# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-[(1*R*,3*S*)-6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-3-yl]-4-phenyl-1,3-thiazole

### Sunayna Pawar,<sup>a</sup> Venugopala Katharigatta,<sup>b</sup> Thavendran Govender,<sup>a</sup> Hendrik G. Kruger<sup>b</sup> and Glenn E. M. Maguire<sup>b</sup>\*

<sup>a</sup>School of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and <sup>b</sup>School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 12 September 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.075; wR factor = 0.109; data-to-parameter ratio = 17.4.

In the title compound,  $C_{26}H_{24}N_2O_2S$ , the dihedral angle between the thiazole ring and the adjacent phenyl ring is 3.02 (15)°. The N-containing six-membered ring of the tetrahydroisoquinoline unit adopts a half-chair conformation. The dihedral angle between the least-squares plane of the tetrahydroisoquinoline ring system and its nearest phenyl ring is 76.90 (13)°. No classical hydrogen bonds nor  $\pi$ - $\pi$  interactions were found in the crystal structure.

#### **Related literature**

For reactions associated with TIQ ligands, see: Chakka *et al.* (2010); Naicker *et al.* (2010). For related structures, see: Naicker *et al.* (2011*a*,*b*).



## Experimental

#### Crystal data

 $\begin{array}{l} C_{26}H_{24}N_2O_2S\\ M_r = 428.53\\ Orthorhombic, P2_12_12_1\\ a = 5.9178 \ (2) \ \text{\AA}\\ b = 16.6269 \ (9) \ \text{\AA}\\ c = 22.8564 \ (11) \ \text{\AA} \end{array}$ 

#### Data collection

```
Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.886, T_{max} = 0.978
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$   $wR(F^2) = 0.109$  S = 1.214948 reflections 285 parameters 1 restraint  $V = 2248.95 (18) \text{ Å}^3$  Z = 4Mo K\alpha radiation  $\mu = 0.17 \text{ mm}^{-1}$  T = 293 K $0.32 \times 0.16 \times 0.13 \text{ mm}$ 

92668 measured reflections 4948 independent reflections 3141 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.093$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -0.13 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2094 Friedel pairs Flack parameter: 0.01 (10)

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Hong Su of the University of Capetown for the data collection and structure refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2779).

#### References

- Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). *Eur. J. Org. Chem.* pp. 972–980.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, 067.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, 01403.
- Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). *Tetrahedron Asymmetry*, 21, 2859–2867.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o2722 [doi:10.1107/S1600536811037494]

## 2-[(1R,3S)-6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-3-yl]-4-phenyl-1,3-thiazole

## S. Pawar, V. Katharigatta, T. Govender, H. G. Kruger and G. E. M. Maguire

#### Comment

As a part of our studies on the synthesis and application of new tetrahydroisoquinoline compounds for catalysis of asymmetric hydogenation reactions (Chakka *et al.*, 2010) and the Diels-Alder reaction (Naicker *et al.*, 2010), the title compound, a novel ligand containing a TIQ backbone with thiazole moiety, and its' analogues are currently being tested in our laboratory for the asymmetric Henry reaction.

The absolute stereochemistry was confirmed to be *R* and *S* at C1 and C9 positions, respectively, by two-dimensional NMR studies. From the crystal structure it is evident that the *N*-containing six-membered ring assumes a half chair conformation  $[Q = 0.446 (4) \text{ Å}, \theta = 54.0 (5)^{\circ} \text{ and } \phi = 315.6 (6)^{\circ}]$ . The torsion angle for C1—N1—C9—C10 is 57.9 (4)°. The maximum displacements from the C1/C2/C7–C9/N1 plane are 0.256 Å for N1 and 0.314 Å for C9 (Fig. 1). This is similar to our previously reported structures which also assume half chair conformations (Naicker *et al.*, 2011*a*, *b*). There are no hydrogen bonding interactions nor  $\pi$ - $\pi$  interactions in the crystal structure.

#### **Experimental**

A solution of Cbz protected thiazole compound (0.100 g, 0.177 mmol, 1 eq.) in dry DCM (4 ml) under argon atmosphere was treated with dipropylsulfide (0.788 ml, 5.338 mmol, 30 eq.), boron trifluoride diethyl etherate (0.230 ml, 10 eq.) and stirred at room temperature for 1.5 h, then dipropylsulfide (0.499 ml, 2.336 mmol, 20 eq.) was added, the reaction was allowed to proceed for another 2 h. The reaction was monitored by TLC using EtOAc/Hexane (20:80,  $R_f = 1/2$ ). The mixture was then poured into water (5 ml) and 10% aqueous NH<sub>4</sub>OH (10 ml) was added and extracted with ethylacetate (30 ml) followed by washing with water (2 × 10 ml). The organic layer was separated and dried over anhydrous MgSO<sub>4</sub> and the solvent evaporated under reduced pressure to afford crude thiazole, which was purified by column chromatography using silica gel (deactivated with 5% Et<sub>3</sub>N) using 95:5 hexane/Et<sub>3</sub>N - 10:90:5% EtOAc /hexane/Et<sub>3</sub>N as the eluent to yield approximately 0.05 g (65%) of pure thiazole compound. *M*.p. = 388–390 K

Crystals suitable for X-ray analysis were grown at room temperature from a solution of EtOAc/hexane.

#### Refinement

All H atoms, except atom H1N, were placed in idealized positions (C—H = 0.93-0.97 Å) and refined using a riding model, with  $U_{iso}(H)$  set at 1.2 or 1.5 times those of their parent atoms. The H1N was refined freely [N1—H1N = 0.927 (17) Å].

**Figures** 



Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.

## 2-[(1R,3S)-6,7-Dimethoxy-1-phenyl-1,2,3,4- tetrahydroisoquinolin-3-yl]-4-phenyl-1,3-thiazole

| Crystal data                   |                                                       |
|--------------------------------|-------------------------------------------------------|
| $C_{26}H_{24}N_2O_2S$          | F(000) = 904                                          |
| $M_r = 428.53$                 | $D_{\rm x} = 1.266 {\rm ~Mg~m}^{-3}$                  |
| Orthorhombic, $P2_12_12_1$     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab         | Cell parameters from 92668 reflections                |
| a = 5.9178 (2) Å               | $\theta = 3.0-27.1^{\circ}$                           |
| b = 16.6269 (9)  Å             | $\mu = 0.17 \text{ mm}^{-1}$                          |
| c = 22.8564 (11)  Å            | T = 293  K                                            |
| $V = 2248.95 (18) \text{ Å}^3$ | Block, colourless                                     |
| Z = 4                          | $0.32 \times 0.16 \times 0.13 \text{ mm}$             |
|                                |                                                       |
|                                |                                                       |

#### Data collection

| Nonius KappaCCD<br>diffractometer                              | 4948 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3141 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.093$                                                     |
| $1.2^\circ\phi$ scans and $\omega$ scans                       | $\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -7 \rightarrow 7$                                                    |
| $T_{\min} = 0.886, T_{\max} = 0.978$                           | $k = -21 \rightarrow 21$                                                  |
| 92668 measured reflections                                     | <i>l</i> = −29→29                                                         |

### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                            |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement              |
| $R[F^2 > 2\sigma(F^2)] = 0.075$ | $w = 1/[\sigma^2(F_o^2) + (0.0259P)^2 + 0.4897P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.109$               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| <i>S</i> = 1.21                 | $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$                                 |

| 4948 reflections                                               | $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$                                                         |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 285 parameters                                                 | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 1 restraint                                                    | Extinction coefficient: 0.0072 (9)                                                                                 |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2094 Friedel pairs                                                               |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0.01 (10)                                                                                         |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| S1  | 0.31297 (13) | 0.27081 (5)  | 0.16545 (4)  | 0.0756 (3)                |
| 01  | 1.3723 (4)   | 0.11255 (15) | 0.43058 (11) | 0.0981 (8)                |
| O2  | 1.4727 (4)   | 0.02633 (14) | 0.34014 (11) | 0.0864 (7)                |
| N1  | 0.5823 (4)   | 0.23535 (15) | 0.27440 (10) | 0.0623 (6)                |
| H1N | 0.490 (4)    | 0.1910 (13)  | 0.2803 (11)  | 0.069 (9)*                |
| N2  | 0.6162 (4)   | 0.18000 (14) | 0.12153 (10) | 0.0564 (6)                |
| C1  | 0.7220 (5)   | 0.23931 (17) | 0.32849 (12) | 0.0620(7)                 |
| H1  | 0.6242       | 0.2210       | 0.3604       | 0.074*                    |
| C2  | 0.9256 (5)   | 0.18372 (17) | 0.32871 (13) | 0.0595 (7)                |
| C3  | 1.0545 (6)   | 0.17525 (19) | 0.37999 (13) | 0.0708 (9)                |
| Н3  | 1.0166       | 0.2054       | 0.4129       | 0.085*                    |
| C4  | 1.2354 (6)   | 0.1235 (2)   | 0.38266 (14) | 0.0717 (9)                |
| C5  | 1.2916 (5)   | 0.07670 (17) | 0.33380 (15) | 0.0663 (8)                |
| C6  | 1.1660 (5)   | 0.08514 (16) | 0.28383 (14) | 0.0643 (8)                |
| H6  | 1.2022       | 0.0542       | 0.2512       | 0.077*                    |
| C7  | 0.9852 (5)   | 0.13892 (16) | 0.28054 (12) | 0.0590 (7)                |
| C8  | 0.8571 (5)   | 0.14618 (16) | 0.22391 (13) | 0.0651 (8)                |
| H8A | 0.7586       | 0.1000       | 0.2195       | 0.078*                    |
| H8B | 0.9632       | 0.1461       | 0.1916       | 0.078*                    |
| C9  | 0.7172 (4)   | 0.22227 (16) | 0.22165 (11) | 0.0552 (7)                |
| Н9  | 0.8209       | 0.2679       | 0.2175       | 0.066*                    |
| C10 | 0.5672 (4)   | 0.22039 (16) | 0.16855 (12) | 0.0542 (7)                |
| C11 | 0.2745 (5)   | 0.23434 (18) | 0.09645 (12) | 0.0668 (8)                |
| H11 | 0.1493       | 0.2455       | 0.0732       | 0.080*                    |
| C12 | 0.4483 (5)   | 0.18743 (16) | 0.07989 (12) | 0.0543 (7)                |
| C13 | 0.4750 (5)   | 0.14401 (16) | 0.02377 (12) | 0.0556 (7)                |

| C14  | 0.6676 (6) | 0.09961 (18) | 0.01269 (14)  | 0.0673 (8)  |
|------|------------|--------------|---------------|-------------|
| H14  | 0.7819     | 0.0980       | 0.0406        | 0.081*      |
| C15  | 0.6937 (7) | 0.0574 (2)   | -0.03919 (15) | 0.0804 (10) |
| H15  | 0.8243     | 0.0277       | -0.0460       | 0.096*      |
| C16  | 0.5244 (8) | 0.0598 (2)   | -0.08076 (16) | 0.0882 (11) |
| H16  | 0.5400     | 0.0315       | -0.1156       | 0.106*      |
| C17  | 0.3339 (7) | 0.1041 (2)   | -0.07042 (17) | 0.0935 (11) |
| H17  | 0.2209     | 0.1064       | -0.0987       | 0.112*      |
| C18  | 0.3074 (6) | 0.1455 (2)   | -0.01871 (14) | 0.0746 (9)  |
| H18  | 0.1758     | 0.1748       | -0.0122       | 0.089*      |
| C19  | 0.7776 (5) | 0.32691 (17) | 0.34164 (12)  | 0.0592 (7)  |
| C20  | 0.6135 (6) | 0.3740 (2)   | 0.36789 (14)  | 0.0801 (10) |
| H20  | 0.4733     | 0.3518       | 0.3767        | 0.096*      |
| C21  | 0.6556 (7) | 0.4538 (2)   | 0.38112 (16)  | 0.0941 (12) |
| H21  | 0.5430     | 0.4849       | 0.3983        | 0.113*      |
| C22  | 0.8609 (7) | 0.4872 (2)   | 0.36917 (15)  | 0.0852 (11) |
| H22  | 0.8902     | 0.5405       | 0.3791        | 0.102*      |
| C23  | 1.0220 (6) | 0.44213 (19) | 0.34258 (16)  | 0.0833 (10) |
| H23  | 1.1607     | 0.4652       | 0.3333        | 0.100*      |
| C24  | 0.9825 (5) | 0.36207 (18) | 0.32905 (13)  | 0.0707 (8)  |
| H24  | 1.0956     | 0.3318       | 0.3113        | 0.085*      |
| C25  | 1.3075 (9) | 0.1475 (3)   | 0.48294 (17)  | 0.153 (2)   |
| H25A | 1.4160     | 0.1346       | 0.5127        | 0.230*      |
| H25B | 1.1618     | 0.1274       | 0.4942        | 0.230*      |
| H25C | 1.2998     | 0.2048       | 0.4782        | 0.230*      |
| C26  | 1.5162 (7) | -0.0274 (2)  | 0.29331 (17)  | 0.1042 (12) |
| H26A | 1.6461     | -0.0596      | 0.3024        | 0.156*      |
| H26B | 1.5445     | 0.0028       | 0.2582        | 0.156*      |
| H26C | 1.3876     | -0.0616      | 0.2875        | 0.156*      |
|      |            |              |               |             |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0669 (5)  | 0.0765 (5)  | 0.0833 (6)  | 0.0138 (4)   | -0.0023 (5)  | -0.0113 (5)  |
| 01  | 0.108 (2)   | 0.1159 (19) | 0.0704 (16) | -0.0031 (16) | -0.0193 (15) | 0.0182 (14)  |
| O2  | 0.0864 (16) | 0.0804 (15) | 0.0922 (17) | 0.0051 (14)  | -0.0139 (14) | 0.0272 (14)  |
| N1  | 0.0589 (14) | 0.0688 (16) | 0.0591 (15) | -0.0141 (13) | 0.0045 (13)  | -0.0059 (13) |
| N2  | 0.0537 (14) | 0.0571 (14) | 0.0586 (15) | -0.0013 (12) | -0.0042 (12) | 0.0025 (12)  |
| C1  | 0.0660 (17) | 0.0680 (18) | 0.0521 (17) | -0.0134 (16) | 0.0078 (15)  | 0.0001 (15)  |
| C2  | 0.0680 (18) | 0.0550 (16) | 0.0553 (19) | -0.0132 (15) | -0.0013 (16) | 0.0076 (15)  |
| C3  | 0.088 (2)   | 0.067 (2)   | 0.0572 (19) | -0.015 (2)   | -0.0008 (19) | 0.0066 (16)  |
| C4  | 0.083 (2)   | 0.075 (2)   | 0.058 (2)   | -0.0156 (19) | -0.0130 (18) | 0.0236 (18)  |
| C5  | 0.072 (2)   | 0.0569 (18) | 0.070 (2)   | -0.0090 (17) | -0.004 (2)   | 0.0211 (17)  |
| C6  | 0.073 (2)   | 0.0554 (17) | 0.065 (2)   | -0.0027 (17) | -0.0031 (18) | 0.0074 (15)  |
| C7  | 0.0682 (19) | 0.0512 (16) | 0.0577 (18) | -0.0083 (16) | -0.0037 (16) | 0.0059 (15)  |
| C8  | 0.073 (2)   | 0.0579 (17) | 0.0642 (18) | 0.0008 (16)  | -0.0060 (16) | -0.0030 (15) |
| C9  | 0.0561 (16) | 0.0525 (16) | 0.0569 (17) | -0.0083 (14) | 0.0004 (14)  | 0.0011 (14)  |
| C10 | 0.0524 (15) | 0.0470 (15) | 0.0632 (18) | -0.0039 (13) | 0.0024 (15)  | 0.0046 (16)  |

| C11 | 0.0632 (19) | 0.0667 (18) | 0.071 (2)   | 0.0064 (17)  | -0.0118 (16) | 0.0021 (16)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C12 | 0.0542 (17) | 0.0480 (16) | 0.0608 (19) | -0.0026 (14) | -0.0030 (15) | 0.0087 (14)  |
| C13 | 0.0574 (18) | 0.0494 (16) | 0.0601 (18) | -0.0087 (15) | -0.0013 (15) | 0.0080 (14)  |
| C14 | 0.070 (2)   | 0.0705 (19) | 0.062 (2)   | -0.0012 (18) | 0.0015 (17)  | -0.0013 (16) |
| C15 | 0.085 (2)   | 0.071 (2)   | 0.085 (3)   | -0.004 (2)   | 0.011 (2)    | -0.0061 (19) |
| C16 | 0.100 (3)   | 0.089 (3)   | 0.076 (3)   | -0.035 (2)   | 0.007 (2)    | -0.019 (2)   |
| C17 | 0.091 (3)   | 0.113 (3)   | 0.077 (3)   | -0.029 (3)   | -0.017 (2)   | -0.011 (2)   |
| C18 | 0.0670 (19) | 0.084 (2)   | 0.073 (2)   | -0.0108 (19) | -0.0110 (19) | 0.0016 (18)  |
| C19 | 0.0670 (19) | 0.0643 (18) | 0.0465 (16) | -0.0024 (16) | -0.0002 (15) | -0.0030 (14) |
| C20 | 0.070 (2)   | 0.091 (3)   | 0.079 (2)   | -0.002 (2)   | 0.0061 (17)  | -0.017 (2)   |
| C21 | 0.102 (3)   | 0.085 (3)   | 0.095 (3)   | 0.016 (2)    | 0.004 (2)    | -0.029 (2)   |
| C22 | 0.108 (3)   | 0.063 (2)   | 0.084 (3)   | -0.002 (2)   | -0.015 (2)   | -0.0087 (18) |
| C23 | 0.082 (2)   | 0.065 (2)   | 0.103 (3)   | -0.0104 (19) | -0.002 (2)   | 0.008 (2)    |
| C24 | 0.069 (2)   | 0.0606 (19) | 0.082 (2)   | -0.0033 (17) | 0.0095 (18)  | 0.0037 (17)  |
| C25 | 0.166 (4)   | 0.223 (6)   | 0.071 (3)   | 0.033 (5)    | -0.032 (3)   | -0.015 (3)   |
| C26 | 0.108 (3)   | 0.080 (2)   | 0.125 (3)   | 0.022 (2)    | -0.005 (3)   | 0.017 (2)    |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| S1-C11  | 1.705 (3)  | C12—C13  | 1.480 (4) |
|---------|------------|----------|-----------|
| S1-C10  | 1.724 (3)  | C13—C14  | 1.381 (4) |
| O1—C4   | 1.374 (4)  | C13—C18  | 1.388 (4) |
| O1—C25  | 1.385 (4)  | C14—C15  | 1.386 (4) |
| O2—C5   | 1.368 (4)  | C14—H14  | 0.9300    |
| O2—C26  | 1.417 (4)  | C15—C16  | 1.381 (5) |
| N1—C9   | 1.462 (3)  | C15—H15  | 0.9300    |
| N1C1    | 1.489 (3)  | C16—C17  | 1.368 (5) |
| N1—H1N  | 0.927 (17) | C16—H16  | 0.9300    |
| N2-C10  | 1.300 (3)  | C17—C18  | 1.376 (5) |
| N2-C12  | 1.381 (3)  | C17—H17  | 0.9300    |
| C1—C2   | 1.519 (4)  | C18—H18  | 0.9300    |
| C1—C19  | 1.523 (4)  | C19—C24  | 1.377 (4) |
| С1—Н1   | 0.9800     | C19—C20  | 1.385 (4) |
| C2—C7   | 1.375 (4)  | C20—C21  | 1.382 (5) |
| C2—C3   | 1.406 (4)  | C20—H20  | 0.9300    |
| C3—C4   | 1.376 (4)  | C21—C22  | 1.364 (5) |
| С3—Н3   | 0.9300     | C21—H21  | 0.9300    |
| C4—C5   | 1.401 (4)  | C22—C23  | 1.357 (5) |
| C5—C6   | 1.370 (4)  | C22—H22  | 0.9300    |
| C6—C7   | 1.397 (4)  | C23—C24  | 1.386 (4) |
| С6—Н6   | 0.9300     | C23—H23  | 0.9300    |
| С7—С8   | 1.505 (4)  | C24—H24  | 0.9300    |
| С8—С9   | 1.513 (4)  | C25—H25A | 0.9600    |
| C8—H8A  | 0.9700     | C25—H25B | 0.9600    |
| C8—H8B  | 0.9700     | C25—H25C | 0.9600    |
| C9—C10  | 1.504 (4)  | C26—H26A | 0.9600    |
| С9—Н9   | 0.9800     | C26—H26B | 0.9600    |
| C11—C12 | 1.345 (4)  | C26—H26C | 0.9600    |
| C11—H11 | 0.9300     |          |           |

| 011 01 010                               | 00.05(1.4) | 011 012 012                | 107 4 (2) |
|------------------------------------------|------------|----------------------------|-----------|
|                                          | 88.95 (14) | CII—CI2—CI3                | 127.4 (3) |
| C4—01—C25                                | 118.1 (3)  | N2—C12—C13                 | 118.5 (2) |
| C5 - C2 - C26                            | 116.6 (3)  | C14—C13—C18                | 118.1 (3) |
| C9—NI—CI                                 | 112.8 (2)  | C14—C13—C12                | 120.5 (3) |
| C9—NI—HIN                                | 108.9 (17) | C18—C13—C12                | 121.4 (3) |
| C1—N1—H1N                                | 103.9 (17) | C13—C14—C15                | 121.3 (3) |
| C10—N2—C12                               | 111.3 (2)  | C13—C14—H14                | 119.4     |
| N1—C1—C2                                 | 114.6 (2)  | C15—C14—H14                | 119.4     |
| N1—C1—C19                                | 109.0 (2)  | C16—C15—C14                | 119.5 (4) |
| C2—C1—C19                                | 114.2 (2)  | C16—C15—H15                | 120.2     |
| N1—C1—H1                                 | 106.1      | C14—C15—H15                | 120.2     |
| C2—C1—H1                                 | 106.1      | C17—C16—C15                | 119.7 (3) |
| С19—С1—Н1                                | 106.1      | C17—C16—H16                | 120.2     |
| C7—C2—C3                                 | 118.3 (3)  | C15-C16-H16                | 120.2     |
| C7—C2—C1                                 | 122.0 (3)  | C16—C17—C18                | 120.8 (4) |
| C3—C2—C1                                 | 119.6 (3)  | С16—С17—Н17                | 119.6     |
| C4—C3—C2                                 | 121.5 (3)  | С18—С17—Н17                | 119.6     |
| С4—С3—Н3                                 | 119.3      | C17—C18—C13                | 120.7 (3) |
| С2—С3—Н3                                 | 119.3      | C17-C18-H18                | 119.7     |
| O1—C4—C3                                 | 125.2 (3)  | C13-C18-H18                | 119.7     |
| O1—C4—C5                                 | 115.0 (3)  | C24—C19—C20                | 117.9 (3) |
| C3—C4—C5                                 | 119.8 (3)  | C24—C19—C1                 | 123.7 (3) |
| O2—C5—C6                                 | 125.2 (3)  | C20—C19—C1                 | 118.4 (3) |
| O2—C5—C4                                 | 116.2 (3)  | C21—C20—C19                | 120.7 (3) |
| C6—C5—C4                                 | 118.6 (3)  | C21—C20—H20                | 119.6     |
| C5—C6—C7                                 | 121.7 (3)  | С19—С20—Н20                | 119.6     |
| С5—С6—Н6                                 | 119.1      | C22—C21—C20                | 120.5 (4) |
| С7—С6—Н6                                 | 119.1      | C22—C21—H21                | 119.7     |
| $C_{2}$ – $C_{7}$ – $C_{6}$              | 120.0 (3)  | $C_{20} = C_{21} = H_{21}$ | 119 7     |
| C2—C7—C8                                 | 121.1 (3)  | $C_{23} - C_{22} - C_{21}$ | 119 3 (3) |
| $C_{6}$ $C_{7}$ $C_{8}$                  | 1189(3)    | C23—C22—H22                | 120.3     |
| $C_{7}^{-}$ $C_{8}^{-}$ $C_{9}^{-}$      | 111.8 (2)  | $C_{23} = C_{22} = H_{22}$ | 120.3     |
| C7 - C8 - H8A                            | 109.2      | $C_{22} = C_{23} = C_{24}$ | 120.8 (3) |
| $C_{0}$ $C_{0}$ $H_{8A}$                 | 109.2      | C22 C23 C24                | 120.0 (5) |
| C7 - C8 - H8B                            | 109.2      | $C_{22} = C_{23} = H_{23}$ | 119.6     |
| $C_{1} = C_{2} = H_{2}B_{2}$             | 109.2      | $C_{24} = C_{23} = M_{23}$ | 119.0     |
|                                          | 109.2      | $C_{19} = C_{24} = C_{23}$ | 120.0 (5) |
| $\Pi \delta A = C \delta = \Pi \delta D$ | 107.9      | $C_{19} - C_{24} - H_{24}$ | 119.7     |
| NIC9C10                                  | 110.5 (2)  | C23-C24-H24                | 119.7     |
| NI-C9-C8                                 | 113.5 (2)  | O1 = C25 = H25A            | 109.5     |
| 0-0-09-08                                | 109.5 (2)  | UI-C25-H25B                | 109.5     |
| NI-C9-H9                                 | 107.9      | H25A—C25—H25B              | 109.5     |
| C10—C9—H9                                | 107.9      | 01—C25—H25C                | 109.5     |
| C8—C9—H9                                 | 107.9      | H25A—C25—H25C              | 109.5     |
| N2—C10—C9                                | 123.1 (2)  | H25B—C25—H25C              | 109.5     |
| N2—C10—S1                                | 114.3 (2)  | O2—C26—H26A                | 109.5     |
| C9—C10—S1                                | 122.6 (2)  | O2—C26—H26B                | 109.5     |
| C12—C11—S1                               | 111.4 (2)  | H26A—C26—H26B              | 109.5     |
| C12—C11—H11                              | 124.3      | O2—C26—H26C                | 109.5     |
| S1-C11-H11                               | 124.3      | H26A—C26—H26C              | 109.5     |

| C11—C12—N2    | 114.1 (2)  | H26B—C26—H26C   | 109.5      |
|---------------|------------|-----------------|------------|
| C9—N1—C1—C2   | -35.5 (3)  | C8—C9—C10—N2    | -26.3 (3)  |
| C9—N1—C1—C19  | 94.0 (3)   | N1-C9-C10-S1    | 27.5 (3)   |
| N1—C1—C2—C7   | 5.4 (3)    | C8—C9—C10—S1    | 152.8 (2)  |
| C19—C1—C2—C7  | -121.4 (3) | C11—S1—C10—N2   | 0.0 (2)    |
| N1—C1—C2—C3   | -172.5 (2) | C11—S1—C10—C9   | -179.2 (2) |
| C19—C1—C2—C3  | 60.6 (3)   | C10-S1-C11-C12  | 0.3 (2)    |
| C7—C2—C3—C4   | -0.3 (4)   | S1-C11-C12-N2   | -0.4 (3)   |
| C1—C2—C3—C4   | 177.7 (2)  | S1-C11-C12-C13  | 178.9 (2)  |
| C25—O1—C4—C3  | 9.3 (5)    | C10-N2-C12-C11  | 0.4 (3)    |
| C25—O1—C4—C5  | -170.6 (4) | C10-N2-C12-C13  | -179.0 (2) |
| C2—C3—C4—O1   | 178.9 (3)  | C11—C12—C13—C14 | 178.3 (3)  |
| C2—C3—C4—C5   | -1.2 (4)   | N2-C12-C13-C14  | -2.4 (4)   |
| C26—O2—C5—C6  | -7.4 (4)   | C11—C12—C13—C18 | -2.7 (4)   |
| C26—O2—C5—C4  | 173.5 (3)  | N2-C12-C13-C18  | 176.6 (3)  |
| O1—C4—C5—O2   | 0.4 (4)    | C18—C13—C14—C15 | -0.2 (4)   |
| C3—C4—C5—O2   | -179.6 (2) | C12-C13-C14-C15 | 178.9 (3)  |
| O1—C4—C5—C6   | -178.8 (2) | C13-C14-C15-C16 | 0.1 (5)    |
| C3—C4—C5—C6   | 1.3 (4)    | C14—C15—C16—C17 | 0.4 (5)    |
| O2—C5—C6—C7   | -179.0 (2) | C15-C16-C17-C18 | -0.9 (6)   |
| C4—C5—C6—C7   | 0.1 (4)    | C16—C17—C18—C13 | 0.9 (5)    |
| C3—C2—C7—C6   | 1.7 (4)    | C14—C13—C18—C17 | -0.3 (5)   |
| C1—C2—C7—C6   | -176.3 (2) | C12-C13-C18-C17 | -179.3 (3) |
| C3—C2—C7—C8   | -178.9 (2) | N1-C1-C19-C24   | -101.3 (3) |
| C1—C2—C7—C8   | 3.2 (4)    | C2-C1-C19-C24   | 28.4 (4)   |
| C5—C6—C7—C2   | -1.6 (4)   | N1-C1-C19-C20   | 78.9 (3)   |
| C5—C6—C7—C8   | 178.9 (3)  | C2-C1-C19-C20   | -151.4 (3) |
| C2—C7—C8—C9   | 17.6 (4)   | C24—C19—C20—C21 | -0.2 (5)   |
| C6—C7—C8—C9   | -162.9 (2) | C1-C19-C20-C21  | 179.6 (3)  |
| C1—N1—C9—C10  | -179.0 (2) | C19—C20—C21—C22 | -0.8 (5)   |
| C1—N1—C9—C8   | 58.0 (3)   | C20-C21-C22-C23 | 1.9 (6)    |
| C7—C8—C9—N1   | -48.1 (3)  | C21—C22—C23—C24 | -1.9 (5)   |
| C7—C8—C9—C10  | -171.6 (2) | C20-C19-C24-C23 | 0.2 (4)    |
| C12—N2—C10—C9 | 178.9 (2)  | C1—C19—C24—C23  | -179.6 (3) |
| C12—N2—C10—S1 | -0.2 (3)   | C22—C23—C24—C19 | 0.9 (5)    |
| N1-C9-C10-N2  | -151.6 (2) |                 |            |



