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During the 1920s, the botanist W. H. Lang set out to collect and investigate

some very unpromising fossils of uncertain affinity, which predated the

known geological record of life on land. His discoveries led to a landmark

publication in 1937, ‘On the plant-remains from the Downtonian of England

and Wales’, in which he revealed a diversity of small fossil organisms of

great simplicity that shed light on the nature of the earliest known land

plants. These and subsequent discoveries have taken on new relevance as

botanists seek to understand the plant genome and the early evolution of

fundamental organ systems. Also, our developing knowledge of the compo-

sition of early land-based ecosystems and the interactions among their

various components is contributing to our understanding of how life on

land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm

is one of early life on land dominated by microbes, small bryophyte-like

organisms and lichens. Collectively called cryptogamic covers, these are

comparable with those that dominate certain ecosystems today. This com-

mentary was written to celebrate the 350th anniversary of the journal

Philosophical Transactions of the Royal Society.
1. Introduction
Plants are of fundamental importance to life on land, so developing an under-

standing of their origins and early evolution has been a quest for generations

of botanists. Once the domain of morphology and palaeontology, recent pro-

gress in comparative genomics and molecular developmental biology brings

new tools to our understanding of relationships among species and the devel-

opment of their organs and tissues. At the same time, a growing understanding

of the composition of early terrestrial ecosystems and the interactions among

various components (e.g. plants, fungi, arthropods) is shedding light on how

the evolution of life on land affected key Earth Systems (e.g. carbon cycle).

Advances in these areas are driving a resurgence of interest in the earliest fos-

silized remains of land living organisms, whose study was initiated by

W. H. Lang and published in 1937 (On the plant-remains of the Downtonian

of England and Wales) [1].

Knowledge of modern organisms is essential to interpreting fossils, but pre-

conceptions can also be a hindrance. Lang’s paper followed pioneering earlier

works on slightly younger rock sequences from Europe and Canada (figure 1)

[2,3]. Here the fossil record revealed that prior to the origins of forest ecosystems

early plants differed in notable ways from those of later floras and especially from

modern species. For example, many lacked such characteristic organs as leaves

and roots, making them difficult to recognize as plants and as a consequence

potentially attributable to a wide range of other groups, including marine

algae. They were also small—generally less than a metre in height—and their
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Figure 1. Stratigraphic occurrences of fossil plants mentioned in text. Ages in millions of years are taken from the International Chronographic Chart of the Inter-
national Commission on Stratigraphy, 2012. All fossils mentioned are earliest occurrences (*), except for Psilophyton and Prototaxites, which indicate the age of the
first specimens described by Dawson. Coloured block represents the time interval in Lang’s paper: note that his ‘Downtonian0 encompasses the Pridoli Series (Grey
Downtonian) and most of the Lochkovian Stage (Red Downtonian).
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simple bifurcating stems bore novel spore-producing organs.

Questions regarding the land living status of these fossils

were answered beyond doubt with the discovery of specimens

exquisitely preserved in silicates in the Rhynie Chert (Scotland)

[4]. The presence of such structures as epidermis with stomata

and a primitive vascular system together with the environ-

mental context confirmed that despite the complete absence

of certain categories of organ these were plants that lived on

land. Drawing on this emerging body of new data and

interpretation, Lang took these investigations significantly

further. Geologists were unearthing organic remains in still

older rocks, and these mostly defied classification in any

known group of organisms. They were very challenging to

interpret, because they were very small, highly fragmentary,

and they varied greatly in shape and texture. Yet, they were

highly abundant in certain types of sediment. Lang set out to

collect and investigate this unpromising material, employing

microscopy and techniques that had recently been developed

to extract organics from sedimentary rocks. Cast to one side

by previous generations of geologists, Lang showed that

these apparently nondescript organic remains were a goldmine

of data on early land ecosystems.
One of its referees, A. C. Seward FRS, the leading palaeobo-

tanist of his generation, wrote ‘This paper is exceptional in its

botanical and geological importance; in it are described the

remains of the oldest known British flora and considering the

unpromising nature of the material, the information obtained

is amazing.0 Indeed, it was a model of its time in that in addition

to exhaustive anatomical investigations of the plant fossils, he

meticulously recorded the geological strata in which they were

preserved and, using the nature of the rock record combined

with information from animal fossils, he reconstructed deposi-

tional environments and established that the plants together

with less easily categorized fossils derived from the land. It

should be emphasized that all of the fossils had been transported

and buried in either shallow, near shore marine sequences

(Upper Silurian) or terrestrial sediments deposited by river

systems (Lower Devonian) [5].

2. Lang’s achievements
(a) Early vascular plants
The most enduring of Lang’s achievements was his discovery

and characterization of the plant he named Cooksonia. Fossils
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Figure 2. New light micrographs of material illustrated by Lang [1]. Original number and figure numbers in brackets. (a) Cooksonia pertoni. Lectotype. Přı́dolı́. V58011.
(124 Z b; Plate 8, fig. 8). Coalified material has been removed, possibly using cellulose acetate, for further analysis. Scale bar, 2 mm. (b) Counterpart of (a). V58010.
Black patches possibly of Nematothallus. Scale bar, 2 mm. (c) Cooksonia hemisphaerica. Lochkovian. V58022. (186; Plate 9, fig. 33). Scale bar, 2 mm.
(d ) C. hemisphaerica sporangium recovered using cellulose acetate. V54592. (1062; Plate 9, fig. 34). Scale bar, 1 mm. (e) Spore recovered from a sporangium of
C. pertoni. V54995. (1105: Plate 8, fig. 11). Scale bar, 10 mm. ( f ) Tracheids recovered using cellulose acetate from a sterile axis, thought by Lang to belong to
C. hemisphaerica. Lochkovian. V55040. (1150; Plate 9, fig. 36). Scale bar, 50 mm. (g) Banded tubes on cellulose acetate sheet. Přı́dolı́. (962; Plate 11, fig. 60).
Scale bar, 50 mm. (h) Nematothallus ‘cuticle0 on a cellulose acetate sheet. Přı́dolı́. V54697. Scale bar, 50 mm. (i) Typical wefts of tubes assigned to Nematothallus.
V54851. (Not figured, but cf. plate 11). Scale bar, 160 mm. ( j ) Dyad in elongate cylindrical spore mass. Přı́dolı́. V54654. (764; Plate 13, fig. 109). Granular material
probably represents condensed cell contents. Scale bar, 20 mm.
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attributable to this genus have slender bifurcating systems,

measuring from about 1 cm to no more than 6 cm in length

(figure 2a–c), that completely lack leaves of any kind. Each

is composed of several parallel-sided axes that terminate

in distinctive ellipsoidal structures (figure 2b). Remarkably,

Lang was able to prove that these were spore-bearing

organs (sporangia) by extracting preserved spores, which

measured between 25 mm and 38 mm in diameter. Techni-

cally difficult at the time, this was achieved with the

application of transparent cellulose acetate, to which the

spores adhered, enabling them to be removed from the spor-

angia and examined using light microscopy. Lang showed

that the spores were smooth-walled, but that each bore a dis-

tinctive trilete (Y) mark (figure 2e), indicating that they were

produced by meiosis. Based on the evidence of these frag-

mentary remains Lang named his new plant Cooksonia
pertoni and concluded that it was undoubtedly land dwelling.

Further clarification of its affinities required crucial evidence

of the plant’s tissue systems, but because the fossils were

preserved as thin coaly films, little of the original cellular

structure remained. Several of the earliest sites (Late Silurian

Period) yielded associated fragments of axis that showed

the faint outlines of elongate cortical cells coupled with a dis-

tinctive central strand of thicker carbonaceous material

hinting at the presence of vascular tissues. A second species,

C. hemisphaerica (figure 2c,d), was described from a slightly
younger site (Early Devonian Period). Here, Lang found

numerous axial fragments which he considered ‘with practi-

cal certainty0 belong to C. hemisphaerica. One such possessed a

central strand composed of the degraded remains of what he

interpreted were tracheids with annular thickenings (figure

2f ). Lang pronounced this crucial evidence as ‘the most

ancient piece of vascular tissue as yet demonstrated in pos-

ition in a fossil plant in Britain0. Thus, by inference, he

concluded that both species of Cooksonia were related to the

vascular plants, a group that today includes among others

ferns, conifers and flowering plants. Lang’s discovery and

meticulous observations revealed a diversity of small fossil

plants of great simplicity. Cooksonia has since become an

iconic fossil thought to demonstrate the archetypal body

plan of primitive vascular plants.
(b) Spores
In addition to the individual spores that Lang recovered from

the sporangia of Cooksonia, he also discovered within the

same sediments isolated clusters or masses of spores of vary-

ing shapes and sizes. Most clusters were circular or oval,

measuring 0.5–1.2 mm. One elongate specimen, measuring

4.5 mm in length and approximately 1 mm in width, con-

tained hundreds of spores. Lang surmised that these were

also derived from land plants, but that the enclosing tissue
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systems had decomposed whereas the spores, being more

robust, had survived. The shapes of the spore masses thus

reflected the shapes of the original plant’s spore-bearing

organs. Intriguingly, one elongate mass contained highly

unusual spores each with two hemispherical cells separated

by a transverse wall, which Lang described as bicellular

(figure 2j ). This contrasts with the normal condition in land

plants, in which spores develop in tetrads following meiotic

cell division. Lang considered this ‘unique among pre-

Carboniferous spores with which I am acquainted0 and enter-

tained the possibility that they demonstrated the first stage of

germination. These spores are now known to be dispersed as

permanently fused dyads, and they are an abundant element

of the microscopic organics extractable from sediments of the

Late Ordovician through to the Early Devonian.
Soc.B
370:20140343
(c) Nematothallus
Arguably, the most challenging and controversial of Lang’s

discoveries was the organism that he named Nematothallus
pseudovasculosa, which was abundant at many of his sites

taking the form of dark ‘incrustations’ (figure 2a,b). Lang

showed that these were composed of wefts of tubes covered

by a resilient film of ‘cuticle0 with a pseudocellular patterning

(figure 2h). The tubes were highly distinctive and of two size

classes: narrow tubes (ca 2.5 mm) and wide tubes (12–40 mm;

figure 2i). They bifurcated occasionally. On the internal wall

of the wider tubes there was evidence of narrow annular

bands (figure 2g). Reconstructing the three-dimensional

organization in such fossils is difficult, but from consistent

associations, too frequent to be coincidental, Lang considered

the ‘plant0 to be thalloid with the wefts of fine tubes sand-

wiched between the uppermost pseudocellular cuticle and

more deeply seated wefts of larger tubes. On decay these

layers would have separated, thus accounting for their fre-

quent recovery as isolated elements from the rock matrix.

Lang also deduced that Nematothallus reproduced by means

of spores, again based on the consistent association of tubes

and spores of variable shape and surface ornament. Having

worked out the general structure of Nematothallus, Lang was

then faced with the challenge of understanding the affinities

of an organism whose tubular structure defied comparison

with plants, or as he put it: ‘makes comparison with all plants

of typical cellular structure open to serious criticism0.

Among the remains collected by Lang, there was another

obscure but highly distinctive fossil that had earlier been

described by Dawson [2] based on Canadian material, and

which was widely encountered in Late Silurian and Early

Devonian sediments. Named Prototaxites, it consisted of

axes that ranged enormously in size from a few millimetres

to a staggering 1 m in diameter and 8 m in length [6]. Like

Nematothallus, it was constructed from profusely branched

tubes of various sizes. The affinities of Prototaxites were vig-

orously debated, but starting with Carruthers [7] there was

a growing consensus that its affinities lay with the algae,

and because of its great size and tissue complexity, probably

with the brown algae. An alternative view, overlooked by

Lang, was the suggestion by Church [8] that Prototaxites
was a giant fungus, a hypothesis recently resurrected by

Hueber [6]. Because of similarities in their underlying struc-

ture (i.e. tissues comprising profusely branched tubes) and

their frequent close association in sediments, Lang explored

the possibility of a physical relationship between the two—
could Nematothallus be the laminate appendages of the

‘trunks’ of Prototaxites? He decided to unite the two genera in

a new ‘class’, the Nematophytales. Lang was convinced that

Nematothallus lived on land as evidenced by its spores and

cuticle. Having reviewed most of the published opinions, he

concluded that nematophytes composed a unique grouping

of land plants being neither algae nor vascular plants, although

in possession of some characteristics of both groups. Despite

major uncertainties surrounding its affinities and its functional

biology, Lang himself thought of his work on Nematothallus as

being ‘most important to our botanical knowledge’.
3. Advances
(a) Cooksonia today
Since the original discovery by Lang in 1937 research has

focused on developing a better understanding of the diversity

of plants attributable to Cooksonia and in particular the nature

of their internal tissue systems to provide a clearer taxonomic

concept [9], and an understanding of its functional biology

[10] and relationship to living species [11]. Intensive re-collect-

ing at a number of Lang’s localities has unearthed a far more

diverse assemblage of Cooksonia-like plants. Most variation

centres on the form of the sporangia and the spores. Preserved

stem anatomy is rare, but lingering doubts as to the vascular

status of the genus were settled with the discovery of remark-

able new fossils of C. pertoni preserved in charcoal (figure 3a,b).

These were recovered from sediments using acid extraction

methods. The three-dimensional structure of the plant is faith-

fully preserved, including cellular level details of tracheids and

stomata (figure 3a–e) [10]. Furthermore, intensive collecting

through an extended stratigraphic interval (i.e. Lang’s

Downtonian ¼ Upper Silurian (Přı́dolı́) through Lower Devo-

nain (Lochkovian); figure 1) demonstrated that whereas

external form is highly conserved, there are recognizable

changes at the cellular level. For example, C. pertoni produced

different kinds of spores in different geological intervals [22].

The spores themselves were structurally similar (i.e. equat-

orially thickened) but either smooth-walled or differently

ornamented (figure 3f– j). Such cryptic evolution in plants

with simple morphology might also encompass changes in

other anatomical features, particularly those relating to the

vascular system (e.g. tracheids) and the epidermis (e.g. sto-

mata). Recent research has therefore greatly expanded our

knowledge of the morphology and diversity of plants attribu-

table to Cooksonia, confirming and extending Lang’s original

concept so that C. pertoni is now one of the best known of the

earliest stem-group vascular plants. Nevertheless, frustrat-

ingly, newly discovered types preserved in charcoal are

highly fragmentary and frequently they are represented only

as unique specimens.

(b) Palaeophysiological approaches
Our growing understanding of the nature of Cooksonia has

stimulated thinking about the origin and evolution of key

land plant characteristics, and how such small plants could

have functioned. One area of interest has been the extent to

which early plants were capable of maintaining an internally

hydrated environment under water stress (homoiohydry) as

opposed to having the capacity to tolerate significant desicca-

tion (poikilohydry). Raven addressed this question by taking
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Figure 3. All scanning electron micrographs except where stated. (a) Cooksonia pertoni subsp. apiculispora. Lochkovian. North Brown Clee Hill, Shropshire. Scale bar,
500 mm. First published in [10, fig. 1a]. Museum number NMW94.60G.17. (b) C. pertoni subsp. apiculispora Lochkovian. North Brown Clee Hill, Shropshire. Scale bar,
500 mm. First published in [12, plate III-1]. Museum number NMW94.60G.14. (c) Proximal (extreme right) and distal surfaces of spores of Aneurospora newportensis,
isolated from sporangium in (a). Scale bar, 20 mm. From [10, fig. 1d]. (d ) Stoma from subtending stem in (a). Scale bar, 20 mm. From [10, fig. 1b]. (e) Cast of
tracheid from stem in (a); grooves indicate position of annular thickenings. From [10, fig. 2a]. ( f ) – ( j) Spores present in subspecies of C. pertoni. ( f ) Proximal surface
of Ambitisporites sp. (subsp. pertoni), Upper Silurian. Scale bar, 10 mm. First published in [13, fig. 3.1b]. V.62776. (g,h) Proximal and distal surfaces of Synorisporites
verrucatus (subsp. synorispora), Upper Silurian. Scale bar, 10 mm. First published in [14; plate 1, figs 3, 4]. NMW93.143G.1. (i,j) Proximal and distal surfaces of
Synorisporites sp. (subsp. reticulispora), Lochkovian. Scale bar, 10 mm. First published in [15, plate VI, 3, 18]. NMW2012.29G.20 and 19. (k) Light micrograph of a
tubular structure (?hypha/banded tube) with internal spiral thickenings isolated from late Wenlock (Silurian), Rumney, Cardiff. Scale bar, 10 mm. First published in
[16, fig. 23]. MPK 6028. (l ) Fractured end of banded tube, Ludlow (Upper Silurian), S. Wales. Scale bar, 5 mm. First published in [17, fig. 68]. NMW77.34G.33c. (m)
Fusitheca fanningiae containing permanent laevigate dyads with thin envelope. Lochkovian, Shropshire. Scale bar, 500 mm. First published in [18, fig. 54].
NMW97.42G.4. (n) Light micrograph of Velatitetras rugulata, a permanent tetrad enclosed in a ‘rucked’ envelope, isolated from Wenlock rock, Shropshire. Unpub-
lished – courtesy of Neil Burgess. Scale bar, 10 mm. (o) Tetrahedraletes medinensis, a permanent tetrad, Ordovician, Shropshire. Scale bar, 13 mm. First published in
[19, fig. 5A]. ( p) Light micrograph of Artemopyra brevicosta, a permanent dyad, Wenlock, Shropshire. Scale bar, 10 mm. First published in [20; plate 1, fig. 1]. (q)
Dyadospora murusdensa, a permanent dyad, Ordovician, Shropshire. Scale bar, 10 mm. First published in [19; plate 2, fig. 11]. (r,s) Fragment of Nematothallus
williamii, Lochkovian, Shropshire. First published in [21, fig. 1A,B]. Museum number NMW2013.39G.1. (r) Note three-layered thallus. Scale bar, 200 mm. (s) Mag-
nification of (r) showing the surface patterning typical of the Nematothallus ‘cuticle’ and larger hyphae aligned perpendicular to the surface. Arrows indicate
positions of lateral branches or areas in contact with a postulated photobiont. Scale bar, 100 mm. (t) Gametophytes and fertile sporophytes of Funaria hygrometrica.
Note bifurcating seta in sporophyte on extreme left. (Courtesy of Jill Harrison, Yoan Coudart and Alison Reed, Cambridge University.)
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an ecophysiological approach to characterizing water trans-

port and gas exchange processes in living vascular plants

(homoiohydric) and bryophytes (poikilohydric) [23], examin-

ing interactions between the demands of photosynthesis and

water delivery as plants grew in stature. Results were used to

appraise the anatomy and chemical innovations of early land

plants starting with Cooksonia. Key elements of this analysis

included the structure and position of water-conducting

cells (tracheids), the synthesis of lignin (wood) and especially

the function of stomata, intercellular spaces, and the cuticle

system. Raven initially favoured the earlier evolution of

internal conducting tissues as a key innovation in the origin

of homoiohydry [23,24]. (i.e. tracheids must have evolved

before stomata). However, later he saw ecophysiological

advantages to ‘stomata first’ in very small sporophytes [25],

a conclusion supported by subsequent phylogenetic analyses

(see below and figure 4) and the order in which these features

appear in the fossil record [27]. The small size of some cook-

sonias potentially restricts their ability to develop diverse

tissues systems with specialized functions. Noting that

Raven’s analyses had concentrated on adaptations relating

to transport processes in axes at the wider end of the range
distribution (more than 1 mm diameter), Boyce [28] looked

at the nature and functions of tissue systems in narrower

axes and concluded that those involved in support (i.e. per-

ipheral strengthening tissues) and water-conduction would

have occupied the bulk of the plant body. In smaller species

of Cooksonia, therefore, there would have been little room for

photosynthetic tissues. In addition, Cooksonia had few sto-

mata. Thus, Boyce concluded that smaller species were

probably not homoiohydric and also not photosynthetically

competent. As in modern bryophytes, they must have been

physiologically dependent on a gametophyte, but compelling

fossil evidence has yet to be found.

The challenge of interpreting the functional biology of

Cooksonia raises questions about the function and molecular

regulation of basic organs and tissue systems in plants. It

has been assumed that stomata and cuticle had similar func-

tions and controls in bryophytes, vascular plants and early

fossils such as Cooksonia. Recently, the role played by the

phytohormone abscisic acid (ABA) in stomatal physiology

has been questioned, challenging conventional views. The

stomata of Lycopodium and Pteridium were shown to lack a

pore closure response to ABA [29]. Similarly, stomata in
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hornworts and Sphagnum do not respond significantly to

ABA, desiccation and darkness, and there is no potassium

flux between guard cells and epidermal cells [30]. By contrast,

in the moss Physcomitrella and in the lycopod Selaginella sto-

matal responses to ABA appear to be similar to those in the

angiosperm Arabidopsis [31,32]. The issue of when active sto-

matal control in plants evolved is therefore controversial and

the subject of active research.

Unlike in the vascular plants, the stomata of some horn-

worts and mosses are known to open but then never close.

Stomata in these plants may therefore have had rather a

different function, perhaps aiding the desiccation of the spor-

angium prior to spore release [30]. In C. pertoni stomata might

have played a similar role or perhaps they functioned in

creating a transpiration stream for mineral nutrition of the

sporangium [27]. There is also a functional dependency

between stomata and cuticle. Some moss sporophytes share

similarities in cuticle ultrastructure with vascular plants,

whereas their gametophytes have thinner less well-developed

cuticles [33,34]. This is most probably a consequence of the

absence of stomata in the gametophyte, meaning that gas-

eous diffusion must take place through the cuticle, limiting

its development. Thus, the function of stomata in early

fossil land plants and in living bryophytes is very different

to that in modern flowering plants.

Genomics is also beginning to provide interesting insights

into the evolution of the stomata, cuticle and vascular systems.

It has been shown that a homologue of the ABA regulatory

protein kinase (OST1) present in Physcomitrella can rescue an

Arabidopsis mutant lacking OST1 activity, and transcriptome

analyses of the moss sporophyte suggest a deeply conserved

mechanism of stomatal control [31]. Similarly, knockout

mutants of moss ABCG transporter Pp-ABCG7, which has a

putative orthologue in Arabidopsis involved in cuticle precursor

trafficking, are severely deficient in cuticular wax [34]. PpVNS

proteins have been shown to regulate the same gene families

in Physcomitrella and Arabidopsis, supporting the hypothesis of

a fundamentally similar genetic basis for the development of

water-conducting tissues and supporting tissues in both [35].

So, although the physiological roles played by stomata and to

a lesser extent cuticle and water-conducting cells are likely to

vary across land plants, certain aspects of their development

are deeply conserved.

(c) The phylogeny of early land plants: the bryophyte
connection

The curious bicellular spores discovered in spore masses by

Lang are now known to belong to a class of organics called

cryptospores. This encompasses spores dispersed in perma-

nently fused groups of two (i.e. dyads; figure 3p,q) or four

(i.e. obligate tetrads; figure 3n,o) and their derivatives. Cryp-

tospores are now known to be abundant and cosmopolitan as

dispersed forms in rocks of the Ordovician through Devonian

Periods [36,37]. The nature and affinities of the plants that

produced the cryptospores are still contentious, but know-

ledge of these is essential to understanding the evolution of

early land floras [38]. Progress has come through the com-

parative analysis of spore morphology and ultrastructure

[39], the recovery of spore masses from more ancient rocks

[40] and especially through the discovery of cryptospores in
situ [41]. The leading hypothesis aligns cryptospores with

bryophytes. Initially, this was based on parallels between
early fossil obligate tetrads and similarly configured spores

known to occur in a few modern liverworts (e.g. Riccia,

Sphaerocarpos, Cryptothallus). Studies of cell wall ultrastruc-

ture (e.g. configuration of wall lamellae) show additional

similarities lending support to this hypothesis [39,40,42,43].

Various forms of cryptospores have also been documented

within fragments of the source plants (cryptophytes) that

are exceptionally well-preserved in charcoal in Silurian and

Lower Devonian sediments [5]. So, we now know that

these were minute land plants that resembled the stalk and

capsule of the bryophyte sporophyte in general shape and

size, but importantly they also differed in some key features,

including bifurcation of the stalk (figure 3m) and in their

method of spore development and dispersal. Cryptospore

morphology and dispersal implies a diversity of meiotic cell

division in early land plants that is no longer seen in their

living descendants [5].

Much remains unknown about early fossil cryptophytes,

and because their remains are so fragmentary they have not

yet been included in formal phylogenetic analyses. Modern

phylogenetic research conclusively demonstrates that land

plants are monophyletic [44–46]. The weight of evidence

further indicates that bryophytes are paraphyletic to the vas-

cular plants, and that liverworts are sister group to all other

land plants (figure 4). However, relations among these

basal clades are still uncertain, and various other topologies

are plausible, including bryophyte monophyly [46,47]. Phylo-

genetic analyses group the better known species of Cooksonia
with the vascular plants rather than the bryophytes (figure 4)

[9,11]. These studies also indicate that Cooksonia, as originally

conceived, is not monophyletic. Species are related in

various ways in the stem-groups of the vascular plant and

Lycophytina clades. The developing picture is one of crypto-

phytes representing an extinct pool of diversity from which

both modern bryophytes and vascular plants emerged

(figure 4) [5].

A second issue revealed by including fossil in phyloge-

netic analyses is a pattern of representational bias in the

geological record greatly favouring the larger and more

robust vascular plants over bryophytes and bryophyte-like

organisms [11,48]. This bias is less evident in the fossil

record of dispersed spores, which tend to have similar disper-

sal properties and preservational characteristics across

groups. A third issue relates to timetrees (i.e. calibrated mol-

ecular phylogenies) and estimates for the time of origin and

initial diversification of land plants. Timetrees all indicate a

lengthier geological history than the fossil evidence, but the

degree to which they do so ranges from marginal to substan-

tial [49–51]. The discrepancies among various lines of fossil

evidence and timetrees are at least in part related to method-

ological issues to do with tree calibration. It is probable,

however, that these discrepancies also reflect real natural

phenomena including significant changes in the nature of the

rock record during the Lower Palaeozoic that were operating

at a global scale [52].

(d) The branching sporophyte and nature
of gametophyte

One of the key innovations in plant evolution was the capa-

city for iterative bifurcation of the sporophyte, which laid the

foundation for the development of large complex plants with

multiple sporangia (polysporangiophytes) and specialized
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organ systems (e.g. stems, roots, leaves) [53–55]. Vascular plants

are polysporangiate whereas bryophytes are not, and Cooksonia
represents one of the earliest and most rudimentary stages in

the evolution of this growth form. Understanding how the

polysporangiophyte state first evolved and how it subsequently

developed are questions that can be addressed through critical

examination of the fossil record and through the methods of

evolutionary developmental biology ([56], reviewed in [57,58]).

Recently, the evolutionary developmental approach has been

greatly enhanced though the establishment of moss model

systems [59] and through the sequencing of the genome of

Physcomitrella patens [60], enabling a comparative genomics

approach spanning most of the land plant tree of life [26,61,62].

One emerging area of research focuses on the evolution of

indeterminate growth in the spore-bearing part of the plant

life cycle. The bryophyte sporophyte is not normally indeter-

minate, but a capacity for bifurcation in the seta has been

known for some time from rare teratological specimens of

both liverworts and mosses (figure 3t). These are intriguing

because they resemble the simple bifurcating sporophyte

of Lang’s Cooksonia. This nascent form of indeterminate

growth has been induced in various ways in P. patens.

Double sporangia were observed in P. patens following dis-

ruption of homologues of Arabidopsis thaliana TEL and LFY
loci [63,64]. TEL encodes a putative RNA-binding protein

that plays a crucial role in regulation of post-transcriptional

gene expression. PpLFY encodes a transcription factor re-

quired for the first division of the zygote. Double sporangia

were also observed following the application of auxin trans-

port inhibitors [65]. Furthermore, varying the expression of

the PpCLF gene in the gametophyte results in the apogamous

development of bifurcating sporophyte-like structures [66].

PpCLF encodes part of the highly conserved Polycomb

group (PcG) complex, which is involved in the epigenetic

control of gene expression profiles in plants and animals.

A key role for PcG in regulating the differentiation of

meristematic cells in gametophyte development has also

been confirmed through deletion of a PpFIE [67]. The

disruption of various regulatory mechanisms in Physcomi-
trella is beginning to shed light on the origins of the

polysporangiophyte state, as embodied in simple early fossils

like Cooksonia.
(e) Non-vascular plants/cryptogamic covers
Today, cryptogamic covers (i.e. communities of cyanobacteria,

algae, fungi, lichens, bryophytes) occur on many ground and

plant surfaces, where they are responsible for about 7% of

the net primary productivity of terrestrial ecosystems [68].

There is a growing body of data indicating that comparable

communities dominated the earliest terrestrial ecosystems.

Mid-Palaeozoic rock sequences contain many enigmatic fossils

that hint at a greater diversity of organisms accompanying

and preceding the vascular plant flora. In addition to spores,

assemblages frequently contain small fragments of tissue (phy-

todebris [69]) that resemble the cuticles and complexes of tubes

which Lang had assigned to Nematothallus. Diverse affinities

have been suggested [70]. Recently discovered fossils preserved

in charcoal found at sites in the Welsh Borderland are beginning

to provide a more complete picture of the Nematothallus organ-

ism (figure 3r,s; [21]). The thallus was stratified with a

superficial, usually uniseriate cortex. This confirms Lang’s pre-

diction about the underlying structure and the cuticle of
Nematothallus. The cortex overlaid a palisade zone of parallel

tubes with occasional septae and a basal zone of wefts of smal-

ler, randomly interwoven and infrequently branched tubes.

This general structure suggests an affinity with lichenized

fungi, the tubes being interpreted as fungal hyphae. However,

a photobiont has not been observed. A broadly similar type of

organization, but lacking the palisade tissue, was observed in

two putative lichens from the same locality [71]. Here, there

is evidence of a photobiont, with bacterial colonies on the

upper surface, and actinobacterial filaments in the medulla.

Using material from Lang’s fossil collections, Strother [72]

calculated that thalloid incrustations of this type accounted

for 10–50% coverage of a bedding plane, whereas axial fossils

represent approximately 1%. Lichens of nematophyte affi-

nity were probably therefore an important element of early

terrestrial vegetation.

Not all coalified thalloid compressions were derived from

nematophytes, and most are difficult to interpret because

little cellular structure remains. Some have been interpret-

ed as mats of cyanobacteria, whereas others were probably

composed of consortia of eukaryotes [73,74]. Stable carbon iso-

tope values (d13Corg) support a terrestrial origin for much of the

fossil-derived carbon in thalloid compression fossils extending

back into the Late Ordovician, hinting also at a liverwort affinity

[75]. Thus, there is a growing body of evidence for a pre-vascu-

lar plant-dominated vegetation, including cyanobacteria, algae,

fungi, cryptophytes and lichens on land during the Silurian

and Ordovician Periods, comparable with the cryptogamic

covers that dominate certain ecosystems today [68].
4. Next steps
The genus Cooksonia has now been recorded from numerous

sites in Europe and the Americas (New York State, Brazil), yet

the Welsh Borderland remains the most extensively studied

region, yielding important new information on the biology

and diversity of these early plants. The charcoal-preserved fos-

sils are unique to this region, and they provide unparalleled

insights into tissue systems at the cellular level. The research

tool of choice has been the scanning electron microscope,

which enables the analysis of cell structure but is limited in its

capacity to build a complete three-dimensional model of the

organism. X-ray synchrotron microtomography (SRXTM)

provides a new and very promising alternative. This non-

destructive technique has been applied to imaging the organs

and tissue systems in fossil plants, yielding full three-

dimensional models [76]. SRXTM has been used to image

minute charcoalified seeds and flowers from the Cretaceous

Period [77,78], which resemble Cooksonia in their preservation,

size fraction and in their rarity. SRXTM, therefore, has the

potential to yield complete reconstructions of the soft tissue sys-

tems of Cooksonia, shedding further light on the functional

morphology of the earliest land plant.

Furthering our understanding of the cryptophytes (i.e.

plants that produced the cryptospores that characterize Ordo-

vician through Devonian rocks) and associated organisms

requires both the identification of appropriate rock sequences

in the field and the application of new methods. New data

from Gondwana would be of great interest as there are very

few early records from this continent [79]. The extraction

and description of mesofossils (millimetre scale fossils that

fall into the size range between spores and macroscopic
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compressions) using acid maceration techniques and in situ
imaging will form an important part of the approach [5].

Evolving the capacity to maintain an internally hydrated

environment under water stress (homoiohydry) was of fun-

damental importance in the colonization of the land. The

evolution of homoiohydry involved the acquisition of a

suite of features including a cutinized epidermis, stomata,

gas-filled intercellular spaces (air-spaces) and vascular

tissue [80]. Modern bryophytes possess some of these fea-

tures, and their functions are now known to differ in some

important respects from the better studied vascular plants

[30]. Also, there are important differences in the chemistry

of secondary compounds that X-ray spectroscopy may well

distinguish. Unravelling the evolution of homoiohydry

requires a better understanding in bryophytes of the nature

and roles of lignin-related polyphenolics, cuticle chemistry

and structure, and the function of the stomatal apparatus in

relation to their distributions and the absence of intercellular

spaces and water-conducting tissues.

The establishment of a moss model system and the

sequencing of the genome of P. patens now enable a compara-

tive genomics approach spanning most of the land plant tree

of life [59,60]. The disruption of various regulatory mechan-

isms is beginning to shed light on the origins of the

polysporangiophyte state [63–66], as embodied in simple

early fossils like Cooksonia. Likewise, genetic and transcrip-

tomic approaches promise to reveal mechanisms regulating

the land plant life cycle [81]. The extension of these

approaches to other key living groups, including hornworts,

liverworts and charophycean algae is a necessary step in

understanding the evolution of basic organs and tissue

systems in plants. Also, the emerging molecular developmen-

tal models need to account for the morphology and life-cycle

variants of extinct plants [82].

The phylogenetic tree of plants is the framework that

underpins evolutionary interpretations, but several important

relationships are still poorly resolved. The sister group of

land plants within living charophycean algae is unclear

(Charales/Zygnematales) [46,83,84]. This has implications

for understanding the likely suite of features that character-

ized the common ancestor of land plants. Similarly, the

relationships among the major clades of bryophytes and the

vascular plants are still problematic, with low support for

any one topology [46,47]. Whether bryophytes are
monophyletic or paraphyletic to the vascular plants has

important implications for our understanding of the evol-

ution of the land plant life cycle and the evolutionary

implications of early fossils.

Lang’s discoveries in the Welsh Borderland brought to

light hitherto unknown very small fossil plants and other

enigmatic fossilized remains that opened a window on to

the nature of early terrestrial ecosystems. Some of the novel

organisms he described proved to be related to plants,

whereas the affinities of others are still uncertain, but they

are likely to be quite diverse within the eukaryotic tree of

life. In modern terms, Lang’s discoveries showed that early

terrestrial ecosystems resembled modern soil crust or epilithic

microbial communities that were dominated by crypto-

gamic plants. The plants were small, could not be classified

comfortably in established families, and lacked many of

the features associated with modern species. The iconic

Cooksonia in particular has served as a starting point in think-

ing about the evolution of basic organs and tissue systems

(e.g. vascular system, stem, roots, leaves). Subsequent

research has clarified and extended this work. Evidence

from minute fossils provides the main source of information

on the composition and evolution of early terrestrial ecosys-

tems, and new techniques and analytical approaches are

helping to solve questions concerning the biology and affinities

of these organisms. Molecular phylogenetics now provides a

robust framework within which to appraise this evidence,

and molecular developmental biology a new approach to

understanding and explaining the evolution of plant form.

The broader impact of early land-based life on key Earth Sys-

tems (e.g. geochemical carbon cycle) is a developing area of

research [85–87].

Lang concluded his magnum opus with the statement

that his ‘present study and survey of the Downtonian flora

will, it may be hoped serve as a basis of such further

work0—and so it turned out to be, with much wider ramifica-

tions into areas undreamed of by this superlative botanist.
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