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ABSTRACT: Toluene gas is the most toxic and affects the respiratory system of humans,
and thereby, its detection at lower levels is an important task. Herein, we report a room
temperature-operatable indium oxide-based chemiresistive gas sensor, which detects 50
ppm toluene vapors. Nanocrystalline indium oxide (In2O3) films were sprayed on a pre-
cleaned glass substrate using a cost-effective spray pyrolysis method at different substrate
temperatures in the range of 350−500 °C. The X-ray diffraction studies confirmed that the
sprayed thin films, which were deposited at different substrate temperatures, exhibit a cubic
structure. The preferred orientation was aligned along the (222) orientation. Average
crystallite size calculation based on the Scherrer formula indicates that the crystallite size
increases with the enhancement of substrate temperature. FESEM analysis showed that the
indium oxide thin films possess uniform grain distribution, which persists over the entire
substrate. As the substrate temperature is increased, a partial agglomeration in the film
morphology was observed. The deposited film’s nanostructured nature was confirmed by
transmission electron microscopy, and the polycrystalline nature was confirmed from the
selected area electron diffraction pattern. Root mean square roughness of the samples was determined from the atomic force
microscopy studies. From the Raman spectra, characteristic vibrational modes appeared at 558.61, 802.85, and 1097.18 cm−1 in all
the samples, which confirms the cubic structure of indium oxide thin films. Photoluminescence emission spectra have been recorded
with an excitation wavelength of 280 nm. The optical band gap was measured using the Tauc plot. The band gap was found to
decrease with an increase in the substrate temperature. The gas-sensing performance of indium oxide films sprayed at various
substrate temperatures has demonstrated a better response toward 50 ppm toluene gas at room temperature with good stability, and
the response and recovery times were determined using a transient response curve.

■ INTRODUCTION

Metal oxide-based semiconductors have been widely inves-
tigated as sensing materials for a long time due to their
abundant features, such as high sensitivity and selectivity
toward volatile organic compounds.1 Among them, indium
oxide (In2O3) has been found to have pronounced sensitivity
toward ammonia, methane, acetone, and other species due to
its outstanding performance in electrical conductivity and due
to abundant oxygen vacancies.2,3 It is an n-type semiconductor
with high stability and low specific resistance. Due to the direct
band gap of ∼3.6 eV, it is a significant transparent conducting
oxide material. It has received much attention in the fields of
solar cells, optoelectronic devices, organic light-emitting
diodes, photocatalysts, architectural glasses, field-emission
catalysis, and sensors.4−8 In2O3 has been prepared using
thermal hydrolysis, the sol−gel technique, thermal decom-
position, microemulsion, mechanical and chemical processing,
pulsed laser deposition, and spray pyrolysis.9−16 Among all the
techniques described above, spray pyrolysis is a cost-effective

and straightforward method. It has been investigated for the
large-area deposition applications.
Gas sensors are designed to trace the low concentration of

hazardous gases in the environment. These will play a vital role
in many fields such as industrial control systems, household
safety and security, fuel emission, and environmental pollution
monitoring. Recently, various kinds of gas sensors are
fabricated based on different sensing materials and their
transduction principles. Among all the gas sensors, chemir-
esistive-type semiconducting metal oxide-based gas sensors are
the essential materials to trace low concentrations of toxic
gases such as benzene, xylene, acetone, ethylbenzene, toluene,
and so forth. Among all these gases, toluene (C7 H8) is the
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most harmful air pollutant with its wide range of applications
as diluents and adhesive material in the decoration of interiors,
which is firmly associated with our day-to-day lives and finally
causes severe harm to human health with direct long-term
exposure.17 Consumption of toluene in low to moderate levels
can cause weakness, tiredness, drunken-type actions, confusion,
nausea, loss of appetite, memory and hearing loss, and even
color vision loss. Few of these syndromes generally vanish
when inhalation is impeded. Inhaling massive levels of toluene
in a short time may cause unconsciousness, nausea, sleepiness,
light headedness, and even death.18 According to the
suggestions of the OSHA, the short-term exposure limit of
toluene is 100 ppm. It is associated with nasopharyngeal
cancer, bronchial and chronic asthma, and other various
subjective health problems. Also, toluene can be treated as an
essential lung cancer biomarker.19,20

In this present work, an attempt was made to fabricate a
cost-effective indium oxide sensor to trace low concentrations
of toluene at room temperature.

■ RESULTS AND DISCUSSION
Thickness Measurement. The thickness of the thin films

deposited at different substrate temperatures is depicted in
Figure 1. As the substrate temperature is increased, the

thickness of the films is found to decrease. It may be due to the
probability of the decomposition of the aerosol solution
droplets near the preheated glass substrate, leading to a
reduction in the particles’ transportation in the direction of the
substrate, and also, the sticking coefficient of an atom may be
significantly less at higher substrate temperatures.21

X-ray Diffraction. The structural characterization of the
indium oxide thin films sprayed at different substrate
temperatures was studied using an X-ray diffractometer in a
2θ range of 15−80°. The X-ray diffraction (XRD) patterns of
indium oxide films are shown in Figure 2. It was noticed that
indium oxide thin films are polycrystalline with a cubic
structure without any additional impurities. All the diffraction
peaks are listed using the Joint Committee on Powder
Diffraction Standards, card no: 88-2160. The diffraction
peaks appeared at 21.59, 30.66, 35.48, 45.78, 51.21, and

60.86, corresponding to (211), (222), (400), (431), (440),
and (622) miller index planes, respectively. The intensity of
the (222) peak is decreased with an increase in the substrate
temperature. The average crystallite size has been calculated
with Scherer’s equation. The crystallite size increased with
increasing substrate temperature, as shown in Figure 3. It

might be due to the recrystallization process during the
deposition22

λ
β θ

=DAverage crystallite size ( )
0.89

cos (1)

where “θ” is the diffraction angle, “β” is full width at half
maxima, and “λ” is the monochromatic X-ray wavelength.
The dislocation density (δ) is defined as the length of

dislocation lines per unit volume of the crystal and was
determined using the following relation23,24

Figure 1. Variation of indium oxide thin-film thickness with substrate
temperature.

Figure 2. XRD spectra of In2O3 thin films.

Figure 3. Average crystallite size of In2O3 thin films at different
substrate temperatures.
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Figure 4. Dislocation density of the In2O3 thin films.

Figure 5. FESEM, grain size, and EDX images of In2O3 thin films sprayed at (a) 350, (b) 400, (c) 450, and (d) 500 °C.
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δ =Dislocation density ( )
1

(crystallite size)2
(2)

Dislocation density is decreased with increasing substrate
temperature, as the dislocation density indicates the dislocation
network in the indium oxide thin films. The reduction in
dislocation density reflects the emergence of good-quality thin
films at higher deposition temperatures.25 The variation of
dislocation density is shown in Figure 4. The dislocation
density is significantly low at high substrate temperature,
leading to more carrier density and surface oxygen adsorption,
which leads to enhancement of the gas-sensing properties of
indium oxide thin films.
FESEM with EDX. The surface morphology of the thin

films depends on the preparation technique and its deposition
parameters. The FESEM images of indium oxide films which
are sprayed at different deposition temperatures are depicted in
Figure 5. All the thin films are found to be well adhered to the
substrate without any pinholes. All the films possess uniform
grain distribution throughout the surface of the samples. The
size of the grains is enhanced with increasing substrate
temperature due to the agglomeration.26,27 The elemental
analysis of thin films has been carried out using the energy-
dispersive X-ray (EDX) spectrum, which validates the presence
of indium and oxygen atoms only. The EDX spectra are shown
in Figure 5a3−d3.
Atomic Force Microscopy. Atomic force microscopy

(AFM) is extensively used to investigate the topographical
features of the deposited indium oxide thin films at different
substrate temperatures. Mainly, AFM studies assist in
computing the effect of substrate temperature on the surface
nature and investigating the crystal growth mechanism of the
thin film. The topological properties will play an essential role

in the present gas-sensing characterization. Two-dimensional
images of indium oxide thin films deposited at different
substrate temperatures are shown in Figure 6. The root mean
square (rms) roughness of the deposited thin films is analyzed
using Nanoscope E software, and it is found to decrease with
increasing substrate temperature. Calculated rms roughness
values are tabulated in Table 1. As substrate temperature is

increasing, adatom mobility will be increased, which leads to a
decrease in the surface roughness of the indium oxide thin film.
Also, the film which is deposited at higher substrate
temperature has perfect crystals with larger crystallite size,
which will provide stronger interactions between target gas
molecules and the indium thin film, in turn improving the
sensitivity of the sensor element.

Brunauer−Emmett−Teller Surface Area Analysis. To
explain internal architectures, nitrogen adsorption−desorption
investigations of the indium oxide thin film along with the
corresponding pore diameter versus pore volume plot which is
deposited at a substrate temperature of 500 °C are presented
in Figure 7. In a mesoporous material, during the adsorption
process, the molecules fill the higher energy sites which are
near to the pore wall first and then lower energy sites which are
away from the pore wall. When the adsorbed molecules in the

Figure 6. AFM images of indium oxide thin films deposited at (a) 350, (b) 400, (c) 450, and (d) 500 °C.

Table 1. rms Roughness of Indium Oxide Films Sprayed at
Various Deposition Temperatures

s. no. deposition temperature (°C) rms roughness (nm)

1 350 16.8
2 400 14.3
3 450 6.04
4 500 1.33
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opposing walls get closer, they collapse into thermodynami-
cally lower energy states (capillary condensation), and during
the desorption process, these collapsed molecules at lower
energy need higher pressure drop to get desorbed, which
results in hysteresis in the adsorption and desorption
isotherm.28 Hence, it can be seen that the isotherm exhibits
the IV-type mesoporous nature of the deposited indium oxide
thin film. The indium oxide thin film sample’s BET surface is
about 37.6 m2/g, which could provide large reaction sites to
facilitate target gas molecules in the gas-sensing mecha-
nism.29,30 Pore size distribution of the sample was determined
by the BJH method, and it was found to be 14.6 nm.
Raman Spectroscopy. Raman spectroscopy is a non-

destructive advanced technique for investigating metal oxides’
structural information and bringing out helpful information.
Figure 8 shows the room temperature Raman spectra of
indium oxide films sprayed at different temperatures. The
active Raman modes are observed at a Raman shift of 558.61,
802.85, and 1097.18 cm−1. The peak that appeared at 558.61
cm−1 is most likely attributed to In2O3. Raman modes are
observed at a Raman shift of 802.85 and 1097.18 cm−1 and are
assigned to phonons associated with the cubic-structured
indium oxide thin films.31,32 As the substrate temperature is
enhanced, the full width half maxima are decreased. It is due to
the reduction in the dislocation density due to a decrease in
the intergranular volume fraction, which leads to increment in
the size of the crystallite, which is in accordance with the XRD
investigations.32

Photoluminescence Characterization. Photolumines-
cence (PL) spectra obtained at room temperature of the
indium oxide thin film deposited at 500 °C are investigated
using a xenon source with an excitation wavelength of 280 nm,
as depicted in Figure 9. The standard indium oxide has a
strong and broad emission peak near 330 nm. The peak near
387 nm is evoked owing to the exciton recombination process,

Figure 7. (a) BJH, (b) BET, and (c) N2 adsorption−desorption isotherm of the indium oxide thin film deposited at 500 °C.

Figure 8. Raman spectra of In2O3 thin films.
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which plays a vital role in influencing the optical emission.33,34

The emission at this wavelength might be due to the oxygen
vacancies existing in the sample. The formation of oxygen
vacancies in the deposited nanostructured In2O3 thin films can
be described as follows. At the time of deposition, a few oxygen
sites evolve into oxygen-deficient sites, or maybe, several
intrinsic imperfections appear, which leads to the creation of
oxygen vacancies. The crackdown of defect-related emission of
indium oxide is related to the reconstruction of imperfect
nanostructures. These generated oxygen vacancies will create a
new energy level close to or within the indium oxide thin films’
energy band gap, which might generally be acting as deep
defect donor levels. The ultraviolet emission of the indium
oxide thin films could be the radiative recombination process
of the electrons and photoexcited holes absorbed by oxygen
vacancies.35

Transmission Electron Microscopy. To understand the
microstructure of the films, transmission electron microscopy
(TEM) is carried out in detail. Figure 10a shows the TEM
images of the indium oxide thin film deposited at a substrate
temperature of 500 °C. Figure 10b depicts the selected area
electron diffraction (SAED) pattern. It shows a set of
diffraction rings, which indicates the polycrystalline nature of
the prepared indium oxide thin films. The characteristic planes
(211), (222), (431), and (400) correspond to the simple cubic

structure of indium oxide, which is in agreement with XRD
studies.
The lattice spacing (d) might be determined using the

following formula36

λ=d
L
R

lattice spacing ( )
(3)

where “λ” is the electron wavelength (0.0027 nm), L is the
length of the camera (100 mm), and R is the radius of the
concentric ring, which is estimated from the central bright
spot. The calculated lattice spacing (d) values using the
abovementioned eq 3 are good in agreement with the (222)
orientation of the XRD studies.

Optical Properties. The optical properties of indium oxide
thin films strongly depend on the microstructure, film
thickness, and deposition parameters. Figure 11 shows the
absorption spectra of indium oxide films sprayed at different
deposition temperatures. Figure 12 depicts the transmittance
spectra of indium oxide thin films prepared at various substrate
temperatures. The average transmittance of the indium oxide
films is more than 72% in the visible region. The transmittance
is found to rise by enhancing the deposition temperature. It
may be owing to the increased carrier concentration because of
oxygen deficiency.11

The optical band gap (Eg) of indium oxide thin films sprayed
at various substrate temperatures is determined by adopting
the Tauc expression using the absorption spectra.37

α ν ν= −h B h E( )x
g (4)

Tauc plots of indium oxide films are depicted in Figure 13.
The optical band gap (Eg) will be determined by estimating the
linear segment of the absorption line to the horizontal axis.
Estimated optical energy band gaps of indium oxide thin films
sprayed at various deposition temperatures are tabulated in
Table 2. The optical band gap is decreased with increasing
substrate temperature, and it is due to the quantum
confinement effect when the particle size is in the nanoscale.

Gas-Sensing Measurements. Sensitivity and Selectivity.
The room temperature sensitivity of the indium oxide films,
which are sprayed at different substrate temperatures toward
50 ppm toluene, is determined using eq 1. In comparison with
toluene, several other gases such as methanol, ethanol, acetone,
n-butanol, and benzene are tested at a concentration of 50 ppm
toward different types of sensor elements sprayed at various
substrate temperatures. The selectivity characteristics of
indium oxide thin film sensors toward other gases are depicted

Figure 9. PL spectra of the indium oxide thin film deposited at 500
°C.

Figure 10. TEM images of the In2O3 thin film deposited at 500 °C (a). (b) SAED of the In2O3 thin film deposited at 500 °C.
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in Figure 14. Thus, it is concluded that the sensor element,
which is sprayed at a substrate temperature of 500 °C, has
shown outstanding selectivity and sensitivity toward toluene at
room temperature. It is well known that the gas-sensing
mechanism in oxide-based materials is surface-controlled, and
each chemical reaction depends on the activation energy of the
material. An increase in film sensitivity with an increase in
substrate temperature may be due to the decrease in activation
energy at increased substrate temperature. Thus, a relatively
higher sensitivity has been observed for the sample which is
deposited at 500 °C.38 Also, toluene has shown the best
selectivity due to its lower dissociation energy in comparison
with that of other vapors. Due to the lower dissociation energy,
bonds in toluene can be easily broken to behave with the
sensing element; subsequently, a considerable number of free
electrons are liberated at the time of the reaction, which causes
enough change in the resistance of the sensor, affecting the
high sensitivity toward toluene.39 Dong et al.40 reported
hierarchical rosette-like In2O3 microsphere- and hollow
microsphere-based sensors to detect toluene vapors at an

operating temperature of 350 °C. Xiao et al.41 synthesized
indium oxide nanotubes using an electrospinning method for
toluene-sensing properties at an optimum operating temper-
ature of 340 °C toward 100 ppm. Xu et al.42 investigated gas-
sensing properties of hexagonal indium oxide nanorods
prepared by a solvothermal method. They reported that
indium oxide nanorods are sensitive toward different vapors at
an operating temperature of 330 °C. Their sensor element has
shown a response of 1.8 toward 500 ppm toluene. To the best
of our knowledge and belief, majority of the indium oxide-
based sensors are operated relatively at high operating
temperatures to trace high concentrations of toluene vapors.
Hence, our indium oxide thin film sensor, which is deposited
with a cost-effective spray pyrolysis technique, is further
utilized to study other gas-sensing characterizations such as
stability, repeatability, and dynamic response.

Stability and Repeatability. The long-term stability and
repeatability of a sensor element will play an essential role in
real-time gas sensor applications. The long-term stability of the
indium oxide sensor deposited at 500 °C has been reported

Figure 11. Absorption spectra of indium oxide thin films.

Figure 12. Transmittance spectra of indium oxide films.
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over a period of 30 days, as depicted in Figure 15. The sensor
element has shown almost a stable response value during the
period, as mentioned earlier, which indicates that the sensor
has good stability. To investigate the repeatability, the gas-
sensing test has been carried out continuously for four cycles
toward 50 ppm toluene at room temperature, as shown in
Figure 16; the response values have shown a negligible
variation during the repeated cycles. Hence, we can conclude
that the fabricated sensor has excellent repeatability property.
Transient Response Characteristics of the Sensor. The

response−recovery studies investigate essential parameters in
real-time application to detect harmful gases. The transient
response toward 50 ppm toluene is studied at room
temperature, as depicted in Figure 17. As noticed from the
results, the indium oxide sensor deposited at 500 °C shows a
classical n-type sensing behavior with large resistance in the
presence of air, and the resistance of the sensor drops down
when exposed to a reducing test gas (toluene). From the
figure, it is clear that recovery and response times are 26 and

28 s, respectively. Comparison of toluene-sensing properties of
different metal oxides available in the literature along with the
present work is tabulated in Table 3.

Figure 13. Tauc plot of the indium oxide thin films deposited at (a) 350, (b) 400, (c) 450, and (d) 500 °C.

Table 2. Optical Band Gap of Indium Oxide Films

s. no. deposition temperature (°C) optical band gap (eV)

1 350 3.72
2 400 3.69
3 450 3.67
4 500 3.62

Figure 14. Response of In2O3 thin films deposited at different
substrate temperatures (350, 400, 450, and 500 °C) toward 50 ppm of
various gases at room temperature.
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■ CONCLUSIONS
Indium oxide thin films are prepared using a cost-effective
chemical spray pyrolysis technique. The effects of substrate
temperature on microstructural, morphological, optical, and
gas-sensing characteristics are systematically investigated.
Crystallite size is increased and dislocation density is reduced
with increasing deposition temperature. The nanostructured
nature of the deposited thin film is confirmed using TEM.
Atomic force microscopy studies revealed that the thin film
sprayed at a deposition temperature of 500 °C exhibited the
least rms roughness. The band gap of films is determined using
the Tauc plot, and it is decreased with increasing substrate
temperature. Gas-sensing characterization of indium oxide
films is studied toward various volatile organic compounds
such as acetone, methanol, ethanol, benzene, n-butanol, and
toluene at room temperature. The film, which is sprayed at 500
°C, has exhibited the best sensitivity toward toluene at room
temperature. It is also observed that the In2O3 thin film has
shown excellent stability and repeatability with response and
recovery times of 28 and 26 s, respectively.

■ EXPERIMENTAL DETAILS
Materials and Thin-Film Preparation. Analytical-grade

indium acetate (99.9% pure) was purchased from Sigma-
Aldrich (India), and it is used as a starting precursor without
further purification. The required amount of indium acetate
was dissolved in deionized water and stirred on a magnetic
stirrer for 30 min at room temperature. After 10 min, few drops
of acetic acid were added to the abovementioned solution to
obtain a clear solution. The glass substrates (Blue Star-India
with a thickness of 1 mm) are cleaned with particle-free
solution, then followed by ultrasonication in acetone and
ethanol for 20 min, and cleaned with double-distilled water and
heated at 100 °C using a programmable furnace for 30 min and
dried in a hot air oven. The obtained solution is filled into a 50
mL quartz spray container. The solution is deposited with a
computer-interfaced spray pyrolysis system at different
substrate (deposition) temperatures ranging from 350 to 500
°C with a flow rate of 1 mL/min and deposited for 10 min.
The nozzle-to-substrate distance was maintained at 25 cm, and
filtered compressed air has been used as a carrier gas at a

Figure 15. Long-term stability of the pure In2O3 gas sensor deposited
at 500 °C toward 50 ppm toluene at room temperature.

Figure 16. Repeatability of indium oxide thin films sprayed at 500 °C toward 50 ppm toluene.

Figure 17. Transient response curves of indium oxide thin films
which are deposited at 500 °C.
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pressure of 1 bar. A schematic diagram of the spray pyrolysis
system is depicted in Figure 18.
Material Characterization. Thin-film thickness was

determined using a stylus profiler (SJ-301 Mitutoyo Surface
Profilometer). The structural characterization and crystallinity
of the indium oxide thin films sprayed at various substrate
temperatures were investigated using a Bruker X-ray
diffractometer (Bruker D8) with Cu Kα as a radiation source

(0.154 nm) in the grazing incident mode with a rate of
scanning 2°/min. The morphology of the indium oxide thin
films has been investigated by FESEM (Carl ZEISS EVO-18,
Germany), and elemental analysis of thin films was carried out
using EDX. The surface roughness of the indium oxide films
has been determined by AFM (Innova, Bruker). The indium
oxide thin films’ optical properties and energy band gap were
investigated using a UV−Vis spectrophotometer (Analytical

Table 3. Comparison of Toluene-Sensing Properties of Different Metal Oxides Available in the Literature along with the
Present Work

gas-sensing materials toluene concentration (ppm) operating temperature (°C) response/recovery times reference

Au/ZnO NPs 100 ppm 377 20 min/6 min 43
clustering SnO2 NPs 50 ppm 250 44
CdS−TiO2 5000 ppm 27 70 s/125 s 45
Ce−SnO2 coral-like 50 ppm 190 46
Pt NP-decorated In2O3 NFs 10 ppm 250 47
Au−ZnO NWs 500 ppm 340 32 s/57 s 48
SnO2 NFs 1−300 ppm 350 1 s/5 s 49
TiO2−ZnO Nanoflowers 100 ppm 290 50
MWCNT/SnO2 NCs 1000 ppm 250 24 s/14 s 51
C-WO3 1000 ppb 320 40 s/10 s 52
Au/ZnO nanoparticles 100 ppm 377 NA/300 s 53
Co3O4 nanorods 200 90/55 54
pure In2O3 50 ppm 27 28 s/26 s present work

Figure 18. Schematic diagram of spray pyrolysis equipment.

Figure 19. Schematic diagram of the gas-sensing system.
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jena, specord 210 Plus) in the spectral range of 400−800 nm.
The variation in crystal defects of indium oxide thin films was
investigated using Raman spectroscopy (Labram-HR800). PL
spectra have been obtained using the HORIBA Fluorolog 3.
TEM was carried out to explain the nanostructure of the thin
films using the TECNAI 20G2 operating at 200 kV. The TEM
investigations were performed in both the image and
diffraction modes.
Fabrication of the Thin-Film Gas Sensor. To study the

gas-sensing characterization of deposited indium oxide thin
films, Ohmic contacts were made on both ends of the film with
silver paste and copper wires. These sensor elements were
sintered for 2 h at 150 °C to ensure good contact of electrodes.
They were utilized to study the gas-sensing characteristics of
different gases such as ethanol, acetone formaldehyde,
ammonia, methanol, and toluene with a concentration of 50
ppm at room temperature. A schematic figure of the gas-
sensing system is depicted in Figure 19. Humidity will decrease
the stability of the sensor; hence, we have maintained the
relative humidity in the chamber at 60% with the help of a
digital humidity controller (Humitherm, India) during the gas-
sensing measurements.55,56

=S
R
R

Sensitivity ( ) a

g (5)

where Rg = resistance of the sensor in the presence of target gas
and Ra = resistance of the sensor in the presence of air.
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