followed by a blood draw (which was about 110 minutes after 

the first trauma script pairs at tasks #3 and #4) and the trauma scripts tasks #13 and #14 

paired with tcVNS or sham were followed by the final blood draw at 210 minutes into Day 

1 (Traumatic Stress). On Day 2 after a baseline blood draw at rest (task #15) participants 

underwent mental stress (MS) involving five minutes of public speaking (task #16) with 

tcVNS or sham at the end, followed by an eight minute rest period, and another five minutes 

of mental arithmetic (task #17) followed by tcVNS or sham. After a 90 minute rest period 

participants underwent a blood draw at rest (task#18). This was repeated for Day 3 with 
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baseline (task #19, public speaking (task #20), mental arithmetic (task #21) and a blood 

draw post-task at rest (task #22). The blood draws for all three days were timed to coincide 

with the roughly 90 minute time course of interleukin-6 (IL-6) response to stress based on 

prior studies. Patients then underwent three months of tcVNS/sham followed by a repeat of 

Day 1 only.
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Figure 3. 
Diagram showing placement of tcVNS device on the neck to target the vagus nerve as it 

travels through the carotid sheath.
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Figure 4. 
Effects of up to three months of twice daily transcutaneous cervical Vagal Nerve Stimulation 

(tcVNS) (on the left, red lines) or sham stimulation (on the right, blue lines) on symptoms 

of PTSD as measured with the PTSD Checklist (PCL). Individual participants are shown 

with lines separating pre- and post-treatment; lines with bars represent means and SD 

before and after treatment for both groups. Active tcVNS resulted in a 17% reduction in 

PTSD symptoms (p=.013) and sham stimulation a 13% reduction in PTSD symptoms after 

treatment (p=.15) (*p<.05 from pretreatment).
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Figure 5. 
Effects of up to three months of twice daily tcVNS (on the left, red lines) or sham 

stimulation (on the right, blue lines) on symptoms of PTSD as measured with the PTSD 

Checklist (PCL). Individual participants are shown with lines separating pre- and post­

treatment; lines with bars represent means and SD before and after treatment for both 

groups. Active tcVNS resulted in a 21% reduction in hyperarousal symptoms (p=.008) while 

sham stimulation resulted in a 17% decrease (p=.06) (*p<.05 from pretreatment).
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Figure 6. 
Effects of tcVNS and sham on autonomic anxiety as measured with the Hamilton Anxiety 

Scale (Ham-A). Scores represent the sum of items for gastrointestinal and autonomic 

somatic anxiety (see text) at baseline and with three months of twice daily tcVNS (on 

the left, red lines) or sham stimulation (on the right, blue lines) on autonomic anxiety as 

measured with the Ham-A. Individual participants are shown with lines separating pre- and 

post-treatment; lines with bars represent means and SD before and after treatment for both 

groups. There was a −46% decrease in Ham-A somatic anxiety in the tcVNS group (p=.036) 

versus a −35% change in the sham stimulation group (p=.22) (*p<.05 from pretreatment).
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Figure 7. 
Effects of tcVNS and sham on clinical improvement as measured with the Clinical Global 

Impressions scale-improvements (CGI-I) in active tcVNS (red) and sham (blue) stimulation 

groups at baseline and 30 and 90 days after start of double-blind active (N=9) versus sham 

(N=11) treatment in patients with PTSD. The final measurement at 124 days (34 days after 

start of open label treatment) showed a significant improvement compared to after three 

months of sham stimulation (2.75 (0.71) versus 4.00 (0.82 SD) (*p=0.003). This score is 

intermediated between much improved (2) and minimally improved (3) compared to no 

improvement (4).
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Figure 8. 
Effects of tcVNS (red lines, right side) or sham (blue lines, left side) on interleukin-6 (IL-6) 

at baseline (base) and following repeated exposure to traumatic script stress (post) in patients 

with PTSD. Lines connect pre and post stress in individual patients and bars represent the 

means for each group. There was a significant increase in IL-6 in the sham group (*p<0.05) 

not seen in the PTSD group.
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Figure 9. 
Effects of tcVNS (red lines, right side) or sham (blue lines, left side) on interleukin-6 

(IL-6) at baseline (base) and following three months of double blind active tcVNS or sham 

treatment in patients with PTSD. Lines connect baseline to post-treatment and post traumatic 

script stress in 5/9 patients and bars represent the means for each group. There was a 

significant increase in IL-6 in the sham group (*p<0.05) not seen in the PTSD group.
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Table 1

Baseline Demographic and Behavioral Variables in Active tcVNS and Sham Stimulation Groups

tcVNS (n=9) Sham (n=10)

Age

Mean ± SD 37 ± 13 40 ± 14

Race

White 5 (55%) 5 (45%)

Black 4 (45%) 5 (45%)

Asian/Pacific Islander 0 (0%) 1 (9%)

Sex

Female 6 (66%) 7 (64%)

Male 3 (33%) 4 (36%)

BMI

Mean ± SD 30 ± 7 30 ± 6

Education Level

Some high school 1 (11%) 1 (9%)

High school graduate 3 (33%) 1 (9%)

Some college 2 (22%) 2 (18%)

College graduate 3 (33%) 7 (64%)

Marital Status

Never married 3 (33%) 5 (45%)

Married 3 (33%) 2 (18%)

Divorced / Separated 2 (22%) 3 (27%)

Widowed 1 (11%) 1 (9%)

PTSD Score (PCL)

Mean ± SD 62 ± 14 61 ± 13

CAPS Score

Intrusions-Mean ± SD 11 ± 2 10 ± 3

Avoidance-Mean ± SD 5 ± 2 5 ± 1

Negative Cognitions-Mean ± SD 17 ± 4 14 ± 4

Hyperarousal-Mean ± SD 11 ± 3 10 ± 3

Total-Mean ± SD 44 ± 9 38 ± 9

Ham-D Score

Mean ± SD 19 ± 12 19 ± 5

Ham-A Score

Mean ± SD 23 ± 11 20 ± 6

tcVNS=transcutaneous Vagal Nerve Stimulation; sham=sham stimulation; BMI=body mass index; PCL=PTSD Checklist; CAPS=Clinician 
Administered PTSD Scale; Ham-D=Hamilton Depression Scale; Ham-A=Hamilton Anxiety Scale
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Table 2

Key Traumatic Events in Active tcVNS and Sham Stimulation Groups

Subject/group/sex Traumatic Event

001 sham female Husband left for hockey game, never returned

002 active male Iraq combat

003 active female Childhood sexual abuse from age 7

004 sham male Shot, saw friend shot and killed

005 active female Sudden death of husband, received news while driving, almost crashed

006 sham female Sexual abuse by father from age 6

007 active female Gang rape in adulthood

008 sham female Childhood sexual abuse

009 active female Raped in childhood, held at knifepoint.

010 sham female Raped at knifepoint at age 14.

011 sham male Failed suicide.

012 active male Childhood sexual abuse. Raised in religious cult.

013 active female Mother attempted suicide multiple times in childhood.

014 sham female Rape in adulthood. Physical and emotional abuse in childhood.

015 sham male Vietnam combat

016 sham female Child sexual abuse and assault, adult rape

017 active female Kidnapped and assaulted, abusive relationship

018 active male Stabbed twice in military, almost died

019 sham male Physical assault in military, stabbed in a fight

020 sham female Rape, parents in cult as child
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