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Abstract: A pressure-induced phase transition of Mg2Sr intermetallics from the low-pressure
C14-type phase to an orthorhombic phase (space group Cmcm, Z = 4) at a high pressure of 21.0 GPa
was firstly predicted using first-principles calculations combined with unbiased swarm structure
searching techniques. The phase transition was identified as a first-order nature with a volume drop of
4.7%, driven by the softening of elastic behavior at high pressure. Further phonon calculations indicate
that the newly predicted orthorhombic phase is dynamically stable at high pressure and ambient
pressure. The mechanical properties including the elastic anisotropy of this orthorhombic phase were
thus fully studied at ambient pressure. The elastic anisotropy behavior of this orthorhombic phase
was investigated by the distributions of elastic moduli. The evidence of the bonding nature of Mg–Sr
was also manifested by density of states (DOS) and electronic localization function (ELF) calculations.
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1. Introduction

The study of Mg intermetallics has been attracting much attention because of their important
applications in the automobile and aerospace industries [1,2]. Among the Mg-based intermetallics,
the Mg–RE (RE = Ca, Sr, and Ba) system’s intermetallic compounds have emerged as promising
candidate materials for transportation, aeronautical, and helicopters [3,4] and have thus generated
significant interest over the past few decades. The binary phase diagrams of Mg–Ca, Mg–Sr, and
Mg–Ba have been investigated for a long time, and different stable intermetallics have been found in
these systems [5–8]. Due to their importance, extensive studies have been undertaken of crystal
structures and lattice parameters [9–11], as well as thermodynamic properties [12,13] for these
Mg-based intermetallics. In the Mg–Sr system is a typical Laves phase Mg2Sr, the heat formation of
which was firstly measured by King and Kleppa [14] by means of tin solution calorimetry. In a recent
work, Aljarrah and Medraj [15] reoptimized the Mg–Sr system in the CALPHAD approach considering
all the available experimental data on the phase diagram and provided the crystallographic data,
heat formation, and lattice parameters of four intermetallic compounds (Mg2Sr, Mg38Sr9, Mg23Sr6,
and Mg17Sr2). The heat formation of Mg2Sr reported by Aljarrah and Medraj is in agreement with
that of Yang et al. [16], who also investigated the elastic property and density of state (DOS) of this
intermetallic phase.

More recently, the mechanical properties, electronic structures, as well as thermodynamic
properties of the Mg2Sr Laves phase under high pressure have been systematically investigated
using the first-principles calculations by Mao et al. [17]. These extremely important results are
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significant to extend our knowledge to materials performance under extremely severe environments
and will inevitably advance our understanding of high-pressure behaviors for other Mg intermetallics.
The pressure-induced phase transition sequence of compounds such as Mg2Si has been determined
with the aid of experimental and theoretical studies [18]. However, the peculiarity and the absence of
further characterized high-pressure phases and related fundamental mechanical properties prompted
our endeavor to investigate Mg2Sr intermetallics at a higher pressure. It is well known that
high-pressure research leads to the identification of novel behavior of solids and the exploration
of potential technological materials, since pressure can significantly alter the electronic bonding state
to modify the physical properties, to induce the structural phase transition, or both. In addition, from
the recent work for Mg2Sr [17], its elastic parameters exhibit a clear softening trend at an elevated
pressure, especially for single crystal elastic constant C44, signifying its structural instability at high
pressures. Therefore, we here performed extensive structure searches to explore the crystal structures
of Mg2Sr over a range of pressures (0–50 GPa), based on a global minimization of free-energy surfaces
merging ab initio total energy calculations via the particle swarm optimization technique [19]. Indeed,
the pressure-induced transition into an orthorhombic phase (Cmcm, Z = 4) for Mg2Sr at 21.0 GPa was
firstly predicted. First-principles calculations were then performed to investigate the crystal structures,
mechanical, and electronic properties for this novel orthorhombic phase.

2. Computational Methods

The high-pressure structure searches of Mg2Sr were performed by the recently developed Crystal
structure AnaLYsis by Particle Swarm Optimization (CALYPSO) package [19,20], which has perfectly
predicted the crystal structures of a diverse variety of materials [21–25]. In more detail, the variable-cell
structure predictions were executed at 0, 10, 25, and 50 GPa with systems containing 1–6 formula units
(f.u.) in the simulation cell. Structural relaxation, total energy, and electronic structure calculations were
mainly performed using the density functional theory with the Perdew–Burke–Ernzerhof generalized
gradient approximation [26,27], as implemented in the VASP code [28]. The projector augmented wave
(PAW) method [29] was used to describe the electron-ion interactions, with 3s2 and 4s24p65s2 treated
as valence electrons for Mg and Sr, respectively. A kinetic energy cutoff of 400 eV for the plane-wave
expansion and dense k-point with grid density of 2π × 0.03 Å−1 (Monkhorst–Pack scheme) [30] were
used in the Brillouin zone integration. The enthalpy and electronic band structure were calculated
using the tetrahedron method with Blöchl corrections. Finite displacement method [31], which is
based on first-principles calculations of total energy, Hellman–Feynman forces, and the dynamical
matrix as implemented in the PHONOPY package to calculate the phonon spectra. The supercell of
3 × 3 × 3 original cell containing 162 atoms was adopted in the phonon calculations for Mg2Sr. The
strain-stress method was applied to calculate the single crystal elastic constants, and the polycrystalline
bulk modulus and shear modulus were thus derived from the Voigt–Reuss–Hill averaging scheme [32].

3. Results and Discussion

Using the CALYPSO package, at pressures of 0 and 10 GPa, the experimental C14-type phase of
Mg2Sr with space group P63/mmc (Z = 4, see Figure 1a) was successfully reproduced from a global
structure search, validating our method adopted here. In Figure 1a, the C14-type phase contains twelve
atoms per unit cell with eight Mg atoms occupying the 2a and 6h positions and four Sr atoms occupying
the 4f positions. At ambient pressure, the optimized equilibrium structural parameters for C14-type
phase are a = 6.456 Å, c = 10.45 Å, and V0 = 377.236 Å3, which are all in good agreement with the
available experimental data (a = 6.484 Å, c = 10.451 Å, and V0 = 380.5 Å3) [33] and theoretical values [17].
In addition, the theoretical equations of states (EOS) of Mg2Sr studied here were determined by fitting
the total energies as a function of the volumes based on the Birch–Murnaghan EOS. The obtained bulk
modulus B0 and its pressure derivative B0

′ of Mg2Sr (25.946 GPa and 3.644) also agree well with the
previous theoretical values [17]. The success in the prediction of experimental C14-type phase gives us
confidence to further explore the high-pressure phases of Mg2Sr. For higher pressures at 25 and 50 GPa,
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a novel orthorhombic phase with Cmcm space group (Z = 4, hereafter denoted as HP, see Figure 1b)
was discovered for Mg2Sr as the most energetically stable. At 30 GPa, the optimized lattice parameters
of HP-Mg2Sr are a = 8.585 Å, b = 5.399 Å, and c = 4.754 Å, with Mg and Sr atom occupying the 8g
(0.329, 0.366, 0.25) and 4c (0, 0346, 0.25) positions, respectively. The projection of the orthorhombic
HP phase on the ac-plane is presented in Figure 1c, from which the HP phase possesses alternative
stacking of double Mg and single Sr layers along the a-direction. Each Mg ion is coordinated with five
Sr ions, and each Sr ion is coordinated with ten Mg ions. Physically, the phonon is a strict measure for
structural dynamic stability. We thus carefully checked the phonon frequency curves of HP-Mg2Sr
at 50 GPa (Figure 2a) and 0 GPa (Figure 2b). In Figure 2, there is no imaginary phonon frequency
in the entire Brillouin zone, i.e., the HP-Mg2Sr is dynamically stable at high and ambient pressures.
The lower frequencies of the phonon density of states are dominated by lattice dynamics of heavy Sr
atoms and higher frequencies by light Mg atoms.
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small balls denote Sr and Mg atoms, respectively.
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To determine the phase transition pressure point of Mg2Sr, the enthalpy differences curves of the
predicted HP phase relative to the C14-type phase are presented in Figure 3a. We optimized these
two structures at many more pressure points up to 50 GPa with certain pressure intervals. Figure 3a
confirms that the predicted HP phase becomes more stable than the experimental C14-type phase above
21.0 GPa, where the current experimental techniques are readily accessible. Meanwhile, as shown
in Figure 3b, one can see that the C14-type→ HP phase transition is first-order with a clear volume
contraction of 4.7%. Such an obvious volume reduction at the transition is easy to detect in a high
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pressure X-ray powder diffraction experiment. The pressure dependence of lattice constants for two
phases are also plotted in Figure 3c to complement further experiments. The pressure dependence of
elastic constants is a very important indicator of the mechanical stability of crystal. We first calculated
the single crystal elastic constants of C14-type phase at ambient pressure, as tabulated in Table 1
together with the theoretical results for comparisons. From Table 1, one can see that the calculated
elastic constants and the derived Hill elastic moduli of Mg2Sr are in excellent agreement with previous
theoretical results [16,17]. Furthermore, the mechanical stability for the hexagonal crystal under
isotropic pressure is provided in [34]. It requires the following conditions: C̃44 > 0, C̃11− |C̃12| > 0, and

C̃33(C̃11 + C̃12)− 2̃C13
2 > 0, where C̃αα = Cαα − P (α = 1, 3 and 4), C̃12 = C12 + P, and C̃13 = C13 + P

Thus, we performed calculations on the pressure dependence of elastic constants for the C14-type

phase. As shown in Figure 3d, the values of C̃33(C̃11 + C̃12)− 2̃C13
2 for C14-type phase are all positive

at the considered pressure range. However, one can see that the values of both C̃44 and C̃11 − |C̃12|
show a softening trend, and the C̃44 first drops to zero at about 26.6 GPa. These results suggest that the
C14-type phase is mechanically unstable when P > 26.6 GPa under high pressure. We thus conclude
that there must be a structural phase transition occurring in the pressures according to relations of the
mechanical stability under isotropic pressure, as suggested by Karki et al. [35] and Wang et al. [36].
These behaviors further confirmed the accuracy of the predicted phase transition pressure of Mg2Sr,
although the obtained transition pressure (26.6 GPa) is relative larger than that (21.0 GPa) obtained
from the enthalpy differences curves of Figure 3a.
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phase as a function of pressure; (b) The calculated volumes as a function of pressure for the P63/mmc
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2 under different

isotropic pressures.

Table 1. Calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s
modulus E (GPa), and Poisson’s ratio ν for Mg2Sr.

Mg2Sr Source C11 C22 C33 C44 C55 C66 C12 C13 C23 B G E ν

C14-type
Present 49.9 - 56.9 14.2 - - 17.4 10.2 - 25.8 16.6 41.0 0.235

Theory a 43.8 - 57.2 12.4 - - 19.8 10.6 - 25.2 13.8 36.1 0.360
Theory b 43.7 - 56.5 12.4 - - 20.1 11.9 - 25.4 13.7 34.8 0.230

HP Present 43.1 42.9 52.0 17.6 13.2 13.7 15.7 12.6 10.7 24.0 15.3 37.9 0.237
a Ref. [34]; b Ref. [17].
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Compared with the experimental C14-type phase, using the same method mentioned above, the
mechanical properties (including the elastic stability, incompressibility, rigidity, and elastic anisotropy)
of this predicted HP phase were fully studied at ambient pressure. The resulting single crystal elastic
constants and the derived Hill elastic moduli are listed in Table 1. The mechanical stability of the HP
phase satisfies the Born–Huang criterion for an orthorhombic crystal [C11 > 0, C44 > 0, C55 > 0, C66 > 0,
C11C22 > C12

2, C11C22C33 + 2C12C13C23 − C11C23
2 − C22C13

2 − C33C12
2 > 0] [37], thus confirming that

this HP phase is mechanically stable at ambient conditions. Moreover, the obtained elastic constants
possess the trend of C11 ≈ C22 < C33, indicating that the bonding between nearest neighbors along the
{001} planes is stronger than those along the {100} and {010} planes. Both the calculated elastic moduli
of HP and C14-type phases are lower than those experimental data of pure Mg metal (B = 36.9 GPa,
G = 19.4 GPa, and E = 49.5 GPa) [38]. Traditionally, and for ease of manipulation, the elastic properties of
an anisotropic material were replaced by those of an “equivalent” isotropic material. Essentially, all the
known crystals are elastically anisotropic, and the anisotropy of elasticity is an important implication
in engineering science and crystal physics, such as microcracks, anisotropic plastic deformation, and
elastic durability. To intuitively illustrate the elastic anisotropy of this predicted orthorhombic phase,
the directional dependence of elastic moduli were systematically investigated. The calculations of
elastic moduli crystal orientation dependence conducted here are similar to our previous studies [39].
Executing the appropriate coordinate system transformations for the compliances allows for the
determination of the variation of bulk modulus B, Young’s modulus E, and shear modulus G with
crystallographic direction, [uvw], for a given crystallographic plane, (hkl), containing these directions,
(i.e., B[uvw], E[uvw], and G(hkl)[uvw]) are obtained. For orthorhombic HP-Mg2Sr, the bulk modulus B and
Young’s modulus E can be expressed as

B−1 = (s11 + s12 + s13)α
2 + (s12 + s22 + s23)β

2 + (s13 + s23 + s33)γ
2, (1)

E−1 = s11α4 + s22β
4 + s33γ

4 + 2s12α2β2 + 2s23β
2γ2 + 2s13α2γ2 + s44β

2γ2 + s55α2γ2 + s66α2β2, (2)

where α, β, and γ are the direction cosines of [uvw] direction, and s11, s22, etc. are elastic compliance
constants given in [40]. The shear modulus G on the (hkl) shear plane with shear stress applied along
[uvw] direction is given by

G−1 = 4s11α1
2α2

2 + 4s22β1
2β2

2 + 4s33γ1
2γ2

2 + 8s12α1α2β1β2 + 8s23β1β2γ1γ2

+8s13α1α2γ1γ2 + s44(β1γ2 + β2γ1)
2 + s55(α1γ2 + α2γ1)

2 + s66(α1β2 + α2β1)
2,

(3)

where (α1, β1, γ1) and (α2, β2, γ2) are the direction cosines of the [uvw] and [HKL] directions
in the coordinate systems, where the [HKL] denotes the vector normal to the (hkl) shear plane.
Three-dimensional (3D) surface representations showing the variation of the bulk modulus and
Young’s modulus are plotted in Figure 4a,c, and three crystal plane projections of the directional
dependence on the bulk modulus and Young’s modulus are given in Figure 4b,d for comparison.
From Figure 4a,c, one can see that this HP phase exhibits a weak elastic anisotropy, for its bulk
modulus and Young’s modulus distributions with the nonspherical nature. Compared with the
in-plane anisotropy in ab and bc planes, a relatively clear in-plane elastic anisotropy in the ac plane
is revealed for both the bulk modulus (Bmax/Bmin = 1.177) and Young’s modulus (Emax/Emin = 1.392).
Like the elastic constants, Young’s modulus E measures the resistance against uniaxial tension, and
shear modulus G describes the resistance of a material to shape change. In order to gain a better
understanding of the origin of the changes in Young’s modulus and the shear modulus along different
directions for further engineering applications, we next determined the detail orientation dependence
on Young’s modulus and the shear modulus when the tensile axis is within specific planes according
to the Equations (2) and (3). In Figure 5a, the ordering of Young’s modulus as a function of the
principal crystal tensile [uvw] for HP-Mg2Sr is E[001] > E[011] > E[110] > E[010] > E[111] ≈ E[120] > E[100]
> E[101]. Compared with the other three crystal planes, the change of Young’s modulus in the (001)
plane for the quadrant of directions [uvw] between [100] (θ = 0◦) and [010] (θ = 90◦) is flat, which
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accords well with the smallest anisotropy within ab planes (see Figure 4d). Similarly, the orientation
dependence of the shear modulus on the stress directions within the four main crystal planes were
also conducted, as plotted in Figure 5b. For the (100) shear plane with the shear stress direction
rotated from [100] to [010], the direction cosines are α1 = cosθ, β1 = sinθ, γ1 = 0, α2 = β2 = 0, and
γ2 = 1, where θ is the angle between the [100] and shear stress direction. From Equation (3), one can
deduce the shear modulus expressed as G−1 = s55 + (s44 − s55) sin2θ. For HP-Mg2Sr, s44 < s55, the shear
modulus is the largest along [010] and is the smallest along [001]. Among these four main crystal
planes, it should be noted that the shear moduli within the (100) shear plane are the smallest with
its minimum (G(100)[001] = 13.2 GPa) and maximum (G(100)[010] = 13.7 GPa) values, and are almost
independent of any shear directions. Thus, the (100) shear plane may be viewed as the cleavage plane
of HP-Mg2Sr.
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Mg–s and Mg–p states as well as Sr–d states. Meanwhile, the electrons of Mg–p have a significant
hybridization with Sr–d states from about −3 eV up to EF, signifying a strong Mg–Sr covalent bonding
nature. Apart from the covalent bonding feature of the HP phase, the ionic bonding nature of Mg and
Sr atoms is also revealed by the electronic localization function (ELF) calculations at 0 GPa. For the
selected 3D ELF distributions (ELF = 0.5) in Figure 7a, the high electron localization locates at the Mg
sites rather than the Sr sites, reflecting the ionicity of the Mg–Sr bond. Meanwhile, one can note that
the contours of the ELF domains on the (001) plane show nearly identical Mg–Sr ionic features at about
ELF = 0.4 (see Figure 7b).
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4. Conclusions

To conclude, the pressure-induced phase transition of Mg2Sr was predicted using a particle
swarm optimization algorithm in crystal structure prediction. An orthorhombic high-pressure phase
(space group Cmcm, Z = 4) of Mg2Sr was uncovered at 21.0 GPa. The transition of low-pressure
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C14-type phase to this orthorhombic HP phase was characterized as a first-order nature, driven by the
softening of elastic behavior at high pressure. The elastic anisotropy of the predicted orthorhombic
phase was demonstrated by the orientational distributions of the elastic moduli. The shear modulus is
found to be the smallest within the (100) crystal plane, which may be viewed as its cleavage plane.
Detailed analyses of the DOS and ELF reveal that the chemical bonding in the orthorhombic phase is a
complex mixture of covalent and ionic characters.
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