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Occludin regulation of blood–brain 
barrier and potential therapeutic target 
in ischemic stroke
Shuhua Yuan, Ke Jian Liu1, Zhifeng Qi

Abstract:
Occludin is a key structural component of the blood–brain barrier (BBB) that has recently become 
an important focus of research in BBB damages. Many studies have demonstrated that occludin 
could regulate the integrity and permeability of the BBB. The function of BBB depends on the level 
of occludin protein expression in brain endothelial cells. Moreover, occludin may serve as a potential 
biomarker for hemorrhage transformation after acute ischemic stroke. In this review, we summarize 
the role of occludin in BBB integrity and the regulatory mechanisms of occludin in the permeability of 
BBB after ischemic stroke. Multiple factors have been found to regulate occludin protein functions in 
maintaining BBB permeability, such as Matrix metalloproteinas‑mediated cleavage, phosphorylation, 
ubiquitination, and related inflammatory factors. In addition, various signaling pathways participate 
in regulating the occludin expression, including nuclear factor‑kappa B, mitogen‑activated protein 
kinase, protein kinase c, RhoK, and ERK1/2. Emerging therapeutic interventions for ischemic stroke 
targeting occludin are described, including normobaric hyperoxia, Chinese medicine, chemical drugs, 
genes, steroid hormones, small molecular peptides, and other therapies. Since occludin has been 
shown to play a critical role in regulating BBB integrity, further preclinical studies will help evaluate 
and validate occludin as a viable therapeutic target for ischemic stroke.
Keywords:
Blood‑brain barrier, ischemic stroke, occludin

Introduction

Ischemic stroke is characterized by 
the occlusion of the cerebral artery 

or arteries supplying the brain tissues, 
resulting in neuronal death within minutes 
in the corresponding brain regions.[1,2] 
Accumulating evidence support that 
blood‑brain barrier  (BBB) damage is an 
early event after ischemic stroke, leading 
to pathophysiological damages in the brain. 
BBB damage further results in progressive 
neuronal death and cerebral edema, even 
intracerebral hemorrhage transformation 
after ischemic stroke.[3] Therefore, preserving 
BBB integrity is of critical importance in 
designing treatments for ischemic stroke.

Occludin, as a member of tight junction 
proteins, is a key structural component of 
the BBB,[4] and occludin degradation can be 
seen in the course of ischemic stroke, leading 
to the disruption of BBB.[5‑8] In this review, 
we summarize the role of occludin in 
maintaining BBB integrity and the molecular 
mechanisms of occludin interruption, 
leading to alteration of the BBB permeability 
after ischemic stroke.

Blood–Brain Barrier and Tight 
Junctions

Many previous studies demonstrated that 
a physical barrier, which was subsequently 
identified as BBB, exists between the 
central nervous system and the peripheral 
circulation to prevent the toxic and harmful 
substances from invading brain tissue.[9,10] 
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BBB is mainly composed of brain endothelial cells, tight 
junctions, astrocyte end‑feet, pericytes, microglial cells 
around blood vessels, and basement membrane.[11] BBB 
prevents the brain from neurotoxins, neurotransmitters, 
and macromolecules, and passively transporting 
water‑soluble nutrients or metabolites and gases, 
maintaining the balance of the microenvironment in 
the brain.[12]

Compared to epithelial tight junctions, endothelial 
tight junctions in BBB are highly special in molecular 
structure with more restrictive paracellular diffusion 
barrier, lower transcytotic vesicles and more sensitive 
to the microenvironment.[13] Tight junctions between 
endothelial cells are made up of zonula occludens (ZO) 
and transmembrane proteins, such as occludin, claudins, 
junctional adhesion molecules, and tricellulin, linked to 
the cytoskeleton and cytoplasmic scaffold proteins.[14] 
The changes of the sealing proteins in conformation or 
modified adjusting have a direct effect on the state of tight 
junctions and further, affect the permeability of BBB.[15]

Recently, occludin has been found to play a critical role 
in BBB integrity. Many studies showed that occludin 
degradation or abnormal occludin could be found to 
increase BBB permeability in various central nervous 
system diseases,[16] especially in ischemic stroke, 
disturbing the stability and normal function of the 
brain. Therefore, it is essential to further understand the 
function and regulation mechanism of occludin.

The Structure of Occludin and Blood‑Brain 
Barrier

Furuse et  al. originally extracted the proteins from 
poultry tissues and identified it as an integral membrane 
protein in epithelial and endothelial cells.[17] Occludin is 
indispensable for barrier integrity in diverse endothelial 
cell models,[18] but some studies reported that other 
tight junctions in epithelial cells were able to maintain 
morphological integrity in occludin deficient models,[19] 
suggesting that occludin is prone to protecting barrier 
function rather than assembly in BBB.

The barrier function of occludin depends on its special 
structure domains. Occludin is a 65 kDa integral 
membrane protein with 502 amino‑acid residues, which 
includes two extracellular loops, one intracellular loop, 
and its carboxyl and amino‑terminals oriented toward 
the cytoplasm. The first extracellular loop  (ECL1) of 
occludin has a very high content of tyrosine and glycine 
residues (about 55aa). The tyrosine residues are involved 
in forming hydrophobic interactions and H‑bonds, 
while glycine residues provide flexibility. The second 
extracellular loop (ECL2, about 45aa) is rich in tyrosine 
residues and contains two cysteines to form disulfide 

bridges in the oxidizing environment, which is sensitive to 
hypoxia and occurs homo‑oligomerization.[20] Compared 
to ECL1, ECL2 serves as the main binding domain, which 
interacts with other tight junctions and regulates the 
function of other tight junctions. In addition, C‑terminal 
cytoplasmic of occludin (about 259aa) is rich in serine, 
threonine, and tyrosine residues and directly connects 
to ZO‑1 and actin cytoskeleton.[21] It contains the main 
binding sites for regulatory molecules, such as connexin 
26 or different kinases.[22] Both external loops as well 
as the transmembrane and the C‑terminal cytoplasmic 
domains of occludin, are important for the regulation of 
paracellular permeability between adjacent cells.

The Regulation of Occludin and Blood–
Brain Barrier Integrity

At present, multiple factors have been found to regulate 
occludin functions on BBB permeability,[23] such as matrix 
metalloproteinases  (MMPs)‑dependent degradation, 
phosphorylation, ubiquitination, and other cytokines.

Matrix metalloproteinase‑dependent occludin 
degradation
MMPs are secreted as zymogens and cleaved to be 
active. In vivo and in vitro evidence show that the levels 
of active MMP‑2 and MMP‑9, which are extremely low 
in normal brain tissue, mediate occludin degradation in 
pathological conditions.

BBB was damaged via vascular endothelial growth 
factor (VEGF)‑mediated MMP‑9 activation in a hypoxia 
mouse model, leading to the reduction of occludin 
expression, but there was no significant change in the 
expression of claudins and ZO‑1.[24] Besides, the activity 
of MMP‑9 could be suppressed by the inhibition of the 
nuclear factor‑kappa B (NF‑κB) pathway in the transient 
middle cerebral artery occlusion (tMCAO) mouse model, 
and the expression of occludin, JAM‑A and ZO‑1 proteins 
in brain tissue was elevated, which helps to protect BBB 
integrity.[25]

In addition, the expression of occludin significantly 
decreased by the MMP‑2/MMP‑9 activation in   brain 
microvascular endothelial cells  (BMECs) in an OGD/
R‑injury neurovascular unit model, which involved the 
mitogen‑activated protein kinase (MAPK) pathways.[26] 
Accumulating evidence shows that activation of MAPK 
signaling pathways contributes to BBB damage,[27] 
leading to MMP‑9 expression increase and reducing the 
level of occludin, ZO‑1, and claudin‑5 in BMECs.

Occludin Phosphorylation
Occludin phosphorylation has been identified as 
an important regulatory mechanism in regulating 
BBB integrity. Numerous studies showed that the 
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BBB permeability is related to the status of occludin 
phosphorylation at serine/threonine or tyrosine.[28‑31] 
Occludin has multiple phosphorylation sites, among 
which the Ser‑507, Thr‑382, Ser‑490, and Ser‑338 
are classical phosphorylation sites. The state of 
occludin phosphorylation has different effects on BBB 
permeability, depending on the phosphorylation types 
of occludin or diverse signaling pathways.

Some studies have described the regulation of 
occludin by protein kinase c  (PKC). An in vitro study 
in LLC‑PK1 cells showed that activation of PKC 
with 12‑O‑tetradecanoylophorbol‑13‑acetate  (tissue 
plasminogen activator [TPA], a PKC activator) reduced 
threonine phosphorylation of occludin protein, resulting 
in increased paracellular permeability.[32] However, 
TPA improved barrier function and upregulated 
the expression of occludin protein via activation of 
PKC.[33] Further, inhibition or knockdown of PKC 
induced dephosphorylation of occludin on threonine 
residues  (T403 and T404) in Caco‑2 and MDCK cell 
monolayers.[34] These studies indicated that PKC may 
have opposite effects on occludin protein regulation 
in the signaling pathway under different conditions.[35]

In addition, VEGF‑induced occludin phosphorylation 
increased BBB permeability,[36] while inhibition of 
VEGF‑induced PKC‑β activation reduced the barrier 
permeability by preventing occludin phosphorylation 
at Ser‑490.[37] Moreover, an in  vivo study reported 
that Ser‑490 was a special key site for regulating the 
interaction of occludin with other tight junction binding 
partners (e. g. ZO‑1) in VEGF‑treated retinal endothelial 
cells.[38]

Further, Walsh et al. reported that vascular endothelial 
cadherin could transmit physiological shear signals 
to occludin via the Tiam1/Rac1 signaling pathway in 
brain microvascular endothelial cells  (BMECs) model, 
resulting in Tyr‑occludin dephosphorylation and 
reduced BMECs permeability.[39] Moreover, another 
study demonstrated that cyclic strain  (5% strain, 
60 cycles/min, 24 h) induced the expression of occludin/
ZO‑1 proteins upregulation in endothelial cells, with 
the tyrosine phosphorylation of occludin reduced 
and the serine/threonine phosphorylation of ZO‑1 
increased.[40] Besides, there are many neurotransmitters 
involved in tyrosine phosphorylation of occludin. 
Glutamate increased tyrosine phosphorylation and 
decreased threonine phosphorylation of occludin 
in brain microvascular endothelial cells through 
N‑methyl‑D‑aspartate or alpha‑amino‑3‑hydroxy‑5‑ 
methylisoxazole‑4‑propionate/kainite receptors, 
resulting in disruption of the BBB.[41] Treatment of 
microvascular endothelial cells with protein phosphatase 
type 2A (PP2A) showed that PP2A dephosphorylated 

the tyrosine residue of occludin, leading to the 
reduction of occludin expression. Moreover, inhibiting 
the activity of PP2A maintained the BBB integrity 
via hyperphosphorylation of tyrosine residues of 
occluding.[42] When monolayer microvascular endothelial 
cells were exposed to septic insults, PP2A reduced serine 
and threonine phosphorylation of occludin, leading to 
increased monolayer permeability.

Occludin ubiquitination
Ubiquitin is a heat‑stable 76‑amino acid protein, which 
was found in eukaryotic cells and coupled to lysine 
residues in an ATP‑dependent manner as a monomer 
or polymer, guiding the protein to the proteasome 
degradation pathway.[43] Ubiquitination is an important 
mechanism for regulating the function of target 
proteins by modifying their intracellular transport and 
degradation within endothelial tight junctions.

Lui and Lee et al. reported that occludin degradation was 
associated with Itch and UBC‑4 (an ubiquitin‑conjugating 
enzyme), which was mediated by dibutyryl‑cAMP 
pathway, resulting in occludin ubiquitination to disrupt 
tight junctions in blood and testosterone barrier cells.[44] 
Furthermore, Nedd4‑2, a member of E3 ubiquitin ligase, 
was co‑immunoprecipitated with occludin through 
interacting on the conserved PY motif in the C‑terminal 
of occludin, suggesting that Nedd4‑2 ubiquitinated 
occludin and induced occludin degradation.[45] Moreover, 
silencing Nedd4‑2 upregulated the expression of 
occludin and reduced paracellular permeability 
in mpk‑CCDc14 cells. Recently, Murakami et  al. 
demonstrated that occludin ubiquitination regulates 
endothelial permeability in bovine retinal endothelial 
cell models via the VEGF‑mediated pathway.[46] It was 
shown that phosphorylation of occludin at Ser‑490 is 
necessary for its ubiquitination after VEGF treatment. 
Finally, occludin ubiquitination induces the endocytosis 
of related tight junction proteins (such as claudin‑5 and 
ZO‑1), which ultimately lead to the destruction of the 
BBB.[47]

The interaction with cytokines
Cytokines are involved in a multitude of molecular 
mechanisms in regulating occludin expression and 
mediating changes in BBB integrity.

Tumor necrosis factor‑α
Tumor necrosis factor‑α  (TNF‑α) is known to induce 
changes in endothelial cell morphology and permeability, 
but the mechanisms have not been extensively 
characterized.[48] Ni et al. demonstrated that TNF‑α induced 
upward‑band shift of occludin (phosphorylation) in the 
human cerebral endothelial cell line  (hCMEC/D3) by 
transient stimulation of p38MAPK and ERK1/2 pathway, 
increasing cerebral endothelial cells permeability and 



Yuan, et al.: Occludin and ischemic stroke

Brain Circulation - Volume 6, Issue 3, July‑September 2020	 155

leading to BBB disruption.[49] In renal endothelial cells, 
TNF‑α‑induced barrier dysfunction or the reduction of 
occludin expression is crucially dependent on the Rho/
MLCK signaling pathway.[50] TNF‑α also downregulated 
occludin expression by activating HIF‑1α/VEGF/
VEGFR‑2/ERK signaling pathway, which was inhibited 
by propofol.[51] In addition, platelet endothelial cell 
adhesion molecule‑1 (PECAM‑1) expression is involved 
in maintaining barrier function in endothelial cells. 
Combined treatment of TNF‑α and dengue virus 
caused decreased barrier function, altered distribution 
of PECAM‑1, and lower level of occludin protein in 
human endothelial cells.[52] Furthermore, NADPH in 
human astrocytes enhanced TNF‑α‑induced barrier 
dysfunction, accompanying with the activation of MMPs 
and reduction in occludin expression.[53] Moreover, 
decreasing NADPH activation by inhibiting TNF‑α 
improves the barrier function through upregulating 
the expression of occludin proteins.[54] These studies 
suggest that TNF‑α degrades occludin and promotes 
BBB damage by multiple signaling pathways.

Interleukin‑1β
As one of  the  pro‑ inf lammatory cytokines , 
interleukin‑1β (IL‑1 β) plays an important role in regulating 
the expression of occludin in inflammation.[55] Toshiaki 
Abe et al. found in cultured human retinal pigment 
epithelial cell line (ARPE‑19) that IL‑1 β downregulated 
the expression of occludin but upregulated claudin‑1, 
compared with the control medium,[56] suggesting 
that IL‑1 β induces the loss of occludin proteins. Some 
studies explored the mechanisms of interaction between 
IL‑1 β and occludin. The activation of ATP/P2 X 7R (a 
unique purinergic receptor) signaling pathway induced 
degradation of occludin, and ZO‑1 proteins were 
associated with the release of IL‑1 β and enhancement 
of the MMP‑9 activity in the human model of BBB 
in vitro.[57] Besides, the NF‑κB pathway is essential for 
IL‑1 β to induce the redistribution of occludin and ZO‑1 
proteins, resulting in BBB disruption in cultured human 
corneal epithelial cells.[58] This was consistent with a 
recent study that Mdivi‑1 (a selective dynamin‑related 
protein‑1 inhibitor) alleviated the brain edema after 
subarachnoid hemorrhage to inhibit NF‑κB dependent 
inflammation via suppressing occludin degradation 
and IL‑1 β release.[59] Further, IL‑1 β‑induced MMP‑9 
expression and activation in pericytes suppressed the 
expression of occludin proteins in the BBB model and 
led to increased BBB permeability, which was regulated 
by the NOTCH3/NF‑κB signaling pathway.[60] Inhibiting 
IL‑1 β and montelukast  (leukotriene receptor type  1 
antagonist) enhanced the expression of occludin and 
ZO‑1 proteins and protected against BBB disruption.[61,62] 
However, another study reported that IL‑1 β increased 
the expression of claudin‑1, but there was no significant 
change in the expression of occludin in cultured HaCaT 

keratinocytes. The different effects may be associated 
with the stage of skin healing, but the underlying 
mechanism is still not clear.[63]

Interferon‑γ
Interferon (IFN‑γ), secreted from activated T and natural 
killer cells, not only plays immunomodulatory roles 
in inflammation but also modifies endothelial barrier 
function.[64] Studies showed that IFN‑γ maintains BBB 
integrity by enhancing the expression of occludin and 
ZO‑1 in the experimental autoimmune encephalomyelitis 
mice model.[65] However, other studies reported that 
IFN‑γ has the opposite effect on BBB integrity.[66] For 
example, occludin expression significantly decreased 
after IFN‑γ treatment in human umbilical vein endothelial 
cell layers,[67] while occludin protein disassembly was 
observed when exposed to IFN‑γ in BBB transwell model 
in vitro.[68] In addition, the study demonstrated that the 
extent of BBB damage was related to the concentration 
of cytokines such as IFN‑γ in a dose‑dependent manner 
via JNK signaling pathways.[69] In summary, these studies 
showed that IFN‑γ regulates BBB function through 
interacting with occludin in diverse experimental 
models.

Hepatocyte growth factor
Hepatocyte growth factor  (HGF) is a multifunctional 
cytokine, including mitogenic, motogenic, morphogenic, 
angiogenic, and anti‑apoptotic activities in diverse 
types of cells,[70] which help alleviate ischemia‑induced 
injuries via anti‑apoptotic and angiogenic activities.[71,72] 
One study demonstrated that human recombinant 
HGF relieved the extent of BBB disruption in a 
microsphere‑induced cerebral embolism rat model, 
and mitigated the reduction of occludin expression.[73] 
However, there was an opposite finding that treatment 
of human microvascular endothelial cells with HGF 
decreased transendothelial cell resistance as well 
as occludin expression, and increased paracellular 
permeability.[74] In general, HGF plays its role in 
regulating the function of tight junctions by altering the 
phosphorylation state of occludin and it does not change 
the phosphorylation of ZO‑1.[75] These studies indicate 
that HGF can regulate the expression level of occludin, 
leading to changes in the function of tight junctions, but 
the mechanism of HGF in regulating phosphorylation 
of occludin is still unknown. Further investigations are 
needed to clarify the mechanism.

Occludin and Ischemic Stroke

Ischemic stroke is one of the most common diseases 
with high mortality and disability, which accounts for 
around three‑fourths of all strokes.[76] Many studies 
have demonstrated that disruption of BBB is an early 
event after ischemic stroke, which may develop into 



Yuan, et al.: Occludin and ischemic stroke

156	 Brain Circulation - Volume 6, Issue 3, July‑September 2020

hemorrhagic transformation at later time points 
following ischemia‑reperfusion.[77‑79] Occludin serves as 
one of the key structural tight junction proteins for BBB 
integrity. Animal and human studies have indicated 
that occludin degradation is frequently seen in ischemic 
stroke and contributes to BBB injury. [5‑8] Therefore, we 
focus our attention here on occludin degradation and 
regulation in ischemic stroke.

Occludin degradation into fragments by matrix 
metalloproteinases in ischemic stroke
Our previous studies demonstrated that occludin 
degradation and claudin‑5 redistribution is seen in 
isolated ischemic cerebral microvessels from MCAO 
rat models, causing the disruption of BBB integrity.[7] 
In other studies, increased MMP‑2/9 activation in the 
ischemic brain contributes to BBB disruption through 
enhanced occludin degradation.[5‑6,80] Further, Pan et al. 
demonstrated that the level of blood occludin fragments 
increases proportionately to the extent of BBB damage 
at the early stage of cerebral ischemia in an MCAO rat 
model,[81] and most importantly, the worst BBB damage 
occurs at 4.5‑h after stroke onset, coincident with the 
peak level of occludin fragments in the peripheral 
blood. These studies indicate that blood occludin may 
be a biomarker of BBB damage, thus could serve as a 
potential predictor of hemorrhagic transformation in 
ischemic stroke patients.[82] The level of serum occludin 
is detected by enzyme‑linked immunosorbent assay at 
present. However, this method could not distinguish the 
fragments of occludin from the full‑length proteins in 
the serum. Further studies are required for developing 
specific method to improve sensitivity and specificity.

Occludin regulation in ischemic stroke
Owing to BBB damages playing a pivotal role in ischemic 
stroke, there are many studies on occludin regulation 
to protect BBB in cerebral ischemic animals or patients.

Normobaric hyperoxia treatment
As tissue hypoxia is a critical event in the pathophysiology 
of ischemic stroke, supplement of oxygen to ischemic 
tissue has long been thought of as a logical stroke 
treatment strategy.[83] Treatment with normobaric 
hyperoxia  (NBO, 100% oxygen) increases ischemic 
tissue oxygenation by maintaining the penumbral 
PO2 level close to the pre‑ischemic level.[84] Early 
NBO treatment is neuroprotective via delaying the 
progression of ischemic brain tissue necrosis, which is 
equivalent to saving time and expanding the window of 
opportunity for reperfusion therapies.[85,86] Importantly, 
combination treatment of NBO and recombinant tPA 
in the MCAO rat model could lessen BBB disruption 
and reduce hemorrhagic transformation, compared 
with rats which underwent delayed tPA treatment at 5 
or 7 h postischemia.[87] These studies indicate that NBO 

treatment after ischemia stroke onset helps to rescue 
the ischemic penumbra and microvessels, and has a 
great potential for serving as a promising adjuvant 
therapy to extend time window of tPA thrombolysis or 
thrombectomy for ischemic stroke.[88]

Our previous studies also investigated the mechanisms 
of NBO on BBB protection. NBO treatment played a 
vital role in slowing the progression of BBB disruption 
via inhibiting the activity of MMPs and the consequent 
occludin degradation.[5] In addition, the study of Liu 
et  al. suggested that NBO treatment protects the BBB 
against ischemic damages by reducing MMP‑9 activity 
and enhancing the expression level of occludin proteins 
in microvessels, which was inhibited by gp91phox (also 
called Nox2) in an MCAO mouse model.[89] In addition to 
combined treatment with NBO and tPA, there was another 
report that NBO plus minocycline could effectively 
reduce the extent of ischemic brain injury and protect 
BBB due to inhibition of MMP‑2/9‑mediated occludin 
degradation and alleviation of caspase‑dependent and 
independent apoptotic pathways.[90] Further, Shi et  al. 
demonstrated that NBO could reduce the level of blood 
occludin in acute ischemic stroke patients, alleviate BBB 
permeability, and improve outcome of stroke patients 
with tPA thrombolysis.[91] These results indicate that 
NBO is very effective in reducing occludin degradation 
through inhibition of MMP‑2/9 activity or gp91phox (also 
called Nox2) in ischemic brain tissue and alleviating 
the extent of BBB damage in ischemic stroke, which 
makes NBO a promising auxiliary approach to expand 
the narrow time window of reperfusion therapies for 
ischemic stroke.[92] Our previous study has shown that 
NBO can be applied in ischemia/reperfusion injury 
patients, especially for tPA thrombolysis in ischemic 
stroke in the clinic.

Chinese medicines
A lot of traditional Chinese medicines have been reported 
to reduce the ischemic brain damages by regulating BBB 
permeability with various therapeutic mechanisms. In the 
oxygen‑glucose deprivation/recovery (OGD/R)‑injured 
neurovascular unit model, Zhao et al. demonstrated that 
cryptotanshinone inhibited MAPK signaling pathway to 
ameliorate neuron apoptosis and elevated the expression 
of occludin protein through down‑regulation of MMP‑9 
expression.[26] Liu et  al. demonstrated that green tea 
polyphenols promoted mRNA or protein expression 
of occludin after ischemia in the MCAO rat model 
by inhibiting PKCα activity to reduce BBB leakage.[93] 
The hairy root extract of Angelica gigas was proved 
to increase the expression of occludin in MCAO rats 
through activation of the PI3K/Akt pathway, leading 
to the alleviation of BBB disruption.[94] Considering the 
positive outcomes, it is likely that multiple signaling 
pathways are involved in Chinese medicines mediated 
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occludin regulation in ischemic stroke, including the 
MAPK signaling pathway, PKCα activity, and PI3K/
AKT signaling pathway. The effective and proven 
Chinese medicines could be considered as a therapeutic 
or preventative strategy for patients who have or are at 
high risk of suffering a stroke.

Repurposing of conventional chemical drugs
Recently, multitudes of evidence provide a new 
viewpoint for treating cerebral ischemic with 
conventional chemical drugs. For example, in addition 
to antispermatogenic function, adjudin had been 
shown that its anti‑neuroinflammation effect plays 
an important role in preventing cerebral reperfusion 
injury in the tMCAO mouse model by suppressing 
the NF‑κB pathway, inhibiting the elevated MMP‑9 
activity and increasing protein expression of occludin.[25] 
Moreover, the combination of NBO and minocycline (a 
broad‑spectrum tetracycline antibiotics) significantly 
inhibited MMP‑9 activity and occludin degradation 
in the rat MCAO model.[90] Furthermore, thalidomide, 
an old drug with anti‑inflammatory and anti‑cancer 
properties, downregulated the expression of TNF, IL‑1 
β, and MMP‑9 that preserves occludin and attenuates 
BBB disruption.[95] These results show that certain 
conventional chemical drugs can be repurposed for 
preserving BBB integrity through inhibiting the NF‑κB 
pathway, TNF, IL‑1 β, or MMP‑9 activity to increase 
occludin. However, further clinical studies are required 
to validate the effectiveness of these old drugs in treating 
stroke patients.

Small molecular peptides
Cystatin C, serves as a biomarker of renal function injury, 
widely exists in brain tissue, and the level of its expression 
increases in stroke. Yang et  al. demonstrated that 
overexpression of cystatin C possesses neuroprotective 
effect on maintaining BBB integrity by increasing the 
expression of caveolin‑1 and occludin after ischemic brain 
injury.[96] Although the treatment of cystatin C has rescued 
occludin by increasing caveolin‑1 expression, the specific 
mechanism by which cystatin C regulates occludin will 
require additional investigation. N‑acetylcysteine (NAC), 
a precursor of glutathione, contains free sulfhydryl of 
disulfide bonds and promotes synthesis of GSH. Due 
to its anti‑oxidant and anti‑inflammatory property, 
NAC is broadly applied to cardiovascular disease at 
present.[97] Wang et al. demonstrated that NAC in MCAO 
diabetic mice reduced occludin glycation and alleviated 
BBB permeability, showing cerebral protection by 
correcting the ratio of methylglyoxal/glutathione.[98] As 
an antioxidant, NAC offers a preventative approach to 
protect against the worsened stroke outcome in diabetics 
through reducing occludin glycation. Further clinical 
studies are still needed.

Steroid hormones
Vitamin D and glucocorticoid, as members of the 
steroid hormones family, bind to their receptors in 
the cytoplasm and nucleus, respectively, to trigger the 
strong biological effect. It was shown that exposure of 
neuronal cells to hypoxia/reoxyenation triggers a series 
of cascade reaction, including the increased formation 
of intracellular reactive oxygen species (ROS), increased 
activation of NF‑κB signaling pathways, leading to 
augmented expression of MMP‑9 that mediated BBB 
disruption through degradation of occludin, claudin‑5, 
and ZO‑1. Vitamin D treatment prevented BBB 
disruption by inhibiting ROS production and NF‑κB 
activation in a vitamin D receptor‑dependent manner.[99] 
However, another steroid hormone, the glucocorticoid 
stress hormone (GC), has the opposite effect. GC receptor 
signaling in endothelial cells can be activated under 
ischemic conditions, and GC reduced the expression 
level of occludin through binding to the GC receptor, 
contributing to worsening the ischemic infarct.[100] The 
role of steroid hormones acting on occludin has opposite 
views about regulating occludin expression through 
different signaling pathways, including inhibition of 
the NF‑κB pathway or activation of the GC receptor. 
However, the basic study should further explore the 
specific mechanisms.

Other therapies
In vitro and in  vivo evidence show that intravenous 
immunoglobulin could rescue ischemic neuronal 
cell by reducing leukocyte filtration and blocking 
BBB permeability, and importantly, it prevented 
the ischemia‑induced downregulation of tight 
junction protein occludin and claudin‑5.[101] This 
study demonstrated that immunoglobulin indeed 
can protect BBB by upregulating occludin, but the 
mechanisms are not clear. A recent study indicates that 
inhibition of miR‑210 with its complementary locked 
nucleic acid oligonucleotides (miR‑210‑LNA)‑mediated 
neuroprotection via preserving the expression of junction 
protein occludin in neonatal hypoxic‑ischemic brain 
injury.[102] This result is limited to the role of miR‑210 
in a hypoxic‑ischemic model. It is not clear whether 
miR‑210‑LNA treatment is effective in ischemic animal 
models, such as MCAO. Moreover, in an MCAO/R mice 
model, VEGF treatment aggravated BBB disruption 
by increasing LOC102640519 and HOXC13 through 
inhibition of ZO‑1, occludin, and claudin‑5,[103] which 
provides another therapeutic strategy for VEGF‑based 
treatment for stroke patients.

Ischemic preconditioning  (IP) has been shown to 
induce changes in tight junctions to protect against 
BBB breakdown after MCAO through activation 
ERK1/2.[104] In addition, the sphingosine kinase‑2 
contributes to protecting BBB integrity in hypoxic 
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preconditioning‑treated animals via generating S1P 
that participates in the maintenance of occludin at 
cytoskeletally linked cell junctions.[105] However, there 
have not enough clinical studies on IP alleviating BBB 
damage in ischemic stroke at present, and the role of 
IP in regulating occludin in clinic study needs to be 
done.

In addition, the emerging nanotechnology helps deliver 
beneficial drugs across the BBB. Some studies have 
reported that drugs loaded into the nanotechnology 
system could permeate through the BMECs.[106,107] The 
mechanism for this delivery is most likely dependent on 
LDLs receptor‑mediated endocytosis by the BMECs,[108] 
and may not influence the tight junctions of the brain 

endothelium.[109] Further studies on possible mechanisms 
will need to be explored in future.

Conclusions

In summary, occludin is a transmembrane protein 
of tight junctions that regulates the integrity and 
permeability of the BBB. Various factors have been found 
to regulate occludin expression, such as MMPs‑dependent 
degradation, phosphorylation, ubiquitination, and other 
cytokines. The mechanisms of regulating occludin 
protein in tight junctions involve many diverse signaling 
pathways  [Table  1], including NF‑κB, MAPK, PKC, 
RhoK, and ERK1/2. Further, the different sites of 
phosphorylation or biological environments may impact 

Table  1: Modification of occludin protein regulating TJs
Experimental model Effect on occludin Mechanism Reference
Hypoxia mice model Degradation Hypoxia-induced MMP-9 activation↑ [24]
tMCAO mice model Expression↑ MMP-9 activity ↓ by inhibition of NF-κB 

pathway
[25]

OGD/R-injury model Degradation MMP-2/9 activity↑ by activation of MAPK 
pathway

[26]

LLC-PK1 cells Thr-dephosphorylation Activation of PKC [32]
Caco-2 and MDCK cell monolayers Thr-404,Thr-403 dephosphorylation Inhibition of PKC [34]

Ser-490 Phosphorylation Activation of PKC-β [37]
BMECs Tyr-phosphorylation Shear signal activation of Tiam1/Racl 

signal pathway
[39]

BMECs Tyr-phosphorylation and Thr- 
dephosphorylation

Activation of NMDA or AMPA/KA 
receptors

[41]

Microvascular endothelial cells Tyr-dephosphorylation Activation of PP2A [42]
Sertoli cell Ubiquitination Dibutyryl-cAMP mediated the level of Itch 

and UBC4↑
[44]

Mpk-CCDc14 cells Ubiquitination Nedd4-2 mediated immunoprecipitated [45]
BRECs Expression↓ VEGF-induced occludin ubiquitination [46]
HCMEC/D3 cells TNF-α induced phosphorylation Stimulation of p38MAPK and ERK1/2 [49]
Renal endothelial cells TNF-α induced expression↓ Activation of Rho/MLCK pathway [50]
HCMEC/D3 cells TNF-α induced expression↓ Activation of Hif-1a/VEGF /VEGF-2/ERK [51]
Human endothelial cells TNF-α induced expression↓ PECM-1 redistribution [52]
HBMECs and HAs TNF-α induced expression↓ NADPH oxidase activity↑ [53]
RPE cells IL-1β induced Expression↓ Unknown [56]
HCMEC/D3 cells IL-1β induced expression↓ Activity of MMP-9 ↑ by activation of 

P2X7R
[57]

HCE cells IL-1β induced expression↓ Activation of NF-κB pathway [58]
In vitro BBB model IL-1β induced expression↓ Activation ofNOTCH/NF-κB pathway [60]
EAE mice model IFN-γ induced exipression↑ Unknown [65]
BALB/c mice model IFN-γ induced exipression↓ Unknown [66]
HUVEC layers IFN-γ induced exipression↓ Unknown [67]
BBB transwell model IFN-γ induced diassembled Unknown [68]
Cerebral embolism rats model HGF-induced expression↑ Unknown [73]
Human vascular endothelial cells HGF-induced expression↓ Unknown [74]
MMP: Matrix metalloproteinase, tMCAO: Transient middle cerebral artery occlusion, NF-κB: Nuclear factor κB, OGD/R: Oxygen-glucose deprivation/recovery, 
MAPK: Mitogen-activated protein kinase, PKC: Protein kinase C, LLC-PK1: The cell junctional complex in the pig kidney, Caco-2: Colorectal carcinoma, 
MDCK: Madin-Darby Canine Kidney, BREC: Bovine retinal endothelial cells, BMECs: Brain microvascular endothelial cells, NMDA: N-methyl-D-aspartate, 
AMPA/KA: Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate, PP2A: Protein phosphatase type 2A, mpk-CCDc14: Murine cortical collecting duct, 
HCMEC: Human cerebral microvascular endothelial cell, PECM-1: Platelet endothelial cell adhesion molecule-1, HBMECs: Human brain microvascular endothelial 
cells, NADPH: Nicotinamide adenine dinucleotide phosphate, ERK: Extracellular signal-regulated kinase, MLCK: Myosin light chain kinase, P2X7R: Ionotropic 
purinergic receptor, EAE: Experimental autoimmune encephalomyelitis, HUVEC: Human umbilical vein endothelial cell Layers, TJs: Tight junctions, RPE: Rential 
pigment epithelial, HCE: Human corneal epithelial, BBB: Brain blood barrier, HGF: Hepatocyte growth factor, UBC4: Ubiquitin-conjugating enzyme 4, VEGF: 
Vascular endothelial growth factor, Hif-1: Hypoxia-inducible facor-1, Tiam1/Raci: Tlymphoma invasion and metastasis inducing factor1/ras-related C3 botulinumtoxin 
substrate, TNFα: Tumor necrosis factor-α, IL-1β: Interleukin-1β, IFN-γ: Interferon-γ
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the expression level of occludin. Occludin degradation 
has been considered as a subsequent event driver 
of stroke, including brain edema and hemorrhagic 
transformation. Therefore, occludin might be a potential 
biomarker for early hemorrhagic transformation in 
ischemic stroke. There are also numerous ischemic 
stroke treatments targeting BBB via occludin, which 
are summarized in Table 2. Moreover, clinical evidence 
suggests that NBO is a promising approach to expand the 
time window of reperfusion therapies in ischemic stroke. 
Although occludin has been shown to play a critical role 
in regulating BBB integrity, more preclinical studies are 
required to elucidate the roles of occludin before it can be 
considered a viable therapeutic target for ischemic stroke.
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