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Abstract

Risk assessment is critical to determine the timing of elective surgeries and preserve

valuable resources in time of pandemic. This study was undertaken to better under-

stand the potential value of molecular testing to risk-stratify thyroid nodules with

malignant cytology (Bethesda VI). Systematic review of the literature contributed

21 studies representing 2036 preoperative specimens. The BRAF p.V600E substitu-

tion was detected in 46% to 90% of cases with a pooled positivity rate of 70% (95%

confidence intervals: 64%-76%). None of the studies used comprehensive oncogene

panels. Retrospective analysis of 531 clinical specimens evaluated with the next-

generation sequencing ThyGeNEXT Thyroid Oncogene Panel identified a total of

436 gene alterations. BRAF mutation rate was 64% in specimens tested as part of

standard clinical care and 75% in specimens from cross-sectional research studies

(P = .022). Testing for additional actionable gene alterations such as TERT promoter

mutations or RET and NTRK gene rearrangements further increased the diagnostic

yield to 78%-85% and up to 95% when including the ThyraMIR Thyroid miRNA Clas-

sifier. These data support the role of molecular cytopathology in surgical and thera-

peutic decision-making and warrant additional studies.
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1 | INTRODUCTION

Multiple surgical societies have issued recommendations for a safe

and responsible return to practice amid the COVID-19 pandemic.1-3

As elective surgeries resume, surgeons face a major backlog of cases

and must prioritize patients based on individual's risk, local and state

requirements and available resources. Preoperative risk stratification

of thyroid nodules typically involves a combination of blood work,

imaging and fine needle aspiration biopsy (FNAB), as well as molecu-

lar testing for nodules with indeterminate cytology.4-6 These testing

modalities are also offered clinically to aid surgical and therapeutic

decisions for advanced or metastatic thyroid cancers and for nodules

with high-risk cytopathologic features. Yet, little information is avail-

able on the type and distribution of gene alterations present in FNAB

positive for malignancy (Bethesda category VI). To address this point,

we conducted a systematic review of the literature and analyzed

molecular data generated in two distinct sets of preoperative FNAB:

(1) Representative clinical cases submitted to a CLIA-certified labora-

tory for evaluation with the next-generation sequencing ThyGeNEXT

Thyroid Oncogene Panel; and (2) Cross-sectional cohort of cases
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previously collected and tested during the development and valida-

tion of the ThyraMIR Thyroid miRNA Classifier. The data underscore

the value of comprehensive, actionable molecular results to further

the risk assessment of thyroid nodules with malignant cytology and

inform clinical decision-making.

2 | MATERIALS AND METHODS

The biomedical literature database from the National Center for Bio-

technology Information (https://pubmed.ncbi.nlm.nih.gov/) was

searched to identify relevant studies published after 2010 and

reporting more than 5 positive cases. Studies limited to RNA bio-

markers were not included in the analysis. Retrospective review of

cases previously tested as part of standard clinical care in Interpace

Biosciences' laboratory or as part of clinical research studies was per-

formed exclusively on deidentified molecular data. The analyses did

not involve any clinical data or protected health information that

could be linked to individual subjects and did not constitute human

subjects research as defined in 45 CFR 46.102. Pooled rates and I2

heterogeneity tests were calculated using fixed or random effect

models and the Cochran Q statistic. Proportions were compared using

Pearson chi-square tests.

3 | RESULTS

Review of the literature identified 21 studies from 12 countries

involving n = 2036 preoperative thyroid specimens with malignant/

Bethesda VI cytology (Table 1).7-27 BRAF p.V600E (c.1799T>A) posi-

tivity rate ranged from 46% to 90% with a median rate of 68%. Het-

erogeneity across studies was moderate. The pooled BRAF rate was

75% (95% confidence intervals: 71% to 78%, I2 = 46%) for a fixed

effect model and 70% (95% confidence intervals: 64% to 76%,

I2 = 0%) for a random effect model (Figure 1). The numbers of positive

cases and reporting studies were too low to calculate pooled statistics

for other gene alterations. Only six studies (n = 339 cases) used multi-

gene panels interrogating various combinations of BRAF, RAS, RET

and PAX8 gene alterations. Four of these studies were from the same

group.9,10,14,19 RET-PTC rearrangements were detected in four stud-

ies (n = 13 cases, 3.8%), RAS mutations in three studies (n = 6 cases,

1.8%) and PAX-PPARG in a single study (n = 2 cases, 0.6%).

TABLE 1 Rates of BRAF p.V600E substitution in preoperative thyroid nodule specimens with malignant/Bethesda VI cytology reported in the
literature7-27

Study Year Country Method Cases, No. BRAF rate (%)

Hemalatha et al.7 2018 India Sanger sequencing 37 46

Cañadas-Garre et al.8 2012 Spain PCR RFLP 12 50

Eszlinger et al.a,9 2014 Denmark Pyrosequencing 42 52

Krane et al.a,10 2015 United States Pyrosequencing 42 52

Park et al.11 2013 South Korea Real-time PCR 35 60

Biron et al.12 2018 Canada Digital droplet PCR 15 60

Yeo et al.13 2012 South Korea Pyrosequencing 136 63

Eszlinger et al.a,14 2015 Italy Pyrosequencing 30 63

Danilovic et al.15 2014 Brazil Real-time PCR 35 66

Johnson et al.16 2014 United Kingdom PCR melting curve 18 67

Diggans et al.17 2015 United States Real-time PCR 172 69

Beaudenon et al.a,18 2014 United States PCR hybridization 28 68

Eszlinger et al.a,19 2017 Germany Pyrosequencing 32 72

Zhao et al.20 2015 China Sanger sequencing 119 74

Kloos et al.21 2013 United States Real-time PCR 48 75

Bellevicine et al.a,22 2020 Italy Real-time PCR 165 76

Beiša et al.23 2016 Lithuania Real-time PCR 49 80

Lee et al.24 2012 South Korea MEMO sequencing 876 85

Kim et al.25 2018 South Korea Real-time PCR 41 85

Zhang et al.26 2015 China Real-time PCR 37 86

Chang et al.27 2012 South Korea PCR melting curve 67 90

Abbreviations: PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; MEMO, mutant enrichment with 30-modified

oligonucleotide.
aStudies evaluating BRAF, RAS, RET and PAX8 gene alterations.
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Review of cases submitted for molecular testing as part of stan-

dard clinical care between April 2015 and June 2020 yielded

381 unique Bethesda VI specimens with molecular data (Table 2). One

or several genetic alterations were detected in 78% (162/209) of the

specimens tested with ThyGeNEXT and in 73% (125/172) of

the specimens tested with previous versions of the test (P = .28). The

exact nucleotide variations are described in Supplemental Table S1.

Overall, 75% (287/381) of the specimens were positive by molecular

testing, 270 for mutations in the BRAF, PIK3CA, RAS and/or TERT

genes (94% of positive cases) and 17 for PAX8, NTRK or RET gene

rearrangements (6% of positive cases). The most frequent alterations

were BRAF p.V600E (64%) and TERT promoter mutations (11%).

Review of cases collected and tested as part of clinical research

studies yielded 150 Bethesda VI specimens with molecular data

(Table 3). There were 127 specimens (85%) positive for one or several

gene alterations, 117 for mutations in the BRAF, RAS and/or TERT

genes (92% of positive cases) and 10 for PAX8, NTRK or RET gene

rearrangements (8% of positive cases). BRAF p.V600E was detected

in 112 specimens (75% of all cases). The ThyraMIR test classified

137 specimens (91%) as high risk for malignancy, including the major-

ity of mutation positive cases (121/127 or 95%) (Figure 2). Out of

F IGURE 1 Forest plot for BRAF p.V600E positivity rates reported
in 21 peer-reviewed publications.7-27 Black boxes represent the
relative weight of each study, whiskers represent the 95% confidence
intervals for each reported BRAF rate and the diamond represents the
calculated pooled rate assuming a random effect model (70% pooled
rate, 95% confidence intervals: 64%-76%, I2 = 0%)

TABLE 2 Distribution of molecular results in n = 381 CLIA
specimens

Molecular result Pre-ThyGeNEXT ThyGeNEXT Combined

BRAF 111 120 231

PIK3CA 1 0 1

RAS 7 7 14

CCDC6-RET 4 7 11

NCOA4-RET 1 2 3

PAX8-PPARG 1 0 1

BRAF + TERTa n/a 14 14

PIK3CA + TERTa n/a 1 1

RAS + TERTa n/a 5 5

TERTa n/a 4 4

ETV6-NTRKa n/a 1 1

TRIM24-RETa n/a 1 1

Negative 47 47 94

Total 172 209 381

aGene alteration not interrogated in previous versions of the Thy-

GeNEXT test.

TABLE 3 Distribution of molecular results in n = 150 research
specimens

Molecular result Pre-ThyGeNEXT ThyGeNEXT Combined

BRAF 88 22 110

RAS 5 0 5

CCDC6-RET 5 1 6

NCOA4-RET 1 0 1

PAX8-PPARG 1 0 1

BRAF + TERTa n/a 2 2

ETV6-NTRKa n/a 2 2

ThyraMIR high risk 13 3 16

Negative 5 2 7

Total 118 32 150

aGene alteration not interrogated in previous versions of the Thy-

GeNEXT test.

F IGURE 2 Venn diagram showing the relationship between
ThyGeNEXT and ThyraMIR molecular results in n = 150 research
specimens
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23 mutation negative specimens, the miRNA classifier identified

16 cases (70%) as positive/high risk, further increasing the yield of

molecular testing to 95% overall (143/150).

4 | DISCUSSION

In our clinical experience analysis, a total of 436 gene alterations were

identified in 414 of 531 preoperative specimens with malignant cytol-

ogy. There were significant differences between the two cohorts and

their respective collection schemes. The clinical research cohort was a

representative cross-sectional sampling of thyroid nodules at the time

of FNAB diagnosis while the CLIA cohort consisted of more challeng-

ing cases that required molecular testing as part of their routine clini-

cal management. Predictably, the positivity rate was lower among

CLIA specimens relative to research specimens (75% vs 85%,

P = .019). The majority of positive cases harbored a BRAF p.V600E

substitution in both cohorts (67% overall), 64% for CLIA specimens

and 75% for research specimens (P = .022). The second most frequent

gene alteration was TERT promoter mutations (26/241 or 11%),

highlighting the limitation of molecular strategies that only interrogate

exome variants. For example, the Afirma Xpression Atlas, based on

transcriptome RNA sequencing, has a reported false negative rate of

26% relative to targeted DNA sequencing and cannot assess variants

outside the fraction of exonic sequences that are actually transcribed

into mRNA.28

The BRAF positivity rates observed in the two clinical cohorts

were consistent with the 70% pooled rate estimated from 21 publi-

shed studies (95% confidence intervals: 64% to 76%). The use of dif-

ferent molecular methods, reagents and protocols probably

contributed to the broad range of reported rates (46% to 90%).

Methods with poor analytical sensitivity, for example, Sanger

sequencing, or with clinical cutoffs set at high percent variant, are

expected to have a lower detection rate. In one of the reviewed stud-

ies, Lee et al24 evaluated 876 Bethesda VI specimens using three dis-

tinct molecular methods and reported BRAF detection rates of 63%,

79% and 85% for methods with an increasing analytical sensitivity of

20%, 2% and 0.1% variant, respectively. Another parameter likely con-

tributing to the heterogeneity of BRAF rates was regional variations

in the prevalence of BRAF mutation and/or papillary thyroid carci-

noma. For example, three out of the five studies with the highest

reported BRAF rates (80% to 90%) were conducted in South Korea, a

region where BRAF p.V600E is particularly prevalent.24,25,27 In a

series of 200 resected conventional papillary carcinomas from South

Korea, Seo et al29 showed that 93% of the surgical specimens were

positive for BRAF p.V600E and that 96% of these cases could be

detected in the corresponding malignant FNAB.

The high frequency of oncogenic BRAF mutations in preoperative

thyroid FNAB has important clinical implications. Multiple studies

have shown that BRAF p.V600E correlates with aggressive features

of thyroid carcinoma such as extrathyroidal extensions, vascular inva-

sion, larger nodule size, advanced staging, lymph node metastasis and

recurrence.4-6 A large multicenter study recently demonstrated that

BRAF is associated with mortality in older patients, independently of

other clinicopathologic risk factors.30 Other studies have suggested

that knowledge of the BRAF mutational status may be useful to guide

the extent of thyroid surgery.31,32 However, the association of BRAF

p.V600E with worse prognosis independent of other risk factors

remains debated and requires additional investigation. Testing with a

comprehensive oncogene panel that includes relevant and actionable

gene alterations such as TERT promoter mutations or RET and NTRK

gene rearrangements can also aid surgical decision-making and speed

up individualized patient care. Molecular insights may change a

patient's risk profile when multiple markers are detected in the same

nodule, identify carcinomas that are refractory to radioactive iodine

treatment or facilitate the selection of targeted therapies.6,33-35 Com-

bination testing with a miRNA expression classifier may further raise

the risk profile of nodules positive for weaker driver mutations such

as RAS and increase the positive diagnostic yield up to 95%. Because

of their unique biology, miRNAs are practical surrogate markers to

identify altered oncogenic pathways in mutation negative cells and in

heterogenous thyroid nodules where only a small fraction of tumor

cells may carry a somatically acquired gene alteration.36,37

In summary, our systematic review of the literature indicates that

70% to 75% of FNAB with malignant/Bethesda VI cytology are

expected to be positive for the oncogenic BRAF p.V600E substitution.

The majority of these studies (71%) assessed only BRAF mutational

status. Our analysis of 531 representative clinical specimens is the

first to report the potential value of a comprehensive oncogene panel

combined with a miRNA expression classifier. Additional work is

required to fully assess the role of molecular testing for the preopera-

tive risk stratification of malignant FNAB, clinical decision-making,

timing of surgery and optimal utilization of valuable healthcare

resources.
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