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A feasible “NOSE” (nanoparticles-catalyzed organic synthesis enhancement) protocol has been developed for N,N-diformylation
of bisuracil derivatives using nano-Al

2
O
3
rods as an efficient, inexpensive, and recyclable catalyst under solvent-free reaction

condition at 40∘C.The catalyst was reused up to the 4th cycle without affecting the rate and yield of theN,N-diformylation products
appreciably.

1. Introduction

The exercise of metal/metal oxide nanoparticles as a frontier
between the homogeneous catalysis and heterogeneous catal-
ysis [1] in organic synthesis has invoked tremendous interests
[2] in the recent times. The interesting features inherited
with these small particle sizes are their large surface area
along with more edges and corners and distinct electronic,
optical, magnetic, thermal, and chemical properties [3–5].
The crucial role of nanoparticles in organic transformations is
their excellent catalytic activity, straightforward recoverabil-
ity, better selectivity, criteria of evolution, and their versatile
role in green chemistry [6–10]. Thus, the domain of metal
nanoparticle catalysis [11–13] should offer opportunities for
mining new chemical reactions [14–16] which include the
synthesis of biologically important and synthetically chal-
lenging natural products. In the context of green chemistry
[17], organic synthesis in solvent-free reaction condition
[18–21] has occupied a significant position in the recent
years since solvent-free reaction condition involves the best
reaction medium with “no medium” [22].

One of the key motifs present in the biopolymer RNA
[23–26] is uracil, a nucleobase of the pyrimidine family which
participates in various functions in our life processes [27].
Uracil derivatives also have several potent medicinal proper-
ties such as bronchodilators and anticancer [28, 29], antialler-
gic [30, 31], antiviral [32, 33], antihypertensive, and adenosine
receptor antagonists [34, 35]. Recently, our research group

reported a greener protocol for the synthesis of bisuracil
derivatives [36]. Bisuracil and their analogues have also been
isolated from marine sea hare Dolabella auricularia [37].
Some of the N-substituted bisuracil analogues have been
screened for bioactivities against several diseases [38].

To explore the possible applications of the metal/metal
oxide nanoparticles in organic synthesis, we have been
focusing on the advancement of a protocol termed “NOSE”
(nanoparticles-catalyzed organic synthesis enhancement)
[39–41] chemistry in our laboratory. To the best of our
knowledge, there has been no report on nano-rod-shaped
Al
2
O
3
catalyzed N,N-diformylation of bisuracil derivatives.

Recently, we reported N-formylation of amines catalyzed by
nano-Al

2
O
3
under solvent-free reaction condition [39]. This

work inspired us to focus on nano-Al
2
O
3
catalysis for the

N,N-diformylation of bisuracil analogous. Therefore, in this
paper, we wish to account for the same (Scheme 1).

Nano-Al
2
O
3
draws our attention due to its crystalline size

and shape, abrasive and insulating properties, less toxicity,
large surface area, basic surface characteristics, high resistant
towards bases and acids and excellent wear resistance [40–
44].

2. Materials and Methods

2.1. General ExperimentalMethods. Rod-shaped nano-Al
2
O
3

(the average particle diameter is 8.12 nm and average length
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Scheme 1: N,N-diformylation of bisuracil derivatives 1(a–k).
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Scheme 2: Optimization of reaction condition.

25.5 nm, 𝑆BET = 185.63m2 g−1, 𝜌 = 3.98 g cm−3, and purity
is 99.99%) were purchased from Sigma Aldrich and used as
received. The chemicals and reagents were purchased from
Sigma-Aldrich, Merck, M/S S.D. Fine Chemicals Pvt. Ltd.,
and Loba Chemie, and used without further purification.The
XRD pattern was recorded with Rigaku X-ray diffractometer.
Melting points were determined in a Büchi 504 apparatus. IR
spectra were recorded as KBr pallets in a Nicolet (Impact 410)
FT-IR spectrophotometer. 1H and 13C NMR spectra were
recorded in a 400MHz NMR spectrophotometer (JEOL,
JNM ECS) using tetramethylsilane (TMS) as the internal
standard, and coupling constants are expressed in Hertz.
Elemental analyses were carried out in a Perkin-Elmer CHN
analyser (2400 series II). Mass spectra were recorded with a
Waters Q-TOF Premier and an Acquity UPLC spectrometer.
Visualization was accomplished with UV lamp or I

2
stain.

Reactions were monitored by thin-layer chromatography
using aluminium sheets with silica gel 60 F

254
(Merck).

2.2. General Procedure for N,N-Diformylation of Bisuracil
Derivatives. In a two-neck round bottom flask (50mL),
nanorod-shaped basic Al

2
O
3
(7.0mol%, 7.12mg) were taken,

and then 1g (1.0mmol, 414mg) and formic acid (98%,
6.0mmol, 0.23mL) were added. After that, it was allowed
to stir on a pre heated oil bath at 40∘C for the required
time (the progress of the reaction was judged by TLC). The
reaction mixture was brought to room temperature after its
completion, and ethyl acetate (3 × 10mL) was added and then
centrifuged (3,000 r.p.m) to recover the nanocatalyst. Having
done this, the reaction mixture was washed with water and
brine, dried over anhydrous Na

2
SO
4
, and concentrated in a

rotary evaporator, and finally the crude product was purified
by column chromatography (30% ethyl acetate: hexane as an
eluent). The recovered catalyst was washed with hot ethanol
(3 × 10mL) to remove the organic impurities, decanted, dried
in an oven at 80∘C for 6 h, and reused for evaluating the
performance in the next run in the reaction as shown in
Scheme 2.

3. Results and Discussion

With the previously reported catalyst characterizations in
hand [39], to begin with, reaction of 6,6-diamino-1,1,3,3-
tetramethyl-5,5-(benzylidene)bis[pyrimidine-2,4 (1H, 3H)-
dione] [36] (1a, 1 mmol) with formic acid (6mmol) was
chosen as the model reaction (Scheme 2).

The optimization of the various parameters of this reac-
tion is elaborated in Table 1. Initially, the reaction was
carried out without using catalyst under solvent-free reaction
condition at 40∘C and 80∘C which did not yield any product
(Table 1, entries 1 and 2). Various solvents were also tested
under the mentioned condition, but they all failed (Table 1,
entries 3–11) to provide any product. These negative results
suggested that we look for an effective catalyst in the present
study. Next, various Lewis acid-base catalysts (Table 1, entries
12–14) along with the nanocatalysts (Table 1, entries 15–
18) were surveyed to observe the influence on rate and
yield of N,N-diformylation of 1a which were not fruitful.
Interestingly, nanorod-shaped basic Al

2
O
3
stood out as a

choice of catalyst at 7mol% loading (Table 1, entry 15) under
solvent-free reaction condition at 40∘C. During the course
of our experiment, we observed that at higher temperature
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Table 1: Optimization of the reaction conditions for the N,N-diformylation of 1a (Scheme 1).

Entry Catalyst Solvent Temp. (∘C) Time (h) Yield (%)b

1 None Solvent-free 40 9 NRc

2 None Solvent-free 80 9 NRc

3 None H2O 40 12 NRc

4 None CH3CN 40 12 NRc

5 None MeOH 40 12 NRc

6 None EtOH 40 12 NRc

7 None THF 40 12 NRc

8 None Toluene 40 12 NRc

9 None DMSO 40 12 NRc

10 None Xylene 40 12 NRc

11 None DMF 40 12 NRc

12d K2CO3 Solvent-free 40 12 NRc

13d PPh3 Solvent-free 40 12 NRc

14d Imidazole Solvent-free 40 10 Trace
15d Nano-Al2O3

i Solvent-free 40 45min 70
16d Nano-MgOj Solvent-free 40 3 34
17d Nano-Fe2O3

k Solvent-free 40 5 12
18d Nano-TiO2

l Solvent-free 40 4 8
19d Nano-Al2O3

i Solvent-free 80 2 43
20e Nano-Al2O3

i Solvent-free 40 3 25
21f Nano-Al2O3

i Solvent-free 40 4 17
22g Nano-Al2O3

i Solvent-free 40 6 8
aReaction conditions: bisuracil 1a (1mmol, 0.454 g), formic acid (6mmol, 0.66mL), and solvent (5mL). bIsolated yields. cNo reaction was observed. d7mol%
catalyst was used. e5mol% catalyst was used. f3mol% catalyst was used. g10mol% catalyst was used. h1mol% catalyst was used. iParticles size (17.4–16.4 nm).
jParticles size (<50 nm). kParticles size (12 nm). lParticles size (<80 nm).

Table 2: Nano-Al2O3 catalyzed N,N-diformylation of uracil and bisuracil derivatives.

Entry “R” in 1 Product 2 Time (min) Yield (%)a,b

1 C6H5 (1a) 2a 45 70
2 p-OMeC6H4 (1b) 2b 60 68
3 p-ClC6H4 (1c) 2c 75 58
4 p-OHC6H4 (1d) 2d 90 55
5 p-NO2C6H4 (1e) 2e 90 52
6 p-MeC6H4 (1f) 2f 70 60
7 o-OHC6H4 (1g) 2g 100 52
8 m-NO2C6H4 (1h) 2h 90 65
9 CH3 (1i) 2i 100 52
10 CH3(CH2)3(1j) 2j 120 44
11 2-furyl (1k) 2k 150 57
a6mmol of formic acid was used. bIsolated yield. cProducts were characterized by IR and NMR (1H and 13C) spectroscopy, MS, and also melting points.

Table 3: Recycling study of nano-Al2O3.

Entry No. of cycles Time (min) Yield (%)b TONs
1 Fresh 45 70 88
2 1st run 45 70 88
3 2nd run 45 70 88
4 3rd run 45 70 88
5 4th run 45 70 88
6 5th run 60 58 76
7 6th run 180 40 70
aReaction conditions: 2mmol of 2b, 12mmol formic acid, and 7mol% basic nano-Al2O3, 40

∘C. bYields refer to the isolated pure products.
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Figure 1: Comparison of XRD of fresh nano-Al
2
O
3
with the

recovered ones.

(Table 1, entry 19) and at lower/higher catalyst loading the
yield of the products was poor (Table 1, entries 20–22).
Thus, the yield of N,N-diformylation product of bisuracil
derivatives is highly dependent upon the temperature and
catalyst loading.

With this supportive optimized reaction condition in
hand, a series of bisuracil derivatives (entries 1–11) bearing
different aliphatic, aromatic, and heterocyclic moieties were
examined to explore the scope and limitations of this reaction
and the outcomes are presented in Table 2. It is clear from
Table 2 that bisuracil derivatives carrying both electron
donating and electron withdrawing groups in benzene ring
underwent N,N-diformylation reaction smoothly producing
good yields (Table 2, entries 1–8). However, longer reaction
time was required for bisuracil derivatives substituted with
furan and alkyl groups (Table 2, entries 9–11). It is worth
mentioning that 6-amino-1,3-dimethyluracil when treated
with formic acid under the current condition gave N,N-
diformylation product in lower yield (26%, 9 h).The reactions
were found to be clean, and no side products were formed.

To test the recyclability (vide Scheme 2) of nano-Al
2
O
3
,

it was separated from the reaction mixture by adding ethyl
acetate (10mL), centrifuged at 3,000 rpm, to pellet out the
catalyst.The separated particleswerewashedwith hot ethanol
(3 × 10mL) to remove the organic impurities, decanted, dried
in an oven at 80∘C for 6 h, and reused for further reactions.
The efficiency of the catalyst was found to be unaffected up to
4th run, and after that, its action started to decrease as shown
in Table 3. The TONs were also retained from fresh up to the
5th cycle, and after that it decreased considerably.

The recovered catalyst was also investigated through
powder XRD and it was compared with the fresh nano-Al

2
O
3

(Figure 1). In the powder XRD of the recovered catalyst after
6th run (Figure 1), the intensity of the peaks (4 0 0) and (1 0 0)
weakened and became broad. It might be due to the blockage
of the pores of the catalyst which caused a decrease in effective
active sites and also due to the dislocation of the crystal planes
after each run which in turn decreased the yield.

The SEMmicrograph of the fresh nano-Al
2
O
3
previously

reported by us [39] was also compared with the recycled one

Figure 2: SEM image of recovered nano-Al
2
O
3
after 4th run.

(Figure 2) under the present study. As indicated in Figure 2,
the recycled nano-Al

2
O
3
revealed the aggregation of the

particles responsible for reducing its surface area and hence
deactivated the catalyst after 4th run which caused the lower
yield of product.

4. Conclusions

In conclusion, we have demonstrated a novel method for
synthesis the N,N-diformylation of bisuracil derivatives in
good yield under solvent-free reaction condition at 40∘C cat-
alyzed by recyclable nano-Al

2
O
3
rods. Nano-Al

2
O
3
catalyzed

organic transformations are less explored. We believe that
this work would find wide applications for new chemical
transformations, including those which enable the synthesis
of complex natural products and derivatives.
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