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Farmers and breeders aim to improve crop responses to abiotic stresses and
secure yield under adverse environmental conditions. To achieve this goal
and select the most resilient genotypes, plant breeders and researchers rely
on phenotyping to quantify crop responses to abiotic stress. Recent advances
in imaging technologies allow researchers to collect physiological data non-
destructively and throughout time, making it possible to dissect complex
plant responses into quantifiable traits. The use of image-based technologies
enables the quantification of crop responses to stress in both controlled
environmental conditions and field trials. This paper summarizes phenotyp-
ing imaging technologies (RGB, multispectral and hyperspectral sensors,
among others) that have been used to assess different abiotic stresses includ-
ing salinity, drought and nitrogen deficiency, while discussing their
advantages and drawbacks. We present a detailed review of traits involved
in abiotic tolerance, which have been quantified by a range of imaging sen-
sors under high-throughput phenotyping facilities or using unmanned aerial
vehicles in the field. We also provide an up-to-date compilation of spectral
tolerance indices and discuss the progress and challenges in machine learn-
ing, including supervised and unsupervised models as well as deep
learning.
1. Introduction
Agriculture is facing tremendous challenges, resulting from the rapidly growing
population, extreme weather events and serious loss of arable land and water
resources. Crop yields are restricted inherently by plant stresses (biotic and abio-
tic), and plant breeders’ efforts involve minimizing plant stress yield losses by
incorporating and identifying resistance genes to develop more resilient varieties.
Crops have optimum levels of nutrient and water availability and ideal tempera-
ture ranges for production. Environmental conditions outside of these ranges
lead to abiotic stress and can interrupt normal plant physiology and ultimately
lead to death. Abiotic stresses rarely occur in isolation and responses are
highly variable depending on the crop, growth stage and combination of abiotic
and biotic stresses found in the field [1]. Severe yield penalties have increased
steadily in the past decades, and extreme weather events such as floods, drought
and heat are predicted to increase as a direct consequence of climate change [2–4].

Plant phenotyping plays a critical role in accurate and precise trait collection
and use of genetic tools to improve plant performance. Phenotypes are deter-
mined from essentially all parts of plants ranging from the cellular level to
the whole plant or canopy level [5] and can be defined as the application of
methodologies to measure a specific plant trait. Image-based technologies can
be used in phenotyping to identify plant changes in reflectance, biomass and
thermal radiation (figure 1). The effects of and adaptations to abiotic stresses
can be related to imaging data to target specific stress responses. Response
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Figure 1. Summary of major crop physiological traits for screening abiotic stress responses, and imaging technologies to quantify them. The illustration on the left
displays a plant under ideal conditions. On the right, predominant trait changes are observed under abiotic stress conditions. Maize is used as a hypothetical
example, yet these physiological responses are common to other crops experiencing abiotic stress. Imaging technologies are listed in the centre. Abbreviations
(from top to bottom): RGB, red, green and blue; ChF, chlorophyll fluorescence; TIR, thermal infrared imaging; LiDAR, light detection and ranging; MRI, magnetic
resonance imaging; CT, computed tomography; PET, positron emission tomography.
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traits can be identified when studying specific stressors, for
example, low water availability or high temperatures. Under-
standing the underlying mechanisms of the stress under
scrutiny, and the plant responses to it is critical to indicate
which traits should be targeted in the phenotyping exper-
iment. Stress responses have been documented in several
overviews that are available for abiotic stresses such as
drought [6], salinity [7], flooding [8], heat stress [9] and
heavy metals [10].

Until recently, classical methods of phenotyping were not
in the same league as the available high-throughput genome
sequencing and genotyping methods. The past bottleneck in
phenotyping has motivated scientists across different disci-
plines from agriculturists to engineers to integrate newer
technologies in field phenotyping. Such advancements in
phenotyping have led to an interdisciplinary research field
that connects computer science, biology, remote sensing, stat-
istics, and genomics with the aim of coupling complex plant
traits to genetic expression, all for the need to achieve future
food security. High-throughput phenotyping (HTP) has
unraveled new possibilities for non-destructive phenotyping
in plants for a large number of traits including abiotic stress
traits (which is the main focus of the review) such as salinity,
drought, flood, nutrient deficiency and other environmental
stress factors. Plant-image phenotyping has been carefully
reviewed by other authors (e.g. [11–17]); however, this
review examines plant image-based technologies to dissect
the complex physiology of abiotic stress responses. First, we
discuss the different types of imaging systems, including
their advantages and limitations to quantify abiotic stress
and highlight the use of HTP. Next, we explore the use of
imaging systems for abiotic stress studies and recognize
their achievements in the dissection of tolerance mechanisms
and breeding efforts. Finally, we explore the current advances
in monitoring stress using imaging technologies and derived
indices, and present current uses of machine learning to
examine stress responses.
2. Phenotyping technologies to assess
abiotic stresses

Phenotyping has a wide range of platforms spanning from
those working under fully controlled conditions to field-
based platforms (figure 2) or even platforms specifically
designed to study specific traits (i.e. root traits, which are
below ground). Numerous factors need to be considered
when evaluating if a field-based or environmentally con-
trolled-based platform is the most appropriate phenotypic
system to study the underlying research question of the pro-
ject, namely the scale of the intended work (genetic versus
physiological study), the most adequate sensors deployed
and their resolution, as well as associated costs and traits of
interest (for further detail see the review from [18]).

Phenotyping the effects of abiotic stress in crops has con-
ventionally been a relatively manual and laborious process.
Classical methods for evaluating abiotic tolerance are based
on destructive measurements. Destructive harvest includes
splitting plants into segments, such as shoot from root, or
by blade, sheath, stem and root. Destructive harvest allows



classical phenotyping image-based phenotyping

direct measurements visual scoring

increasing temporal frequency of observations

field ground based

field aerial based

Pr
os

C
on

sPr
os

C
on

sPr
os

C
on

s

controlled environment

im
ag

in
g 

pl
at

fo
rm

s

in
cr

ea
se

 in
 p

he
no

ty
pi

c 
sc

al
e

good repeatability

limited available space for monitoring
plants

good spatial resolution
flexible deployment

covers the whole field in less time

spatial resolution depends on
altitude and speed

exposed to changing environmental
conditions as it takes longer to cover full
fieldnormally expensive,

good resolution
auto or semi-auto operation

non-destructive image analysis-trait estimate based on the
camera type.

destructive harvest

–
–
–

–
–

–
–

–

–

–

Figure 2. Schematic overview of phenotyping approaches and high-throughput phenotyping platforms across different environments and scales. Phenotyping
approaches comprise classical and high-throughput methods. High-throughput imaging platforms span from those operating under controlled conditions to
field-based conditions along with their advantages and limitations.
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measurement of traits such as shoot and root length, fresh
and dry mass as well as yield components such as number
of productive tillers or branches, fruit or grain weight etc
[7,18]. Destructive phenotyping entails no highly specialized
nor expensive equipment. However, it is usually labour-inten-
sive, which, when shared with available space for growing
plants, restricts the number of time points for sampling.
Other classical methods include the use of hand-held equip-
ment to evaluate plant performance under stress, including
porometers to measure transpiration [19,20], infrared gas ana-
lysers to measure gas exchange [21] and soil and plant
analyser development (SPAD) meters to determine the chloro-
phyll content and evaluate leaf damage under stress [22].
Transpiration and photosynthetic-related measurements
should be performed at the same time of day to minimize cir-
cadian changes and executed on the same leaf and the same
location on the leaves to reduce the effects of spatial variation,
becoming arduous and time-consuming measurements.
Another classical method to assess stress responses is the use
of a visual scoring system. Visual scores evaluate the overall
survival and/or vigor of the plant, are good indicators of the
performance of the plant under stress and can be used to
screen large populations. However, visual methods are not
quantitative and are very subjective (different researchers
may score the same plant differently). Phenotyping with
destructive methods has become a major bottleneck in par-
ticular for studies dealing with large numbers of genotypes
and sample sizes (e.g. forward genetics and breeding
experiments). This phenotyping bottleneck has been
unlocked by the advent of imaging techniques that have the
potential to assess plant performance in a quantitative and
time-series manner.

Several imaging techniques and sensors have been used
to precisely capture stress responses (table 1 and figure 3).
The most straightforward and accessible of these are
red, green and blue (RGB) sensors, cameras that capture the
visible light spectrum (figure 3). Historically, visual pheno-
typing has been the key method for the artificial selection
of crops into the food we know today. Now, paired with
automated imaging and processing, RGB imaging remains
the most versatile form of image phenotyping.

While discussing image-based technologies for plant phe-
notyping, a threshold should be established to determine
whether an experiment is either low-throughput or high-
throughput both in terms of the number of phenotyped
plants and overall cost. One may consider a low-throughput
phenotyping experiment when a researcher is performing a
physiological study (e.g. mutant or discriminant genotypes
characterization) using a small number of plants (up to
dozens). On the other hand, one may consider a high-
throughput experiment when a researcher is performing a
genetics study (e.g. quantitative trait loci-QTL- mapping, or
genome-wide association studies- GWAS) or a breeding
trial that involves several hundred to thousands of plants
being phenotyped. The cost threshold can be defined based
on the overall cost of the imaging device used to record the
data for the experiment. One may consider a low-cost pheno-
typing experiment if the budget stands in the hundreds of US
dollars. For example, a low-cost imaging sensor (i.e. Rasp-
berry Pi) or a hand-held device such as a cellphone or a
digital camera, yet low-cost equipment will produce low-
throughput phenotyping due to the bottleneck caused by
image acquisition. If the available budget ranges from hun-
dreds to several thousand of US dollars, one may consider
a medium cost phenotyping experiment, which is typically
used in field trials with RGB and multispectral sensors
mounted in unmanned aerial vehicles (UAV, i.e. ‘drones’),
but where the researcher(s) can phenotype thousands of



Table 1. Summary of available imaging sensors in plant phenotyping, including their advantages and related challenges.

sensor traits measured advantages challenges reviewed by

MRI water status, transportation, and root

architecture

three-dimensional

architecture

low throughput and high

cost

Pflugfelder et al.

[23]

thermal leaf/canopy temperature temperature changes

indicates water stress

highly influenced by

environmental factors

Xie & Yang [24]

LIDAR height and canopy architecture high data resolution, can be

operated at night

vast volumes of data,

difficult analysis

Lin [25]

visible imaging

(RGB)

root/shoot biomass, morphology, colour low cost, monitoring of

biomass, morphometry,

and yield traits

unable to detect changes

in water content or

subtle

Li et al. [11]

hyperspectral

imaging

traits vary depending on wavelength

range of the sensor (examples include

pigment concentration water content

and plant nutrients); several spectral

indices available (e.g. NDVI)

larger range of

wavelengths, capturing

stress signals before

becoming visible

creates vast amounts of

data; requires data

mining and ML to

improve data analysis

Liu et al. [26,27]

chlorophyll

fluorescence

photosystem II activity changes in ChF can occur

before most other signs

of stress

dark adapted

measurements required

Maxwell &

Johnson [28]

X-ray CT root architecture high-resolution,

three-dimensional

architecture

low automation and low

throughput, high cost

Tracy et al. [29]

PET translocation and transport of elements shows movement and path

of positron through the

plant

low throughput, high cost Garbout et al.

[30]
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plants in a high-throughput manner. Image-based phenotyp-
ing can be considered of high cost if the available budget
ranges from thousands to millions of US dollars, using
expensive hardware to collect data on a much larger scale
and without interruption in purpose-built facilities (e.g.
imaging suites and field ground-based platforms). Finally,
the running costs of a phenotyping platform should also be
taken into consideration. A low-cost equipment can be
easily handled by a researcher whereas purpose-built facili-
ties require specialized staff and other running costs such
as electricity or equipment maintenance.

RGB cameras can be used in a wide range of capacities,
from automated germination assays [31], height measure-
ments, biomass, morphology, flowering time and even plant
identification aiding citizen science. RGB imaging remains
the most accessible of sensors as the ever-improving quality
of mobile phone cameras can be paired with open-sourced
software such as ImageJ [32] or PlantCV [33] to provide
low-throughput phenotyping at a very low cost. The use of
low-cost equipment has been demonstrated by [34], where
a series of RGB sensors were used to create a portable pheno-
typing platform to image maize shoots for 3D reconstruction.
RGB imaging is also vital to more expensive phenotyping
operations and its versatility is apparent in the range of
data that can be collected. RGB data can provide estimates
of biomass, germination and plant health of crops when
used on a large scale or can be used for in-depth analysis
on a small scale, monitoring growth morphology or even
providing three-dimensional modelling [12,14,35]. In RGB
imaging, pixels are captured and subsequently allow the
measurement of shoot area and inferred mass, plant height
and width, canopy density, other morphometric data, leaf
colour and senescence. Therefore, enabling the quantification
of differences in growth rates or senescence over a period
of time, for example, under stress compared to control
conditions [36–38]. In addition, RGB allows objective quanti-
fication of colour change and changes in leaf structure, which
traditionally rely on human judgement and hence are prone
to errors. For example, nitrogen deficiency, salinity, and
water stress causes leaves’ senescence, and RGB cameras
allow the quantification of this stress symptom by counting
the number of yellow pixels [39,40]. Also, leaf curving,
which is a drought adaptation by reducing transpiration,
has been quantified by imaging maize in the late afternoon
(rolled leaves) and at pre-dawn the following day (unfolded
leaves) and comparing the two images 45 days after
planting [39].

Chlorophyll fluorescence (ChF) imaging sensors can pro-
vide false-coloured images of whole plant/leaf, enabling to
estimate plant or canopy health in response to abiotic stress
(e.g. [38,41–45]). Light absorbed by chlorophyll is used by
plants in three ways: (i) photochemistry; (ii) non-photochemi-
cal quenching (i.e. heat dissipation); and (iii) re-emission as
chlorophyll fluorescence. Thus, measuring the light emitted
provides a proxy to determine the current photochemical effi-
ciency of the plant. Chlorophyll fluorescence imaging
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provides key parameters such as the potential quantum yield
of photosystem II (Fv/Fm), which is highly altered by both
abiotic and biotic stress [46,47]. Steady-state chlorophyll flu-
orescence imaging has been applied for measuring plant
photosynthetic capacity and its impact under salinity [48].
Other imaging technologies include infrared sensors that
create false-colour thermal images that can identify stress
before it can be identified in the visible spectrum as
temperature provides a proxy measurement for stomatal con-
ductance, which plays a major role in response to most
stresses (as reviewed by [49]). Thermal infrared imaging
(TIR) has been used to measure canopy temperature, provid-
ing an indirect calculation of stomatal conductance and
transpiration of plants under salinity stress [50].

Image-based technologies also include three-dimensional
measurements. Light detection and ranging (LiDAR) use
laser scanners to create accurate and detailed three-
dimensional models by measuring the distance between the
sensor and a target. LiDAR has a wide scale application
from small plants to forest stands, yet it can be costly and
requires a longer imaging time hence longer battery life.
Detailed three-dimensional LiDAR images combined with
RGB images, chlorophyll fluorescence, photochemical
reflectance index and leaf temperature images enable the
evaluation of responses of pigments, photosynthesis, tran-
spiration, stomatal opening and shape to environmental
stresses, making this a great tool to exploit when monitoring
plant responses to abiotic stress (as reviewed by [51,52]).
Previous research used LiDAR to estimate stress impact
(e.g. [53,54]), yet data collection and preprocessing are
challenging and time-consuming.

Other three-dimensional image-based technologies
include X-ray computed tomography (CT), positron emission
tomography (PET) and magnetic resonance imaging (MRI)
(as reviewed by [11,55–57]). These technologies are used at a
plant level, providing quantitative high-resolution detection
of structural damages induced by stress. X-ray CT imaging
has been considered as the most suitable technology for in
vivo structure phenotyping due to its relatively low cost and
high spatial resolution and has been extensively used in root
phenotyping (as reviewed by [55,56]). For example, X-ray CT
scanning has been used to monitor the belowground
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development of potato tubers in response to combined heat
and drought stress [58], or barley root growth responses to
different N soil compositions [59]. Furthermore, X-ray CT ima-
ging has also been used to evaluate seed morphology in wheat
spikes in response to heat and drought [60]. PET is also a non-
destructive imaging technology that can detect the location of
small amounts of short-lived radioactive substances injected
into an organism. Combining CT with PET provides valuable
qualitative and quantitative information on soil structure and
root growth at high resolution [30]. For example, Ruwan-
pathirana et al. [61] used PET and CT imaging to assess
barley responses to low nutrient availability, monitoring in
real-time the temporal dynamics of 22Na. MRI is based on
radiowaves, allowing imaging of the protons of water (i.e.
the internal physiological processes occurring in vivo [62]).
For example, MRI has been used to assess relative differences
in water distribution across the root tissues of cultivated barley
(H. vulgare) and a halophytic barley (H. marinum) in response
to salinity stress [63].

Hyperspectral imaging captures narrow wavelength
bands within and beyond the visible spectrum, including vis-
ible and near-infrared (VNIR) and shortwave-infrared
(SWIR), and can detect changes in reflectance associated
with stress before any symptoms appear within the visible
wavelength (as reviewed by [12,35,64,65]), whereas the
SWIR data of Mertens et al. [66] can be used to measure a
whole range of plant constituents, including nutrients,
water or even secondary metabolites like flavonoids and ter-
penoids [67]. Mohd Asaari et al. [68] used an alternative data-
driven method of hyperspectral image analysis to differen-
tiate between water-stressed and control plants as early as 3
days after the start of the experiment. By being able to differ-
entiate between stressed and control plants so early permits
the length of the experiment to be reduced, allowing a
larger number of experiments to be carried out and reducing
the cost of individual experiments [68]. Further detail on
stress traits, indices and applications will be discussed in
§§5–6. Hyperspectral imaging usually requires advanced
technical expertise in image segmentation and data analysis,
for example, Behmann et al. [69] investigated the early onset
drought responses of barley with SWIR imaging using a com-
bination of both unsupervised and supervised machine
learning (ML) methods. Moghimi et al. [70] used hyperspec-
tral imaging and proposed the use of vector-wise similarity
measurements and Bayesian inference to calculate posterior
probability of salt class in pixels. The adoption of these
methods enabled clear distinction of salt-treated from control
plants after a very short time, in fact for one of the accessions
as early as one day after salt imposition, facilitating the obten-
tion of a quantitative ranking of wheat accession based on
their salt tolerance. Thus, hyperspectral imaging is far less
accessible than the previously mentioned imaging techniques
due to the high cost of sensors and the vast amount of high-
dimensional data produced, often requiring multidisciplinary
teams and computer science to solve its big data challenge
(see §7).
3. High-throughput phenotyping
Breeders heavily rely on phenotyping, using large number of
genotypes and targeting the collective study of multiple traits
simultaneously under a given condition. The challenge rests
on breeding for yield and other traits, such as stress tolerance,
using the most adequate phenotyping strategy for the trait of
interest among a plethora of available phenotyping strategies
(as reviewed by [18,71]).

High-throughput phenotyping (HTP) aims to characterize
the full set of phenotypes by non-destructively, capturing
plant traits and integrating biology with computers and
robotics (as reviewed by [15,72,73]). High-throughput exper-
iments can be established in both controlled and field
environments by massively relying on frequent, non-invasive
automated sampling and/or imaging of several hundred to
thousands of plants in a short time frame [15,72,74,75].
HTP facilities with high cost can allow full control of the
environment including temperature, light intensity and
even day length, reducing spatial variation and optimizing
their use to assess abiotic stress responses. These HTP plat-
forms are automated and multifunctional, enabling the
functional characterization of plants’ genomics (e.g. genomic
selection and genome-wide association studies). Big data
generated by HTP temporal platforms requires efficient
data management, storage and analysis [76]. HTP, in general,
uses imaging techniques to monitor plant growth and
dynamic responses under stress in real time. The use of
HTP has allowed the dissection of the genetic components
of abiotic stress through time, which is not achievable via
conventional phenotyping methods as discussed in §4.

Global investment in infrastructure for HTP facilitates
the community progressing across the whole phenotyping
pipeline. Many regional organizations have been established
such as the Australian Plant Phenotyping Facility (APPF,
https://www.plantphenomics.org.au/), EPPN (European
Plant Phenotyping Network, http://www.plant-phenotyping-
network.eu/), and NAPPN (The North American Plant Pheno-
typing Network, https://www.plantphenotyping.org) to
name a few. Other initiatives to develop suitable syner-
gies in phenotyping and efficiently access opportunities
include the International Plant Phenotyping Network
(IPPN, https://www.plant-phenotyping.org/) and EMPHA-
SIS project (https://emphasis.plant-phenotyping.eu/).

HTP imaging techniques is still an emerging field in plant
stress and has barely been tapped into to achieve their full
potential. Other automated features of various HTP plat-
forms are programmable watering to weight of plants to
enable large-scale experiments requiring controlled watering
levels. To our knowledge, few reports have evaluated tran-
spiration and transpiration use efficiency (TUE) at the
whole-plant level using mechanized gravimetrical methods
[77,78], yet HTP has been successfully used to assess TUE
in rice in response to salinity [37] and drought [79]. Moreover,
open-source phenotyping technologies and off-shelf solutions
are being established and becoming widespread, permitting
easier practice and application for both researchers and
farmers (e.g. [80–83]).

This review centres on the integration of HTP imaging
and computing technologies to extract phenotypic traits for
improving crop yield, quality and adaptability to abiotic
stresses. We also focus on both controlled and field con-
ditions. Field phenotyping platforms can be generally split
into two categories the ground-based and the aerial-based
platforms. Ground-based platforms can generate higher res-
olution data since they can capture images at a nearer
range relative to the plants [84,85]. Aerial-based platforms
can be quicker in capturing and measuring traits of a larger
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field plot. These two platforms have their advantages and
limitations when used, which are summarized in figure 2.

There is still a serious need to develop suitable synergies
in plant phenotyping to efficiently access opportunities,
employ new technologies and determine data management
arrangements that allow data exchange across installations,
locations, and experiments. The implementation of new tech-
nologies needs to be integrated into the pipeline for all users
in industry and academia alike.
/journal/rsob
Open

Biol.12:210353
4. Use of imaging to analyse abiotic stress
As previously mentioned, breeders have a hard task ahead of
them to keep pace with higher yield under stressful con-
ditions in response to a changing environment. Thus, all
potential tools and technologies that may help overcome
the seemingly insurmountable challenges of crop production
in the future should be considered. This is the reason why
many researchers are now using image-based technologies
to improve the process of phenotyping. Image data paired
with accurate high resolution environmental data provides
information on the environment-genotype relationship in
detail never before accessible [18]. Yet, the use of HTP in
large-scale breeding programmes or to assist genomic selec-
tion is relatively new and full of challenges [71,86,87]. For
example, Watanabe et al. [88] used RGB and near-infrared
(NIR) cameras to study sorghum plant height in response
to nitrogen availability, and was able to find a higher corre-
lation between data collected with HTP and field
measurements in the plots with lower fertilization, demon-
strating that HTP measurements in field conditions are
suitable for genomic prediction modelling. Rutkoski et al.
[89] performed genomic selection to improve wheat grain
yield using HTP to assess canopy temperature in five field
environments with different irrigation regimes and sowing
dates to expose wheat to heat stress.

Nevertheless, we consider that HTP offers tremendous
potential in breeding experiments if one can combine rapid
cycle genomic selection with imaging platforms to collect
data under a multitude of environmental stresses. Hence, to
help incoming researchers in reviewing image-based technol-
ogies that have been used by different authors to study
abiotic stresses, we provide a comprehensive summary of
imaging applications that targeted traits contributing to
stress tolerance (table 2).

The major advantage of image-based technologies is that
they are non-destructive, allowing multiple measurements to
be taken per plant and the identification of time-specific loci
that might be missed if phenotyped at a single time-point (i.e.
at harvest). Thus, HTP facilities have been used to perform
association studies and dissect the genetic architecture of
abiotic stress responses; however, the number of loci ident-
ified using HTP platforms and longitudinal data is still
limited, being applied to few major crops and targeting
mainly drought and salinity. The underuse of imaging
technologies in association studies can be attributed to the
relatively small number of HTP platforms that can operate
with the high number of plants required to perform genetic
studies, as well as the recent development of imaging tech-
niques and sophisticated data analysis that requires larger
and multidisciplinary teams. The few studies that have car-
ried out association studies in crops offer promising results,
including the identification of multiple and yet undiscovered
QTL in response to abiotic stress. These studies include dis-
secting the genetic architecture of drought in barley
[91,94,96], maize [114], wheat [92], lettuce [115] and rice
[93,116] as well as identifying new QTLs associated with sal-
inity stress in wheat [108,117], barley [118], rice [37,48] and
chickpea [119]. The power of HTP to detect temporal stress
responses is clearly illustrated by the work of Campbell
et al. [48], where salinity stress was examined in rice. With
the use of a longitudinal genome-wide association model,
the authors discovered a region on chromosome 1 that regu-
lates the fluorescence shift, which is indicative of the longer
term mechanism of ionic stress, and the early growth rate
decline associated with salinity stress [48]. Dhanagond et al.
[96] used RGB imaging to analyse biomass growth patterns
during both stress and recovery phases of 100 diverse two-
rowed spring barley in response to drought during pre-
anthesis, which enabled identification of drought-adaptive
QTLs containing genes involved in dehydration tolerance,
namely dehydrins (Dhn4, Dhn7, Dhn8 and Dhn9) and aqua-
porins (e.g. HvPIP1;5, HvPIP2;7 and HvTIP2;1). The power
of HTP to identify genetic regions underlying stress
responses is also illustrated by the work of Guo et al. [93]
as the authors investigated rice under drought stress and
identified 470 association loci, 93% of which were co-loca-
lized with previously reported drought-related QTLs.

It is important to note that the above studies were per-
formed in controlled conditions due to the ability to better
control the environment and ease of phenotyping; however,
many QTLs that have been found in controlled studies do
not translate to field and breeding programmes [84]. Field
trials are an enormous undertaking to phenotype as they
are laborious to manage and can be very expensive (depend-
ing on location and labour cost), which limits how much data
can be collected. Nevertheless, HTP in the field offers bree-
ders and researchers large quantities of data that can be
recorded annually. Thus, a proper field design and spatial
corrections can further build our knowledge of the
accessions/cultivars being examined under stress in ‘real’
conditions [18].

HTP in the field involves sensors that can be mounted on
vehicles (e.g. [104,120], flown over using UAVs (e.g. [100,110])
or even incorporated into large structures creating field phe-
notyping platforms (e.g. [53,121]). Field phenotyping systems
can support RGB, thermal, multi or hyperspectral sensors.
UAVs are currently the most common imaging technology
for field phenotyping, facilitating the recording of various
traits. Under abiotic stress conditions UAVs have been used
to record traits such as canopy height or yield mass of
tomato plants under salinity [110], maize canopy temperature
under drought stress [122].

There is a great deal of debate surrounding the most
appropriate technology for field phenotyping. Arguments
in favour of UAVs suggest that this platform is more flexible
and less expensive to purchase and operate, enabling to sow
and image different field sites, or easily transport the UAV
across multiple locations, as well as a reduced imaging
time. On the other hand, fixed phenotyping platforms are
less dependent on weather conditions, for example, image
can be collected with high winds, which is a limitation for
UAVs. Also, if a field is located in a controlled airspace location,
the image collection by a UAV will be further complicated by
authorizations permits; hence, reinforcing the argument of
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phenotyping using fixed field platforms. To reduce the costs of
field phenotyping platforms, custom-made solutions have been
developed such as the ‘Phenocart’ that comprises RGB and TIR
cameras, coupled with a high-precision Global Positioning
System (GPS) mounted on a bicycle [123]. The Phenocart has
been successfully used at a large-scale breeding field phenotyp-
ing experiment targeting wheat under drought and heat
conditions [86]. Other custom-made field imaging solutions
may be as simple as assembling the sensors on a tractor
frame, enabling to phenotyping at a low-cost hundreds of
plots [124]. Using this system, Pauli et al. [125] evaluated
cotton agronomic and quality traits as well as its canopy temp-
erature under well-watered and drought conditions, which
enabled assessment of QTL patterns within and across years
and between different irrigation regimes. Fixed field phenotyp-
ing facilities can offer great potential for abiotic stress, for
example, PhenoField includes slidable covers that protects
plots from rainfall and has a structure over the field that
allows the camera to be moved across it to phenotype all the
plots independently of weather conditions, facilitating the phe-
notyping of crop species under drought [53]. However,
phenotyping in the field for other abiotic stresses such as water-
logging, cold or heat can become challenging and expensive.
To overcome such challenges imaging technologies can be
used to mimic and model field conditions in indoor facilities.
For example, Marchetti et al. [43] studied drought in barley at
a RH of 40%, which is closer to field real conditions of water
deficit, and used a density rate of 1000 plants m–2 to mimic a
canopy effect, showing that it is possible to discriminate
between tolerant and sensitive barley genotypes by estimating
a project canopy height of a population in response to drought.

However, imaging for abiotic stress using is just a piece of
the puzzle due its complex genetic nature and visual percep-
tion. In the next sections, we discuss the use of indices to
evaluate stress responses and provide some examples of the
use of ML to speed up the process of feature extraction and
stress identification.
5. Advances in image analysis of
phenotypic data and the use of indices
to estimate stress

Imaging has allowed many aspects of plant development,
function and health to be monitored. A universal process of
image analysis is difficult to achieve as imaging data formats
may differ depending on the distinctive imaging sensors used
(e.g. RGB, hyperspectral, multispectral, etc.). We summarize
a workflow of image data analysis (figure 4) that includes:
(1) Image capture in raw data format; (2) image pre-proces-
sing, contrast enhancement, noise removal, so that the
image is manageable for the following step; (3) image seg-
mentation to acquire the objects of interest (e.g. plant) and
differentiate it from the background (e.g. pot and soil); (4)
feature extraction to have the raw features according to the
experimental targets, examples of this are gradient, edge,
counter, shape, size, texture, corner point, colour features
and so on; (5) data quality needs to be performed after
extracting massive volumes of raw features; (6) traits selection
and estimation is required to filter out and explore the impor-
tant biological features; (7) data mining, for example,
building dynamic growth using mechanistic models or the
exploration of spatial and temporal information; (8) long-
term management and integration of the vast amount of
data and all essential metadata following the Findable, Acces-
sible, Interoperable and Reusable (FAIR) principles [126].

Data acquisition information, protocols, environmental
conditions, data description should be clear and easily acces-
sible to support data discovery and data mining applications
(further details can be found in [18]). By contrast to genomic
data, phenotypic data are seldom reused. Having the means
to reuse phenotypic data to perform large meta-analysis
would grant an improved approach in dissecting the genetic
architecture of traits across environments or breeding efforts.
Several initiatives are creating tools for standardizing the
description of phenotypic data. An example of one initiative
to pave the way for data exchange and reuse is the ‘Minimal
Information About Plant Phenotyping Experiment’
(MIAPPE, www.miappe.org) [127], which is a tool for
common and clearly defined management standards and
data formats.

During data trait selection and estimation, the plant
image of each sample is converted into numerical data over
the entire time series and prepared for analysis, meaning
that deciding which statistical methods should be used to
interpret the measurements can be complex. Therefore,
traits selection and estimation of the image data need innova-
tive and sensible analytical methods that can begin to
interpret the responses of plants to abiotic stress from a struc-
tural, physiological and temporal sense. Structural traits can
be estimated by computing the widely used colour-index
based segmentation and classification, noise reduction and
object composition. Such computed traits include, for
example, the projected shoot area (PSA), which can be
extracted from RGB images. The sum of PSA from all
angles of images can be used to estimate shoot biomass as
it is highly correlated with leaf area (LA), plant shoot fresh
weight (FW) and dry weight (DW) [128].

Plant-image based technologies are non-destructive,
allowing to image the same plant daily and record temporal
or longitudinal data. Thus, it is possible to estimate plant
growth with exponential growth models being typically
used for young seedlings and short growth intervals. Yet,
modelling of plant growth is extremely complex, and it is
necessary to develop statistical models that can interpret
and estimate HTP-derived traits with researchers exploring
different modelling strategies. Numerous mathematical
models have been used to describe growth curves of high-
throughput data (e.g. [92,129]). For example, Campbell et al.
[48] used a decreasing logistic curve as a proxy for plant
growth estimation and identified several loci associated
with salinity tolerance in rice by collecting daily RGB
images. However, most of these models make assumptions
about the shape of the curve. To improve growth modelling,
different methods have been tested. Feng et al. [112] used a
deep learning approach to improve image segmentation
from hyperspectral images and predict growth of okra
plants in response to salinity. Other authors have used
spline functions to provide an unbiased analysis of HTP
data as they have the advantage of making no a priori
assumptions about the shape of the growth curve, becoming
a more suitable method to estimate growth in stressed plants
[37,130].

In the past years, the most popular method to extract crop
information from digital imaging tools is the derivation of

http://www.miappe.org


general workflow of image data analysis collected from HTP

image raw data pre-processing

image data and
metadata (e.g., RGB,
chlorophyll 'fluorescence'
hyperspectral sensors)

feature extraction

classify segmentation result to
obtain a list of traits
(morphology/architecture, colour,
fluorescence-related, spectral-
related traits)

segmentation

divide the image into
components (foreground-plant;
background-pot, pieces of
machinery etc.)

trait estimation

height, width, projected
area, skeleton length, convex
hull and number of leaves,
greenness, spectral indices

data quality

data normalization and
outlier detection

data management

long-term management and
open data repositories following
FAIR principles; standardized
data exchange usnig MIAPPE

data mining-ML

supervised and unsupervised
methods for classification
and prediction of features
(biological traits)

prepare the images for
segmentation (image
calibration, cropping, mosaic,
rotation)

Figure 4. A general workflow for the high-throughput image data analysis. The workflow describes image data processing steps for the extraction of the quan-
titative traits. Summary of the workflow refers to steps: (1) image raw data; (2) pre-processing; (3) image segmentation; (4) feature extraction; (5) data quality;
(6) trait estimation; (7) data mining; (8) data management.
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spectral indices, which enables estimation of physiological
traits. The most used indices are vegetation indices (VI) also
known as spectral vegetation indices (SVI). These indices
are designed to denote relative density, crop health, moisture
and nutrient content. VIs are essentially simple ratios
between specific wavelengths, which are used to quantify
various plant traits. The basis for VIs is to use the distinctive
spectral signature of green vegetation as compared to spectral
signatures of other objects such as soil, sand, exposed rock,
concrete or asphalt that would commonly display a stable
increase in reflectance (with no irregular jumps) as wave-
length increases from the visible to the NIR. Green leaves
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and vegetation have a unique spectral reflectance pattern in
the visible and near-infrared wavelengths. This makes it poss-
ible to distinguish between soil and vegetation, vegetation’s
vigor and vegetation properties (canopy biomass, absorbed
radiation, chlorophyll content, etc.) [131,132]. Hyperspectral
data analyses have provided more information from remotely
sensed imagery than ever feasible before. Numerous VIs
(table 2) have been proposed and are widely used by the phe-
notyping community due to their simplicity (usually simple
algebraic formulations) and broad application [133,134].
Index DataBase (DBI) (https://www.indexdatabase.de/) is
a tool for working with remote sensing indices and provides
a quick overview of over 500 indices that are usable for a
specific sensor and a specific topic, including stress
assessment.

Among the VI indices, the normalized difference veg-
etation index (NDVI) [135] and simple ratio (SR), i.e. the
ratio vegetation index (RVI) [136], are the most commonly
used (table 3). SR is a ratio between the reflectance measured
in the NIR and red bands, and it is used as a quick approach
to characterize green leaves from other background objects
in the image and estimate the relative biomass. If both the
red and NIR bands have equal or comparable reflectance,
then the SR is 1 or close to 1. SR values for soils are usually
near 1, with the SR tending to increase as the detection of
green vegetation increases in the image. It is important to
note that SR values are not constrained, and their values
can increase considerably beyond 1. NDVI is also calculated
from reflectance measurements in the red and NIR portion
of the spectrum, ranging from −1.0 to 1.0, where positive
values indicate increasing greenness and negative values
indicate non-vegetated features such as water, rocks,
clouds, etc. Healthy vegetation should be above 0.5 and
stressed plants are usually bellow this value. The NDVI
has been used for decades in both field and greenhouses
scenarios, yet it is not ideal for plants grown in artificial
light conditions as this contains NIR to optimize photosyn-
thesis. In such cases, the use of a single-image NDVI (SI-
NDVI) to detect stress symptoms is advised [151]. Green
normalized difference vegetation index (GNDVI) is calcu-
lated from reflectance measurements in green and NIR
portion of the spectrum, ranging from 0 to 1.0. This index
is related to the proportion of photosynthetically absorbed
radiation and is linearly correlated with Leaf Area Index
(LAI) and biomass [152]. Genetic variation for VIs was
described in several studies [110,153–156]. VIs are used to
associate important traits of cereal crops, such as grain
yield under stressed conditions (e.g. [157–159]). Also, we
should note that different environments have their own indi-
vidual variable and properties, which should be taken into
consideration when using different VIs. Selecting for specific
VIs should be done with comprehensive thought and weigh-
ing in the benefits and limitations of established VIs when
applying them in a combination that fits a particular
environment. This allows for VIs to be tailor-made for
specific experimental designs, platforms and stress appli-
cations. For example, Liu et al. [26,27] tested different
hyperspectral sensors and used partial least square
regression to carry out proximal sensing of N content in
wheat, suggesting that the indices obtained by the authors
can be further used to validate N quantification in other
crops. For a more in-depth understanding of VI refer to
reviews by Lowe et al. [64] and Xue & Su [160].
The stress tolerance of a plant can be estimated using var-
ious indices, which are calculated for any estimated trait (e.g.
yield, PSA). Stress tolerance indices have been used for many
crops [37,161–163] and new indices have been suggested (e.g.
[164]). A more detailed explanation of different stress indices
can be found in review papers such as Morton et al. [165].
Pour-Aboughadareh et al. [166] developed a user-friendly
software- iPASTIC- to facilitate the different stress indices cal-
culations when using large datasets. New VIs and stress
indices will continue to be developed, which will greatly
broaden abiotic stress research areas. Despite the simplifica-
tion that VIs and stress indices can provide, the main
challenge in phenotyping, in particular image-based pheno-
typing, remains on handling large volumes of data. This
big data challenge has been approached by computer scien-
tists as we will discuss next.
6. Machine learning approaches to analyse
abiotic stress

As previously mentioned, imaging sensors have greatly
evolved due to considerable technological advancements
and their cost has significantly been reduced in the last
decade. With rising quantities of data, researchers need to
identify strategies for data management and storage. The
wealth of information arising from imaging sensors requires
specialized methods for processing, analysis and knowledge
acquisition. To overcome the challenges accompanying data
management, machine learning (ML) has become the leading
method to accelerate data integration and detect stress
phenotyping traits (see review by Singh et al. [167]).

ML can be defined as the ability of a computer program to
imitate human-based learning without being explicitly pro-
grammed to do so [168]. This learning process is split into
two categories: supervised and unsupervised learning.
Supervised learning uses labelled data to train and test a
model of an analyst’s choice (e.g. stress versus control). By
contrast, unsupervised learning does not require a training
dataset, instead it uses unlabelled data and employs cluster-
ing techniques to analyse the features (i.e. the biological
traits) of that dataset. ML has been extensively used in pheno-
typing, particularly in the detection, classification,
quantification and prediction of plant diseases (see review
by [169]). By contrast, the use of ML in abiotic stress is still
underexplored, which is largely due to the complex mechan-
isms of abiotic responses that result in a less straightforward
phenotype compared to a disease phenotype. For example,
disease detection, classification and quantification are simpli-
fied due to the obvious lesion symptoms. In abiotic
conditions such as drought or nitrogen deficiency, plants’
responses are more subtle (e.g. leaf chlorosis), which means
that a typical ML pipeline will struggle to interpret this
subtle difference between a control and stressed plant.

ML algorithms work only on numerically based datasets
and require computer vision to analyse images produced
from a sensor. RGB sensors are arguably the most common
type of imaging method due to their low-cost and flexibility
of use. However, under abiotic stress conditions, the use of
RGB images for ML analysis is limited due to the indistin-
guishable nature of symptoms in the visible spectra. On the
other hand, spectral-based imaging sensors (hyperspectral
or multispectral) are advantageous despite their complexity.

https://www.indexdatabase.de/
https://www.indexdatabase.de/
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ML in spectral data is more powerful than RGB data as stress
signatures become more obvious in abiotic stress beyond the
visible spectra (e.g. NDVI). The use of ML for spectral data
analysis requires further steps of pre-processing the data so
that ML algorithms can efficiently analyse each spectral
image. Also, ground-truth data such as harvesting data,
weather data or chlorophyll content are important to validate
ML algorithms.

Depending on the experiment and the specific type of
imaging sensor applied, various ML algorithms can be
used. For example, if a researcher wants to classify images
in terms of stress versus control, they can use different classi-
fication algorithms such as support vector machine (SVM) or
random forest. This classification strategy has been used in
hyperspectral imaging, enabling to estimate biomass changes
in response to drought stress in barley (e.g. [69,170]). If a
researcher wants to anticipate plants behaviour in response
to an abiotic stress (i.e. ML prediction), algorithms such as
artificial neural network have proven to be efficient in lettuce
under drought conditions (e.g. [171]).

Even thoughML is a powerful tool, the performance ofML
algorithms begins to degrade when datasets become too com-
plex. In HTP, when using hyperspectral sensors, there is a
considerable higher number of traits along with the involve-
ment of time series, resulting in an increase in data
complexity. In such cases, the technical prowess of deep learn-
ing (DL) algorithms has become more appealing. DL can be
defined as a class of ML algorithms whose structure composes
multiple layers, which may be used to extract high-level fea-
tures (traits) from a dataset. The structure of each DL model
is inspired by the function of the human brain, mimicking
the process of neurons sending and receiving signals to per-
form specific actions. DL harnesses a great potential for
abiotic stress analysis (see review by [172]), yet due to the intri-
cacy of its implementation and high data requirements,
research using DL is still in its infancy in HTP for abiotic
stress. Ghosal et al. [173] used a convolutional neural network
(CNN) to analyse 25 000 RGB images of soya bean leaves sub-
jected to several diseases and nutrient deficiency. This DL
method enabled the identification and quantification of
foliar stresses in a fast way that can be further applied in
real-time stress detection consistently and accurately. Kaneda
et al. [174] performedML prediction using both environmental
data and RGB images of tomato plants exposed to drought
stress. The authors model prediction for drought stress was
achieved using a combination of sliding window-based sup-
port vector regression and CNN [174]. In field conditions,
multispectral data from 382 soya bean genotypeswas collected
with a UAV sensor and used to train a feed-forward neural
network [175]. The results showed that this DL methodology
was able to classify plants responses to flooding stress using
a scoring of flooding visual symptoms [175].

Although ML models can produce an adequate perform-
ance on a small dataset, DL models cannot produce sufficient
performance when trained on a small dataset as their archi-
tecture is too complex. This leads to an issue known as
‘Overfitting’, where a DL model will produce impressive
results on a training dataset but will fail to generalize to
un-seen data. The use of ML also requires the creation of
labelled data for supervised learning as ML and DL models
cannot generate their training/test datasets without appro-
priate annotations. The major challenge in ML and DL
research in abiotic stress phenotyping is the lack of openly



royalsocietypublishing.org/journal/rsob
Open

Biol.12:210353

16
available data repositories. The lack of open-source data repo-
sitories limits the improvement of ML and DL algorithms by
the larger scientific community because only research groups
who have access to affordable imaging sensors can produce
data of considerable size. Initiatives where large datasets
are made available to the larger community are paving the
way for faster development and improvement of ML and
DL algorithms. Such open-source repositories with large
datasets are transforming stress classification and prediction
with the leading examples of the initiatives of Plant Pathol-
ogy 2020 [176] and the platform for big data in agriculture
(e.g. PlantVillage- https://bigdata.cgiar.org/divi_overlay/
plantvillage-nuru/, verified 24th November 2021). A compre-
hensive list of available imaging datasets has been complied
by [177]. However, many open-source repositories contain
only disease data or a ‘low’ number of images from a ML
and DL perspective, limiting abiotic stress research.

7. Conclusion and future perspectives
Imaging technologies are certain to be a great tool for large
genetic studies (including breeding and association analysis),
but for HTP to be more widespread, it is important to create
additional imaging facilities worldwide as well as training a
new generation of plant researchers that combine expertise
in plant physiology and data analysis in collaboration with
statisticians and computer scientists. Moreover, as the bottle-
neck shifts from phenotyping to data analysis there is an
increasing need to develop accessible data analysis tools
that are both accessible and easy to use by plant scientists
and breeders. One may anticipate that the development of a
new platform automatically collecting and registering
multi-source data for phenotyping, and employing a user-
friendly graphical user interface (GUI) will greatly benefit
research and breeding communities.
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