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	 Background:	 Breast cancer has a high mortality rate and is the most common cancer of women worldwide. Our gene 
co-expression network analysis identified the genes closely related to the pathological stage of breast cancer.

	 Material/Methods:	 We performed weighted gene co-expression network analysis (WGCNA) from the Gene Expression Omnibus (GEO) 
database, and performed pathway enrichment analysis on genes from significant modules.

	 Results:	 A non-metastatic sample (374) of breast cancer from GSE102484 was used to construct the gene co-expression 
network. All 49 hub genes have been shown to be upregulated, and 19 of the 49 hub genes are significantly up-
regulated in breast cancer tissue. The roles of the genes CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, 
CDCA5, and MCM6 in breast cancer are unclear, so in order to better reveal the staging of breast cancer mark-
ers, it is necessary to study those hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
indicated that 49 hub genes were enriched to sister chromatid cohesion, spindle midzone, microtubule motor 
activity, cell cycle, and something else. Additionally, there is an independent data set – GSE20685 – for mod-
ule preservation analysis, survival analysis, and gene validation.

	 Conclusions:	 This study identified 49 hub genes that were associated with pathologic stage of breast cancer, 19 of which 
were significantly upregulated in breast cancer. Risk stratification, therapeutic decision making, and progno-
sis predication might be improved by our study results. This study provides new insights into biomarkers of 
breast cancer, which might influence the future direction of breast cancer research.
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Background

Breast cancer has a high mortality rate and is the most com-
mon cancer of women worldwide. A study published in 2013 
used statistical methods to estimate that the number of new 
cancer cases in Europe in 2012 would be about 3.45 million, 
to which the largest contributor would be breast cancer. With 
the third-highest mortality [1]. The incidence of breast cancer 
in postmenopausal women is higher [2], and breast cancer is 
considered one of the leading causes of death in postmeno-
pausal women, accounting for 23% of all cancer deaths [3]. 
In recent years, the morbidity rate of women under 50 years old 
has been increasing, and due to the female infertility induced 
by breast cancer treatments such as chemotherapy, women 
are caught in a dilemma of choosing between survival and fer-
tility [4]. The occurrence of breast cancer is related to hered-
ity [5]; therefore, the BRCA1/2 mutation has been studied for 
use in risk assessment in families with a high prevalence of 
breast cancer [6]. Many genetic tests such as the PAM50 ROR, 
Breast Cancer Index, and EndoPredict have been reported to 
predict the development of advanced recurrences [6]. There are 
many treatments for breast cancer, including chemotherapy, 
surgery, targeted therapy, hormone replacement therapy, radi-
ation therapy, and combination therapy [3], but the large num-
ber of treatments available is a proof that each treatment is 
not fully effective. The poor prognosis of breast cancer is re-
lated to drug resistance, and inappropriate pathological stage 
may aggravate it. It has been shown that scientific and accu-
rate pathological staging can improve individual prognosis.

Weighted gene co-expression network analysis (WGCNA) is a 
systematic and comprehensive biological method to explore the 
correlation between genes, which stands out among many bio-
logical methods. The WGCNA approach operates on 2 assump-
tions: that molecules with similar expression patterns may be 
involved in specific biological functions (co-regulation of genes), 
and scale-free distribution [7]. In simple terms, the gene dis-
tribution is more consistent with the scale-free network dis-
tribution by selecting soft threshold b to weight the correla-
tion coefficient so as to maximize the use of information and 
avoid information loss [8]. To facilitate their use, a WGCNA R 
software package summarized and standardized its methods, 
including network construction, module detection, gene se-
lection, topological property calculation, and visualization [9].

WGCNA builds modules by identifying potential links and cor-
relations between high-throughput genes. Modules closely re-
lated to clinical features were used as hub modules for subse-
quent analysis until the discovery of hub genes tightly related 
to the disease. This method is not only used for the detection 
of specific biomarkers of normal and abnormal tissues (such 
as cancer screening and specific biomarkers of gene-related 
diseases), but also for the identification of hub genes between 

abnormal tissues (such as tumor staging, grading, and metas-
tasis). Therefore, the purpose of the present study was to apply 
the differentially expressed genes (DEGs) co-expression net-
work constructed by WGCNA to identify a series of hub genes 
related with breast cancer pathological stage. These hub genes 
as biomarkers may provide better diagnosis and more effec-
tive treatment for breast cancer patients, thus leading to ear-
lier detection and better results. This study may contribute 
to the establishment of a complete biomarker system for the 
pathological staging of breast cancer.

Material and Methods

Data collection and Preprocessing

The breast cancer gene expression profile of dataset 
GSE102484 [10], downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), 
was raw and was based on the GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array platform. 
In the 683 samples of its data set, we selected 374 samples 
of non-metastatic breast cancer, and all of our samples were 
female. Then, the preprocessing of 374 original expression 
data includes the normalization of data using a robust multi-
array averaging (RMA) [11] algorithm and the filtering of the 
nsFilter algorithm. There were 374 samples and 10 093 probes 
used for subsequent analysis. Furthermore, an independent 
data set, GSE20685 [12], also downloaded from GEO for mod-
ule preservation analysis and validation.

Weighted gene co-expression network construction

The WGCNA package in R software was used to construct the 
co-expression network. First, samples with a Z.K value <–2.5 
were deleted as outliers and did not participate in the later 
analysis. For the construction of a co-expression network, we 
converted the correlation matrix with the removed outlier sam-
ples into the adjacency matrix based on value, and the spe-
cific calculation was aij=|cor(xi, xj)|

b, and Xi and xj are the nodes 
i and j of the network. The b was determined by scale-free to-
pology criterion and R2 >0.8 made the network approximately 
meet the scale-free network distribution generally. For details, 
refer to original authors Zhang and Horvath. Then, this study 
transformed the adjacency matrix into a topological overlap 
matrix (TOM) after a series of complex calculations. TOM pro-
vides a simplified diagram of the network, allowing the visu-
alization of the network and facilitating the identification of 
network modules. Then, the TOM graph was analyzed by av-
erage linkage hierarchical clustering based on the phase dis-
similarity (1-TOM). Finally, the dynamic shear method was 
used to obtain the original modules and all the unidentified 
genes were assigned to a module. The original modules that 
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we obtained were screened and merged before moving on 
to the next analysis. According to the author’s recommenda-
tion, the number of genes in each module was 30 and above. 
At the same time, each module was marked with a different 
color for the convenience of research, and the unrecognized 
genes were grayed out.

Module preservation analysis

To verify the stability of the module, gene expression profiles 
of 327 samples from data set GSE20685 were used for module 
preservation analysis. We used the module preservation method 
in WGCNA R software to calculate the Z summary score (Z score) 
and medianRank [13], which assesses whether the module is 
preserved or not. Since Z score and medianRank have their own 
advantages and disadvantages, in order to treat each mod-
ule equally, the analysis method with both of them is usually 
adopted. If the Z score is greater than 10, it is considered that 
the module is highly preserved, and the higher the Z score is, 
the higher the stability of the module is, and the more reliable 
the subsequent analysis will be. A medianRank of the modules 
close to zero indicates a high degree of module preservation.

Identifying clinically significant modules

The selection of hub modules for subsequent analysis was 
based on the calculation of the correlation between clinical in-
formation and gene modules and the similarity of module ex-
pression in samples, including modules eigengene (ME), gene 
significance (GS), and module significance (MS).

Hub genes identification, validation, and functional 
annotation

The hub gene is defined as the gene with the highest de-
gree of connectivity in the hub module. Specifically, our 
study determined hub genes based on 2 values, and selected 
geneModuleMembership >0.8 and geneTraitSignificance >0.2 as 
the hub genes. This limitation leads to a high degree of modu-
larity and clinical characteristics of the hub gene. Moreover, 
genes in hub modules were projected into a protein–protein 
interaction (PPI) network to further clarify the interaction and 
association between genes, which was one of the references 
for our analysis of genes and diseases and the evidence sup-
porting the status of hub genes. The “limma” package is used 
to identify differentially expressed genes that are widely used 
in disease and gene research. We used “limma” to test our 
hub genes. If the P value of the gene is less than the selected 
significance level (0.05 or 0.01), the selection of the gene is 
considered statistically significant and it is considered to be 
validated. Verification makes our selection of hub genes more 
scientific and convincing.

To further clarify how hub genes influence related clinical 
characteristics of interesting modules, we used Enrichr (http://
amp.pharm.mssm.edu/Enrichr/) database to Gene Ontology (GO) 
function module of the gene annotation and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis [14].

Survival analysis

Survival analysis is used to determine the relationship between 
the expression profile of one or more genomes and survival 
time. Survival analysis of WGCNA is usually done by the non-
parametric Kaplan-Meier method [15]. The patients were di-
vided into 2 groups according to median expression value of 
hub genes by the Kaplan-Meier method, and the results were 
presented by drawing a survival curve. As a common way to 
compare survival curves, the log-rank test can conclude that 
there is no statistically significant difference between groups 
by analyzing the significance of differences between actual 
and theoretical values. To assess the relationship between 
hub genes and breast cancer patients, the Kaplan-Meier sur-
vival analysis and log-rank test using the “survival” package 
of R software were conducted.

Results

Weighted co-expression network construction

The 374 non-metastatic breast cancer samples without stage IV 
in the independent data set GSE102484 from GEO were filtered 
by RMA method normalization and nsFilter. Since there were 
7 samples with Z.K value <–2.5 (GSM2738700, GSM2738857, 
GSM2738923, GSM2738999, GSM2739109, GSM2739182, and 
GSM2739239), these 7 samples were considered as outliers and 
were excluded from subsequent analysis (Figure 1). Therefore, 
the gene expression profile of 367 samples was used to con-
struct the gene co-expression network by using the WGCNA 
package. First, we selected the soft threshold b=5 (scale-free 
R2=0.90) according to Supplementary Figure 1 as the weighting 
coefficient to ensure a scale-free network. Second, our study 
used average linkage hierarchical clustering, the TOM-based 
dissimilarity, dynamic tree clipping, and merging processing 
to identify modules, and it obtained 18 modules marked with 
different colors (Supplementary Figure 2).

Module preservation analysis

We used “modulePreservation” [13] to calculate the preser-
vation statistics of 2 independent modules and to determine 
whether the modules were preserved according to Z sum-
mary score and medianRank. Figure 2 shows that the Z sum-
mary score of the brown, turquoise, and yellow modules were 
all above 50, and the highest Z summary score of the brown 
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module indicated that this module was the best preserved. 
To compensate for the weakness that Z summary score is de-
pendent on module size, we continued to analyze the rele-
vant medianRank. Among the 3 modules of brown, turquoise, 
and yellow, the medianRank of the brown module was still 

prominent. Brown modules, whose Z summery score is more 
than 60 were considered to be the best preserved modules 
in this study.
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Figure 1. �Sample dendrogram and trait heatmap. Seven samples with a Z.K value <–2.5 are outliers. The color intensity was 
proportional to older age as well as higher stage, Tstage, and Nstage.
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close to zero indicates the high degree of module preservation, and the Zsummary of the modules close to zero indicates the 
low degree of module preservation.
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Identifying hub modules

The selection of hub modules was based on the correlation be-
tween modules and traits. Therefore, brown modules were se-
lected as the hub modules in this study according to the clos-
est correlation between modules and stages (r=0.22, P=3e-05, 
Figure 3). At the same time, we also found that the brown mod-
ule was also the most correlated with Tstage (r=0.18, P=4e-04, 
Figure 3), and the correlation between Nstage and the brown 
module was also high (r=0.14, P=0.008, Figure 3). Furthermore, 
the brown module showed high genetic significance and mod-
ule membership (cor=0.49, P=4.4e-67, Supplementary Figure 3), 
which further confirmed the status of the brown module as 
a hub module.

Hub genes identification, validation and functional 
annotation

There were 1093 genes in the brown module and 49 that 
meet our requirements (geneModuleMembership >0.8 and 
geneTraitSignificance >0.2), and the special data are shown 
in Table 1. The 2290 genes were shown to be associated 
with breast cancer in previous studies through Junior Doc 
(http://www.drwang.top/), and 21 of our 49 hub genes had 
not been reported (e.g., TPX2, MCM10, NCAPG, and KIF4A). 
The PPI network of brown modules showed significant con-
nectivity, and the overall effect of the network graph was good 
(Supplementary Figure 4). In this network, the size and color 
depth of nodes are proportional to their degree of connec-
tion, which facilitated our qualitative observation. The node 
degree, betweenness, stress, closeness, and clustering coef-
ficient of 49 hub genes in the brown module were quantita-
tively compared (Table 2). AURKA gene has the largest node 
and the darkest color, which was an important object for our 
subsequent discussion and research. Independent GSE20685 

was used by us for gene validation, and the condition for our 
hub genes to pass the verification was P<0.05. Supplementary 
Figure 5 intuitively shows our verification results, in which the 
P values of 49 hub genes are less than 0.05, which indicates 
that the selection of our 49 hub genes was statistically sig-
nificant, scientific, and convincing. Meanwhile, according to 
|log2(fold change)| ³0.5, 19 of the 49 hub genes were signifi-
cantly upregulated (Supplementary Figure 6).

To determine the mechanism of action of the 49 hub genes 
in the brown module, the 49 hub genes were uploaded to 
Enichr for GO function annotation and KEGG enrichment anal-
ysis. GO function annotation indicated that the brown module 
was enriched to sister chromatid cohesion, spindle midzone, 
and microtubule motor activity (Table 3). KEGG enrichment 
analysis suggested the brown module was enriched in cell 
cycle (Table 4). Tables 3, 4 show that the crude and adjusted 
P value, Z score, the combined score of pathways, and genes 
were included in the pathway.

Survival analysis

Breast cancer patients were divided into a high-expression 
group and a low-expression group according to the median 
expression value of each hub gene, and survival curves were 
plotted accordingly. The P value of 37 of 49 hub genes was 
less than 0.05, indicating that the 37 hub genes were statisti-
cally significant (Figure 4). The survival curve generally shows 
a downward trend with the increase of time. On the graph line, 
the slope is larger, which means lower survival rate. The image 
of the high-expression group of 49 hub genes was steeper than 
that of the low-expression group, indicating that the high ex-
pression of these hub genes was closely related to the poor 
prognosis of patients.
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Probe ID Gene symbol Entrez gene ID Gene module membership Gene trait significance

209642_at BUB1 699 0.924293226 0.235607323

209408_at KIF2C 11004 0.92218934 0.241907024

210052_s_at TPX2 22974 0.914480792 0.223144303

224753_at CDCA5 113130 0.91205407 0.259025302

220651_s_at MCM10 55388 0.910563071 0.208487817

204822_at TTK 7272 0.907948229 0.219457711

204825_at MELK 9833 0.903514378 0.231607588

218726_at HJURP 55355 0.90328239 0.22698554

225687_at FAM83D 81610 0.899886619 0.203016176

218663_at NCAPG 64151 0.896054426 0.205216007

218755_at KIF20A 10112 0.895166941 0.226348808

202870_s_at CDC20 991 0.892240716 0.239137318

221520_s_at CDCA8 55143 0.89118746 0.244566866

206364_at KIF14 9928 0.890950252 0.26234143

209464_at AURKB 9212 0.890552966 0.22142283

203755_at BUB1B 701 0.888672889 0.213901874

218355_at KIF4A 24137 0.887945991 0.228378944

202954_at UBE2C 11065 0.887818368 0.226938633

203554_x_at PTTG1 9232 0.881155019 0.213686403

205046_at CENPE 1062 0.880069219 0.22209321

208079_s_at AURKA 6790 0.879152052 0.218061231

203358_s_at EZH2 2146 0.875743388 0.207933283

222608_s_at ANLN 54443 0.871339701 0.234975449

205339_at STIL 6491 0.869107261 0.210922715

205024_s_at RAD51 5888 0.867508527 0.213183274

228069_at MTFR2 113115 0.864955684 0.211359463

228868_x_at CDT1 81620 0.86478764 0.229292335

205733_at BLM 641 0.860785004 0.217032378

228323_at CASC5 57082 0.857092896 0.202429723

201710_at MYBL2 4605 0.85635078 0.236329323

206102_at GINS1 9837 0.856311574 0.208385671

222077_s_at RACGAP1 29127 0.853841921 0.256705857

204709_s_at KIF23 9493 0.851379193 0.21561731

229610_at CKAP2L 150468 0.85011016 0.229596216

204033_at TRIP13 9319 0.849593284 0.202381238

Table 1. The 49 hub genes most associated with breast cancer.
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Table 1 continued. The 49 hub genes most associated with breast cancer.

Probe ID Gene symbol Entrez gene ID Gene module membership Gene trait significance

218009_s_at PRC1 9055 0.849581571 0.221410912

207746_at POLQ 10721 0.848529181 0.247638427

214804_at CENPI 2491 0.846773238 0.207038989

217640_x_at SKA1 220134 0.837739498 0.203041011

219650_at ERCC6L 54821 0.82821799 0.202549981

222039_at KIF18B 146909 0.825933796 0.203151907

207828_s_at CENPF 1063 0.818716418 0.230482778

228273_at PRR11 55771 0.815331726 0.215057337

204023_at RFC4 5984 0.815233799 0.213293858

213008_at FANCI 55215 0.810580105 0.2165155

204817_at ESPL1 9700 0.808284083 0.211142978

202107_s_at MCM2 4171 0.803926063 0.207204313

209680_s_at KIFC1 3833 0.801065976 0.213650537

201930_at MCM6 4175 0.800871266 0.214708557

Gene module membership represents the degree of linkage between hub genes and other genes, while gene trait significance 
represents the relationship between genes and clinical features.

Gene Node degree Betweenness Stress Closeness Clustering coefficient

AURKA 50 0.01994251 556 1 0.77306122

TPX2 49 0.00885408 464 0.98039216 0.80272109

BUB1 49 0.00885408 464 0.98039216 0.80272109

BUB1B 49 0.00885408 464 0.98039216 0.80272109

CDCA8 49 0.00885408 464 0.98039216 0.80272109

KIF2C 49 0.01860824 508 0.98039216 0.78401361

TTK 49 0.00885408 464 0.98039216 0.80272109

NCAPG 49 0.00885408 464 0.98039216 0.80272109

KIF20A 48 0.0078717 418 0.96153846 0.81471631

MELK 48 0.0078717 418 0.96153846 0.81471631

CDC20 47 0.00599724 352 0.94339623 0.83718779

AURKB 47 0.00603083 352 0.94339623 0.83718779

MCM10 47 0.01567858 408 0.94339623 0.81128585

CENPF 47 0.00603083 352 0.94339623 0.83718779

UBE2C 47 0.00730838 386 0.94339623 0.82146161

Table 2. The node degree, betweenness, stress, closeness, and clustering coefficient of 49 hub genes in brown module.
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Table 2 continued. The node degree, betweenness, stress, closeness, and clustering coefficient of 49 hub genes in brown module.

Gene Node degree Betweenness Stress Closeness Clustering coefficient

KIF4A 47 0.00538752 336 0.94339623 0.84458834

RACGAP1 46 0.00583064 326 0.92592593 0.84251208

KIF23 46 0.00457007 294 0.92592593 0.85797101

CENPE 45 0.00420229 268 0.90909091 0.86464646

PRC1 44 0.00395004 248 0.89285714 0.86892178

CDCA5 44 0.00448217 252 0.89285714 0.86680761

HJURP 44 0.00449643 262 0.89285714 0.8615222

TRIP13 43 0.00307517 204 0.87719298 0.88704319

PTTG1 41 0.00319721 176 0.84745763 0.89268293

ANLN 41 0.00234005 160 0.84745763 0.90243902

FANCI 41 0.00240147 160 0.84745763 0.90243902

CDT1 40 0.00249934 158 0.83333333 0.89871795

MCM2 40 0.00238095 152 0.83333333 0.9025641

ESPL1 40 0.00218884 142 0.83333333 0.90897436

KIF14 40 0.00258938 152 0.83333333 0.9025641

RAD51 38 0.00218296 138 0.80645161 0.90184922

MCM6 36 0.00155343 98 0.78125 0.92222222

CASC5 36 7.88E-04 58 0.78125 0.95396825

SKA1 36 0.00155359 96 0.78125 0.92380952

KIF18B 36 0.00151695 98 0.78125 0.92222222

KIFC1 36 0.00120015 80 0.78125 0.93650794

ERCC6L 36 0.00174436 110 0.78125 0.91269841

CKAP2L 35 0.00166605 94 0.76923077 0.9210084

RFC4 34 0.00115046 74 0.75757576 0.93404635

MYBL2 34 0.00150041 82 0.75757576 0.92691622

POLQ 33 0.00670463 108 0.74626866 0.89772727

EZH2 33 8.32E-04 54 0.74626866 0.94886364

CENPI 32 4.99E-04 36 0.73529412 0.96370968

FAM83D 29 2.09E-04 16 0.70422535 0.98029557

STIL 29 2.24E-04 16 0.70422535 0.98029557

BLM 26 6.48E-04 44 0.67567568 0.93230769

GINS1 26 3.55E-04 26 0.67567568 0.96

PRR11 18 5.66E-05 4 0.6097561 0.9869281

MTFR2 15 0 0 0.58823529 1
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Series Name P value
Adjusted 
P value

Z score
Combined 

score
Genes

GO Cellular 
Component

Spindle midzone 
(GO: 0051233)

7.05E-22 9.03E-20 –2.19 106.46 KIF14; BUB1B; CDCA8; TTK; 
KIF23; AURKB; AURKA; CDC20; 
TPX2; CENPF; RACGAP1; PRC1; 
KIF20A

GO Cellular 
Component

Mitotic spindle 
(GO: 0072686)

4.49E-18 2.37E-16 –2.3 91.68 CDC20; TPX2; CENPF; RACGAP1; 
ESPL1; CKAP2L; PRC1; TTK; 
KIF23; KIF20A; AURKB; AURKA

GO Cellular 
Component

Mitotic spindle 
midzone 
(GO: 1990023)

5.56E-18 2.37E-16 –2.06 81.88 TPX2; CENPE; RACGAP1; ESPL1; 
CKAP2L; KIF14; BUB1B; CDCA8; 
KIF23; AURKB; AURKA

GO Biological 
Process

Sister chromatid 
cohesion 
(GO: 0007062)

6.67E-18 1.35E-15 –2.76 109.02 CDC20; CENPE; CENPF; ERCC6L; 
CENPI; CDCA5; BUB1B; CDCA8; 
KIF2C; BUB1; AURKB; SKA1

GO Cellular 
Component

Spindle microtubule 
(GO: 0005876)

1.69E-17 5.42E-16 –2.32 89.73 KIF14; TTK; KIF23; AURKB; SKA1; 
AURKA; CDC20; TPX2; CENPE; 
CENPF; PRC1; KIF4A; KIF20A

GO Cellular 
Component

Spindle 
(GO: 0005819)

2.60E-16 6.67E-15 –2.45 88.06 TTK; KIF23; AURKB; SKA1; 
AURKA; CDC20; TPX2; CENPE; 
CENPF; PRC1; KIF2C; KIF20A; 
MCM2

GO Cellular 
Component

Mitotic spindle 
microtubule 
(GO: 1990498)

1.87E-15 3.99E-14 –2.1 71.08 TPX2; RACGAP1; ESPL1; CKAP2L; 
PRC1; KIF4A; KIF23; AURKB; 
SKA1; AURKA

GO Biological 
Process

Mitotic cell cycle 
(GO: 0000278)

9.03E-15 9.17E-13 –2.82 91.31 CDT1; TPX2; CENPE; CENPF; 
KIF18B; CDCA5; BUB1B; KIF2C; 
SKA1; AURKA

GO Cellular 
Component

Meiotic spindle 
(GO: 0072687)

1.20E-14 2.20E-13 –1.98 63.49 CDC20; TPX2; CENPF; PRC1; TTK; 
KIF23; KIF20A; AURKB; AURKA

GO Biological 
Process

Microtubule-based 
movement 
(GO: 0007018)

2.69E-14 1.82E-12 –2.46 76.95 CENPE; KIF18B; RACGAP1; KIFC1; 
KIF4A; KIF14; KIF2C; KIF23; 
KIF20A

GO Cellular 
Component

Spindle pole 
(GO: 0000922)

6.45E-14 1.03E-12 –2.19 66.53 CDC20; TPX2; CENPF; PRC1; TTK; 
KIF23; AUNIP; KIF20A; AURKB; 
AURKA

GO Cellular 
Component

Kinesin complex 
(GO: 0005871)

9.68E-14 1.13E-12 –1.72 51.51 CENPE; KIF18B; KIFC1; KIF4A; 
KIF14; KIF2C; KIF23; KIF20A

GO Cellular 
Component

Kinesin I complex 
(GO: 0016938)

9.68E-14 1.13E-12 –1.68 50.33 CENPE; KIF18B; KIFC1; KIF4A; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATP-dependent 
microtubule motor 
activity (GO: 1990939)

5.81E-13 1.22E-10 –1.91 53.71 CENPE; KIF18B; KIFC1; KIF4A; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

Microtubule motor 
activity (GO: 0003777)

2.84E-12 2.98E-10 –2.06 54.82 CENPE; KIF18B; KIFC1; KIF4A; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATP-dependent 
microtubule motor 
activity, plus-end-
directed| 
(GO: 0008574)

7.36E-11 5.15E-09 –2.59 60.38 CENPE; BLM; KIF18B; KIFC1; 
KIF4A; KIF14; KIF2C; KIF23; 
KIF20A

Table 3. GO function annotation of 49 hub genes.
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Table 3 continued. GO function annotation of 49 hub genes.

Series Name P value
Adjusted 
P value

Z score
Combined 

score
Genes

GO Biological 
Process

Mitotic metaphase 
plate congression 
(GO: 0007080)

4.10E-10 2.08E-08 –2.79 60.28 CENPE; KIFC1; CDCA5; KIF14; 
CDCA8; KIF2C

GO Molecular 
Function

Protein-DNA unloading 
ATPase activity 
(GO: 0140083)

1.11E-09 4.14E-08 –2.51 51.79 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATPase activity, 
uncoupled 
(GO: 0042624)

1.18E-09 4.14E-08 –2.56 52.69 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATP-dependent 
microtubule motor 
activity, minus-end-
directed 
(GO: 0008569)

1.33E-09 4.14E-08 –2.54 51.86 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATPase activity, 
coupled 
(GO: 0042623)

1.49E-09 4.14E-08 –2.61 53.06 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

ATPase activity 
(GO: 0016887)

1.58E-09 4.14E-08 –2.53 51.31 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Molecular 
Function

Intracellular ATPase-
gated chloride channel 
activity (GO: 0005260)

5.56E-09 1.30E-07 –2.63 50.06 CENPE; BLM; KIF18B; KIFC1; 
KIF14; KIF2C; KIF23; KIF20A

GO Biological 
Process

Mitotic spindle 
midzone assembly 
(GO: 0051256)

6.60E-09 2.68E-07 –2.1 39.62 RACGAP1; KIF4A; KIF23; AURKB

GO Biological 
Process 

Metaphase plate 
congression 
(GO: 0051310)

1.04E-08 3.51E-07 –2.44 44.81 CENPE; CENPF; KIF2C; FAM83D

GO Biological 
Process

Anaphase-promoting 
complex-dependent 
catabolic process 
(GO: 0031145)

4.13E-08 0.000001197 –2.51 42.73 CDC20; PTTG1; UBE2C; BUB1B; 
AURKB; AURKA

GO Biological 
Process

Chromosome 
segregation 
(GO: 0007059)

1.13E-07 0.000002705 –2.33 37.27 CDT1; CENPE; CENPF; HJURP; 
SKA1

GO Biological 
Process

Spindle organization 
(GO: 0007051)

1.20E-07 0.000002705 –2.13 33.93 TTK; AUNIP; AURKB; AURKA

GO Biological 
Process

Protein ubiquitination 
involved in ubiquitin-
dependent protein 
catabolic process 
(GO: 0042787)

5.14E-07 0.00001043 –2.89 41.83 CDC20; PTTG1; UBE2C; BUB1B; 
AURKB; AURKA

GO Molecular 
Function

Microtubule plus-end 
binding (GO: 0051010)

7.81E-07 1.64E-05 –2.32 32.66 RACGAP1; KIF14; KIF2C; KIF23; 
FAM83D; SKA1
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Hub gene mutation analysis

The independent data set GSE29044 from the GEO database 
was used for mutation analysis (Figure 5). All 49 hub genes 
were shown to be upregulated in the mutation analysis, sug-
gesting that our hub genes are scientific and persuasive, and 
Supplementary Figure 6 shows that 19 of 49 hub genes were 
significantly upregulated.

Discussion

Breast cancer is an epithelial malignant tumor of ductal lobules 
at the end of the mammary gland. It is the most common can-
cer among women and has a poor prognosis, causing a large 
number of deaths worldwide every year. The research activity 
on breast cancer is in direct proportion to its harm to human 
beings, but quantity does not mean quality; the pathogene-
sis of breast cancer has not been fully elucidated, and the ge-
netic standard of breast cancer staging is not perfect. Although 
some studies have used the WGCNA method to explore mo-
lecular markers related to the pathogenesis, diagnosis, treat-
ment, and prognosis of breast cancer, the present study may 
contribute to the establishment of a more complete set of mo-
lecular markers for pathological staging of breast cancer. This 
may lead to better treatment regimens for different patients 
and better prognostic estimates.

In our study, we used 367 samples without stage IV to con-
struct the co-expression network. After dynamic tree shearing, 
we identified 18 modules, among which the brown module 
showed the strongest correlation with pathological staging. 
The Z summery score and medianRank indicated that the brown 
module has good stability. Therefore, the brown module as a 
candidate module continues to identify candidate biomarkers. 
Finally, we identified the 49 hub genes that are candidate 

Name P value
Adjusted P 

value
Z score Combined score Genes

Cell cycle 6.34E-10 1.01E-08 –5.14 108.9 CDC20; PTTG1; ESPL1; BUB1B; TTK; 
MCM6; BUB1; MCM2

Oocyte meiosis 0.00001346 0.0001077 –27.81 311.96 CDC20; PTTG1; ESPL1; BUB1; AURKA

DNA replication 0.00009322 0.0004972 –49.47 459.08 RFC4; MCM6; MCM2

Fanconi anemia 
pathway

0.0003139 0.001256 –42.68 344.27 FANCI; BLM; RAD51

Human T-cell leukemia 
virus 1 infection

0.002015 0.006448 –19.4 120.41 CDC20; PTTG1; ESPL1; BUB1B

Homologous 
recombination

0.004537 0.0121 –49.65 267.88 BLM; RAD51

Table 4. KEGG enrichment analysis of 49 hub genes.

biomarkers for breast cancer pathological stage, and 21 hub 
genes that were not inquired about in Junior Doc. The PPI chart 
of 49 hub genes showed the ideal degree of connectivity, and 
it could be intuitively seen that the hub genes were interacting 
with each other. Both survival analysis and mutation analysis 
yielded satisfactory results: high expression of 49 hub genes 
was closely related to the poor prognosis of patients, and all 
49 hub genes were shown to be upregulated in the mutation 
analysis. Moreover, to better illustrate how hub genes works, 
our study also carried out GO functional annotation and KEGG 
enrichment analysis for 49 hub genes. GO functional annota-
tion of hub genes were suggested to focus on sister chromatid 
cohesion, mitotic cell cycle, spindle midzone, and microtubule 
motor activity. Similarly, hub genes identified by KEGG were 
enriched in the cell cycle and DNA replication. These hub path-
ways are basically all involved in cell division. The sister chro-
matid cohesion pathway gene members are CDC20, CENPE, 
CENPF, ERCC6L, CENPI, BUB1B, CDCA8, KIF2C, BUB1, AURKB, 
and SKA1. The sister chromatid cohesion pathway is a hub of 
mitotic chromosomes separation; this process is mediated by 
the cohesive element protein complexes. It has been reported 
in colorectal cancer [16], bladder cancer [17], head and neck 
squamous cell carcinoma [18], and other cancers. Previous 
studies on breast cancer found that sister chromatid cohe-
sion can inhibit breast cancer cells and induce their apopto-
sis and autophagy [19], and the survival rate of breast cancer 
patients with defective sister chromatid cohesion expression 
is lower than those with higher sister chromatid cohesion ex-
pression [20]. In addition, studies have shown that cancer cells 
that recognize mutations in sister chromatid cohesion may sug-
gest new therapeutic opportunities [21]. Cell cycle refers to the 
time needed for one cell to divide one time, and its members 
have CDC20, PTTG1, ESPL1, BUB1B, TTK, MCM6, BUB1, and 
MCM2. Many studies have shown that the stagnation of the 
cell cycle is a target for the treatment of breast cancer [22].
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In terms of individual hub genes, KIF4A, MCM10, and TPX2 were 
also listed as the hub genes associated with poor prognosis of 
breast cancer in other studies that also used the WGCNA meth-
od to identify the pathological process of breast cancer [23]. 
In another study looking at biomarkers of prognosis in inva-
sive breast cancer [24], only MELK in the 6 hub genes was the 
same as our hub gene, suggesting that our study could be 
complementary. A study using grade 1, 2, and 3 differentially 
expressed genes of cancer to construct a hierarchical specific 
molecular interaction network indicated that KIF2C and UBE2C 
are potential biomarkers for breast cancer diagnosis and prog-
nosis [25]. The present study offers more new insights than the 

hub genes provided by the latest research on genetic markers 
for breast cancer [26]. Most of the hub genes associated with 
breast cancer are well understood. AURKA and AURKB also are 
leading predictors of poor prognosis [27]. AURKA has the high-
est degree of connectivity in the PPI network. Our research on 
this gene is relatively mature, and it has been reported in many 
studies that this gene is closely related to breast cancer. AURKA 
inhibitors have long been important drugs in the clinical treat-
ment of breast cancer. The latest research shows that AURKA 
inhibitors combined with other inhibitors provide a new ap-
proach for the treatment of breast cancer [28]. BUB1B causes 
higher chromosomal instability in breast cancer cells [29], and 
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Figure 4. �Survival curves for patients in different groups. Red lines represent high expression of hub genes, while blue lines represent 
low expression of hub genes.
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BUB1 is associated with cancer stem cells [30]. CDT1, CDC20 
CENPE CENPF, and CENPI expression in breast cancer cells are 
on the increase, and are significantly associated with shorter 
survival [31,32]. KIF14, KIF20A, KIF2C, KIF4A, and KIFC1 belong-
ing to the kinesin family and have been proven to be poten-
tial biomarkers of breast cancer prognosis [33,34], but there 
have been few studies on KIF18B and KIF23. HJURP is a his-
tone chaperone, a prognostic factor for disease-free survival 
and overall survival in breast cancer patients, and a predic-
tive marker for radiotherapy sensitivity [35]. Among the hub 
genes in the MCM series, MCM2 and MCM10 have been ex-
tensively studied in the pathological process of breast cancer, 

but MCM6 has received relatively little attention. However, 
poor prognosis due to overexpression of MCM6 has been re-
ported in lung cancer [36]. Additionally, the abnormal expres-
sion of TPX2 has basically become a universal biomarker for 
poor prognosis of cancer, which has been reported in gastric 
cancer, non-small cell lung cancer, liver cancer, and other can-
cers [37,38]. CASC5, also known as KNL1, is an important gene 
involved in chromosome separation and is expressed in various 
cancer cells. Inhibition of this gene expression can induce cell 
cycle arrest and inhibit cell proliferation and migration. KNL1 
and BUB1 have similar effects and both function by activat-
ing the kinetochore-bound Mad1-Mad2 [39]. However, CASC5 
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Figure 5. �Mutation analysis of 49 genes was based on independent data set GSE29044.
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has not been adequately investigated in relation to breast can-
cer, nor has BUB1. The protein encoded by the CKAP2L gene 
plays an important role in neuroprogenitor cell division, and 
mutations in this gene are associated with spindle tissue de-
fects [40]. CKAP2L is reported to be the main cause of Filippi 
syndrome [40]. There have been few studies on the relation-
ship between CKAP2L and cancer, and few studies have been 
reported so far: the deletion of this gene is associated with 
oral squamous cell carcinoma, and the latest study shows that 
the upregulated expression of this gene in lung adenocarci-
noma may be closely correlated with the poor prognosis of pa-
tients. However, the exact role of CKAP2L in cancer progression, 
metastasis, and drug resistance remains unclear. In particular, 
research on the relationship between CKAP2L and breast can-
cer is scant. In addition, understanding of the molecular ba-
sis of CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, 
CDCA5, and MCM6 in breast cancer is poor, so in order to bet-
ter reveal the staging of breast cancer markers, it is necessary 
to study the hub genes. Our understanding of certain genes is 
still incomplete, and our co-expression networks might provide 
new clues to the complex regulation of these different mole-
cules. However, compared with other tumor databases with 
more tumor database samples, the data set samples that this 
study used are relatively small; there may be bias, and many 

related studies have been published. Furthermore, although it 
found that some new genes may be related to the pathologi-
cal process of breast cancer, these new genes may not pro-
vide accurate information about the actual biological charac-
teristics of the tumor.

Conclusions

We established a co-expression network to identify the hub 
genes related to the pathological staging of breast cancer, iden-
tifying 49 hub genes that were associated with the pathologic 
stage of breast cancer, 19 of which were significantly upreg-
ulated in breast cancer. Our results may provide new insights 
into biomarkers for breast cancer, but more research is need-
ed to validate these findings
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Supplementary Figure 1. �Analysis of network topology for various soft-theholding powers. The left panel showed the scale-free fit 
index, signed R2 (y-axis) and the soft threshold power (x-axis).
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Supplementary Figure 2. �Clustering dendrogram of genes and modules identfied by weighted gene co-expression network analysis 
based on a dissimilarity measure (1-TOM).
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in brown module.
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Supplementary Figure 4. �The protein-protein network of the hub genes in brown module. Within the network, node sizes and color 
depth are proportional to their connectivity.
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