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Cognitive flexibility helps us to navigate through our ever-changing environment and has
often been examined by reversal learning paradigms. Performance in reversal learning
can be modeled using computational modeling which allows for the specification of
biologically plausible models to infer psychological mechanisms. Although such models
are increasingly used in cognitive neuroscience, developmental approaches are still
scarce. Additionally, though most reversal learning paradigms have a comparable design
regarding timing and feedback contingencies, the type of feedback differs substantially
between studies. The present study used hierarchical Gaussian filter modeling to
investigate cognitive flexibility in reversal learning in children and adolescents and the
effect of various feedback types. The results demonstrate that children make more
overall errors and regressive errors (when a previously learned response rule is chosen
instead of the new correct response after the initial shift to the new correct target),
but less perseverative errors (when a previously learned response set continues to be
used despite a reversal) adolescents. Analyses of the extracted model parameters of
the winning model revealed that children seem to use new and conflicting information
less readily than adolescents to update their stimulus-reward associations. Furthermore,
more subclinical rigidity in everyday life (parent-ratings) is related to less explorative
choice behavior during the probabilistic reversal learning task. Taken together, this study
provides first-time data on the development of the underlying processes of cognitive
flexibility using computational modeling.

Keywords: cognitive flexibility, executive functioning, development, reinforcement learning, feedback processing

INTRODUCTION

In an ever-changing environment, it is essential to shift strategies and adapt response patterns
based on received feedback. Probabilistic reversal learning tasks have been effectively used to assess
cognitive flexibility, since they require participants to learn rules in an uncertain environment while
remaining flexible in response to changing rules, a capacity particularly relevant to socio-emotional
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behavior (Cools et al., 2002; Remijnse et al., 2005; Ghahremani
et al., 2010; Nashiro et al., 2012; Hauser et al., 2015b; Izquierdo
et al., 2016). In a probabilistic reversal learning task, participants
learn to identify the target amongst various simultaneously
presented stimuli based on received feedback. After participants
have successfully learned to identify the target, a reversal
will occur, and the previously non-rewarded stimulus will
become the new target. Importantly, the stimulus-feedback
contingencies are not fixed and deterministic, but probabilistic,
i.e., a stimulus receives a certain rewarding feedback not with
each presentation or choice, but only with a certain probability.
In addition, reversal learning has been found to be impaired
in various neurological and psychiatric conditions including
obsessive compulsive disorder (OCD; Verfaillie et al., 2016;
Hauser et al., 2017; Tezcan et al., 2017), Huntington’s Disease
(Nickchen et al., 2016), schizophrenia (Culbreth et al., 2016;
Reddy et al., 2016), Parkinson’s disease (Buelow et al., 2015),
Attention-Deficit/Hyperactivity disorder (ADHD; Hauser et al.,
2015a), and autism spectrum disorder (ASD; Lionello-DeNolf
et al., 2010; D’Cruz et al., 2013; Costescu et al., 2014; D’Cruz
et al., 2016). Despite these numerous studies on cognitive
flexibility, it remains difficult to draw exact conclusions about
the development of the underlying learning processes mainly due
to three crucial factors: (1) In the existing studies participants
varied in age from young childhood to adulthood with only
one study systematically comparing learning processes at various
ages during development (Crawley et al., 2019), although it
is known that cognitive flexibility changes over the course of
development (e.g., Crone and van der Molen, 2004; Yurgelun-
Todd, 2007; Van Der Schaaf et al., 2011; Ionescu, 2012; Luking
et al., 2014). (2) Most current studies made their conclusions
based on error scores as an observable index of reversal
learning. However, these do not provide nuanced information
needed to infer how the underlying mechanisms of cognitive
flexibility (as measured by reversal learning) are implemented.
(3) The feedback used in the existing studies differed from
winning pieces of candy to points and money with not a
single study comparing the effect of these different types of
feedback on reversal learning. Yet, we know that behavior
heavily depends on the received feedback and that feedback
processing also changes during the course of development
(e.g., Eppinger and Kray, 2009; van den Bos et al., 2012; Van
Duijvenvoorde et al., 2013). We will shortly outline these three
aspects before proposing how to overcome these limitations in
the current study.

First, existing developmental studies on cognitive flexibility,
including behavioral and neuroscientific studies, typically only
included either children or adolescents, but by comparing
between studies developmental differences between age-groups
can be found. That is, younger children usually make many errors
and show preservative behavior (Landry and Al-Taie, 2016), while
adolescents often show more riskiness resulting in poor decisions
(Van Der Schaaf et al., 2011; Blakemore and Robbins, 2012;
Hauser et al., 2015b), possibly due to a hypersensitive system
for processing rewards (Somerville et al., 2010). However, these
studies did not use probabilistic reversal learning tasks, which
may better capture the essence of cognitive flexibility because

they provide more ecological validity with respect to unstable
learning environments. Furthermore, due the diverse nature
of the employed tasks across developmental ages, conclusions
with respect to developmental effects remain speculative. Hence,
directly comparing children and adolescents using a probabilistic
reversal learning task is essential to bring about a clearer
understanding of the development of cognitive flexibility.

Second, probabilistic reversal learning tasks inherently bring
about relatively high numbers of errors. Therefore, probabilistic
reversal learning tasks need a more nuanced measurement
of how participants integrate information throughout the
task than simple observable error rates. Computational
models of behavior specify parameters that are independent
of task structure (as in the case of probabilistic reversal
learning task the trial-and-error structure typically results
in high number of errors), and are therefore better suited
to approximate the underlying mechanisms governing the
observed behavior (i.e., error patterns). Computational modeling
could bridge the gap between observable behavior and internal
mechanisms by using biologically plausible models to infer
the psychological mechanisms underlying typical and deficient
learning processes (e.g., Weeda et al., 2014; Palminteri et al.,
2016; Schuch and Konrad, 2017).

A relatively simple approach is to use reinforcement learning
models which assume that future choices are optimized via
maximization of favorable outcomes being acquired using a fixed
learning rate and reward prediction errors (Rescorla and Wagner,
1972). However, such simplistic models do not consider learning
under uncertainty. During probabilistic reversal learning though,
individuals have to learn in a highly unstable environment,
implicating that the learning rate adjusts according to its
estimates of environmental volatility. More recently, hierarchical
Gaussian filter models (HGF), which are hierarchical Bayesian
learning models, have been used to model individual learning
under multiple forms of uncertainty (Mathys et al., 2011), since
they can dynamically adjust their learning rate according to
their estimates of environmental volatility (i.e., the probability
contingencies may change at any point), its uncertainty about
the current state, and/or any perceptual uncertainty (Jiang
et al., 2014). Thus, they also provide more temporally rich
information about the dynamics of learning by considering trial-
by-trial information instead of averaged error rates and reaction
times. For instance, Hauser et al. (2014) could demonstrate
that adolescents with ADHD performed marginally worse than
their typically developing (TD) peers in standard measures of
behavior (i.e., error rates, RTs) while computational modeling
revealed that although both groups had similar learning rates,
the ADHD group had more “explorative” tendencies in their
choice-behavior resulting in less efficient task performance.
In sum, computational models might thus provide the more
nuanced measurement that is needed for probabilistic reversal
learning tasks to understand the underlying mechanisms and
its development.

Third, even though most (probabilistic) reversal learning tasks
have a comparable design with respect to timing and feedback
contingencies, the type of feedback differs substantially between,
but not within studies (Cools et al., 2002; Remijnse et al., 2005;
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Ghahremani et al., 2010; Nashiro et al., 2012; D’Cruz et al., 2013;
Hauser et al., 2014; Buelow et al., 2015). Since previous studies
on feedback processing have revealed different effects, drawing
an unambiguous conclusion here is yet impossible. While one
study demonstrated that children show better results in a go/no-
go task with monetary compared to social reward (Kohls et al.,
2009), others have not found this effect, but investigated children
and adolescents (Demurie et al., 2011). More homogenously,
previous studies in clinical samples (i.e., participants with
ASD and ADHD) demonstrated that non-social reward (e.g.,
arrows, money) appears to be more effective than social reward
(Demurie et al., 2011; Stavropoulos and Carver, 2014). Hence,
directly examining the effect of different types of feedback in
children and adolescents may bring a clearer understanding
of the development of feedback processing in the domain of
cognitive flexibility.

The main aim of this study was to investigate developmental
differences in learning processes underlying cognitive flexibility
and the effect of various types of feedback using a probabilistic
reversal learning task in children and adolescents. The secondary
aim was to explore possible relationships with subclinical
measures of ASD symptomatology, with a specific interest in
restrictive and repetitive behavior, since it has been proposed
that impairments in cognitive flexibility may contribute to this
domain (South et al., 2005; D’Cruz et al., 2013). We therefore (1)
tested a sample of children and adolescents in order to compare
both age groups; (2) used various kinds of feedback including
social (i.e., an actor posing thumbs up and smiling versus an actor
gazing straight with a neutral expression), individual (i.e., favorite
hobby of each participant versus pixelated video of the hobby),
and control (i.e., a check mark versus a cross) feedback within
participants performing a probabilistic reversal learning task;
and (3) used reinforcement learning and HGF models to infer
the psychological mechanisms underlying the learning processes
and potential individual differences. Finally, we also included
measures of subclinical ASD symptomatology.

MATERIALS AND METHODS

Participants
In total, 28 TD children (all male, 8–12 years of age, mean
age = 10.33 years) and 25 TD adolescents (all male, 13 to 17 years
of age, mean age = 15.57 years) were included in the final analyses.
An additional two children participated in the study, but were not
included in the analyses because they were not able to complete
all experimental runs due to fatigue/non-compliance.

All participants had no indication of developmental delay or
other psychiatric disorders as assessed by a structured screening
interview on the phone and the Child Behavior Checklist (CBCL,
Achenbach, 1991; all T < 65). Only participants with sufficient
cognitive abilities were included [IQ > 80, short version of the
Wechsler Intelligence Scale for children or Grundintelligenztest
Skala (CFT-20R; Weiß, 2006)]. The study was approved by the
ethics committee of the university. All participants and/or their
caregivers gave written informed consent/assent to participate in

the study. Participation was compensated by money irrespective
of task performance. All participants were seated in a quiet lab.

Probabilistic Reversal Learning Task
We designed a probabilistic reversal learning task in which
participants had to learn to identify the target amongst two
stimuli presented simultaneously on the screen (see Figure 1)
based on feedback.

Participants received 75% contingent feedback (i.e., rewarding
feedback upon correct choice and non-rewarding feedback
upon incorrect choice) and 25% non-contingent feedback (i.e.,
non-rewarding feedback upon correct choice and rewarding
feedback upon incorrect choice). After participants reached a
learning criterion, the other stimulus, which was previously
not rewarded, became the new rewarded target without giving
notice to the participant (i.e., reversal). The learning criterion
was reached when participants had completed at least six
to ten trials (randomly assigned during each reversal block)
and had identified the target correctly in three consecutive
trials. Participants were familiarized with the task and stimuli
before testing. They were informed that after a while a
reversal of targets could occur, and that feedback was given
probabilistically but they were given no explicit information
about the learning criterion or the ratio of contingent and
non-contingent feedback. During the practice session, feedback
was given exactly as during the experiment but without
any reversal.

All participants were seated approximately 30 cm in front of
the computer and presented with identical stimuli (see Figure 1).
The stimuli were of identical size (approximately 9.5 cm× 9.5 cm
and 17◦ visual angle) and were presented simultaneously to the
left and right side of a fixation cross on the screen. The position
of the targets switched randomly with replacement, thus it was
possible that the target appeared on the same position multiple
times in row. All participants completed three runs of the
probabilistic reversal learning task with varying feedback per run;
i.e., social, individual, and control feedback, in a counterbalanced
order. The feedback videos were presented visually for 2000 ms.
Five different videos in each feedback condition were used. Each
run included 12 reversals or a maximum of 240 trials. For a
detailed overview of the timing of one trial see Figure 1. If
participants did not react within 1500 ms, the fixation cross
turned red and subsequently the next trial started. All missed

FIGURE 1 | Illustration of two target stinmuli (boxes) and timing. Participants
were presented with the stimuli for 1500 ms in which they had to give their
response via a key press. Then the reward video (illustrated here by the green
check mark) was presented for 2000 ms. Subsequently, the next trial began.
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trials were excluded from final analyses. The maximum numbers
of total misses per condition did not exceed 17.

Social Feedback (SF) Video
Videos are part of a larger pool that has been designed
for previous studies on social reward (Kohls et al., 2013;
Chevallier et al., 2016). Five individuals were used, both for the
rewarding and non-rewarding feedback. The rewarding feedback
videos depicted individuals looking straight at the participants,
smiling, and giving thumbs up (see Figure 2A) whereas the
non-rewarding feedback videos depicted the individuals gazing
straight at the participant with a neutral facial expression and no
hand movement (see Figure 2B).

Individualized Feedback (IF) Video
Five video clips depicting a favorite activity of daily living of
the participant were created (e.g., computer game, movie, series,
sports club etc.; see Figure 2C) and used as the rewarding
feedback videos. For the non-rewarding feedback, the rewarding
feedback videos were manipulated so that they were completely
unrecognizable to the participant (see Figure 2D), while keeping
basic visual stimulation identical. We used Adobe Premiere Pro
CS5.5 to add three effects to each video in order to make it
unrecognizable: (1) Gaussian Blur (165), (2) Mosaic (horizontal
29 and vertical 25), and (3) Sharpen (764).

FIGURE 2 | Examples of feedback videos. (A) Rewarding social feedback
video, (B) non-rewarding social feedback video, (C) rewarding individualized
feedback video, (D) non-rewarding individualized feedback video, (E)
rewarding control feedback video, and (F) non-rewarding control feedback
video.

Control Feedback (CF) Video
The rewarding feedback videos depicted a green tick mark (see
Figure 2E) and the non-rewarding feedback (see Figure 2F)
videos depicted a blue cross, both appearing on colored
fractal images. Five different backgrounds were selected so that
the same number of different videos was presented for all
feedback conditions.

The software Presentation 9 (Neurobehavioral Systems,
Albany, CA, United States1) was used for stimulus presentation
and response collection. After task completion all participants
rated each video (in total 30 videos) on a 10-point Likert scale
ranging from 0 (non-rewarding) to 10 (very rewarding).

Questionnaires
The parent of each participant filled out the Social Responsiveness
Questionnaire (SRS, Constantino et al., 2003). This questionnaire
is designed to assess the severity of autism spectrum symptoms
from subclinical characteristics to highly impaired social skills.
We were specifically interested in the subscale “restrictive
interests and repetitive behavior,” since it reflects rigid behavior
and stereotypes typically observable in children with ASD, but
also subclinical variance in TD children.

Analyses
All behavioral data were analyzed using MATLAB 8.1 and IBM
SPSS Statistics 21. First, Mann-Whitney tests were computed
to compare the parameter estimates of the model. Second,
General Linear Model (GLM; univariate and repeated-measures)
analyses were computed in order to assess main effects
and interactions of various error rates (within-group factors:
Social/Individualized/Control Feedback; between-group factor:
age-group). Post hoc t-tests were performed to determine
differences between conditions. Additional ANOVAs with a
variable specifying the order of each feedback (i.e., social feedback
as first, second or third run, individual feedback as first, second
or third run and control feedback as first, second or third run) as
a factor were computed to check for order effects.

We made the data and code for the model and descriptive
analyses publicly available: Open Science Foundation2.

Computational Models
We then computed a simplistic anti-correlated Rescorla-Wagner
(RW) model, which has also been used to infer learning
in probabilistic reversal learning tasks (Gläscher et al., 2009;
Hauser et al., 2014) and two versions of a hierarchical Gaussian
filter (HGF) model, which specifically considers learning in an
uncertain environment as in the case of a probabilistic reversal
learning task (Hauser et al., 2014). We compared all three
models (see below) using Bayesian model comparison to quantify
which of these models best explained the observable behavior (a)
separately within both age groups and (b) across age groups.

Anti-correlated rescorla-wagner (RW) learning model
The RW model has a fixed learning rate across the whole
experiment. The reward prediction error (RPE) δ at each trial

1http://www.neurobs.Com
2https://osf.io/6hbw4
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(t) was computed as the difference between the anticipated
(V(t)

chosen) and the received (R(t)) outcome:

δ(t)
= R(t)

− V(t)
chosen

Previous studies have suggested that individuals also use
the counterfactual information where always one choice is
correct, the other is incorrect, to update their stimulus-reward
association. Therefore, we applied the anti-correlated RW model,
an extension of the standard RW model, where the values of both
options, chosen and unchosen (i.e., box 1 and box 2, see Figure 1)
were updated using the RPE δ:

V(t+1)
chosen = V(t)

chosen + αδ(t)

V(t+1)
unchosen = V(t)

unchosen − αδ(t)

where α depicts the learning rate, which is constant
throughout the experiment.

Hierarchical gaussian filter (HGF) models
It can be argued that the numerous reversals in the paradigm
constitute an unstable environment, which requires the learning
rate to adapt according to the individuals estimates of
the environmental volatility. Perseverative errors, resembling
cognitive inflexibility, might then result from either a smaller
learning rate, which might be plausible due to a smaller degree
of cognitive maturation in children, or a lower capacity to
quickly adapt the learning rate to a changing environment or
both. Accordingly, a hierarchical Gaussian filter (HGF) model
(Mathys et al., 2011, see Figure 3) has been shown to provide
the best model fit for explaining behavior during a probabilistic
reversal learning task in adolescence (e.g., in comparison to a
simple RW model), using an identical task as in the current
study (Hauser et al., 2014). Hence, we computed two HGF
models, one according to Hauser et al. (2014) including the
estimation of the model parameter theta ϑ, and one with the
model parameter theta ϑ fixed. Our rational for this additional
model was that the task structure was not designed with variance
in volatility, because contingencies always switched after the
association was learned. This in turn might preclude an unbiased
subjects-specific estimate of theta ϑ. We chose ϑ to be fixed
to −3.5066 (empirically derived from the mean estimate of the
whole group of participants from the HGF model containing
this parameter). In contrast to the more simplistic RW model,
the HGF models employ a flexible learning rate, which adapts
to changes in the volatility of the environment and according to
the beliefs of the participant about the current value of an object.
It thus fully complies with the Bayesian brain hypothesis, which
assumes that the brain always learns in a Bayes-optimal fashion,
given individually different priors (Dayan et al., 1995; Friston,
2010). Note, the exact formulation, the model inversion, and
the complete update equations are described elsewhere (Mathys
et al., 2011). In short, the HGF model is a generative Bayesian
model consisting of a set of probabilistic assumptions governing
learning from sensory stimuli. The model describes a hierarchy
of three hidden states (x1, x2, x3) that evolve in time as Gaussian

random walks. That is, a transition or updating of a state in
time is determined probabilistically, with the walk’s step size
given by certain parameters and the next highest level’s state
within the hierarchy (Mathys et al., 2011). State x1 denotes a
binary environmental state, indicating which stimulus is being
rewarded. State x2is associated with a kind of internal belief of a
value representation (that a target is being rewarded upon choice)
and is being transformed to the probability that x1 is rewarded by
a logistic sigmoid transformation.

p
(

x(t)
1 |x

(t)
2

)
= s

(
x(t)

2

)x(t)
1

(1− s
(

x(t)
2

)
)1−x(t)

1

with s (x) := (1/(1+ e−x)). State x2 evolves over time and is
determined by a Gaussian random walk. The update of state x2
in time from time point t-1 to time point t is characterized by a
normal distribution, i.e., at each time point t. The value of x(t)

2 is
normally distributed with mean x(t−1)

2 and variance ekxt
3+ω

p(x(t)
2 ) ∼ N(x(t−1)

2 , ekxt
3+ω)

Since the variance of this random walk can be taken as a
measure of the volatility of x2, the log-volatility kxt

3 + ω has
two components, one phasic and the other tonic: x3 is a state-
dependent (phasic) log-volatility, which (together with the free
parameter ω, i.e., subject-specific volatility), determines the
updating of x2. κ is a scaling factor and was fixed to 1 as in Vossel
et al. (2013) and Hauser et al. (2014). The state x3 is normally
distributed with mean x(t−1)

3 and variance ϑ. ϑ is a free parameter
and can be regarded as a subject- specific meta-volatility.

p(x(t)
3 ) ∼ N(x(t−1)

3 , ϑ)

The variational inversion of the model yields subject-specific
Gaussian belief trajectories about x2 and x3, represented by
their means µ2, µ3and variances (or, equivalently, precisions)
σ2, σ3 (π2,π3). This inversion reveals that the trial-by-trial
update equations highly resemble the update equations from RW
model:

δ
(t)
1 = R(t)

− s(µ̂(t)
2 )

where µ̂
(t)
2 = µ

(t−1)
2 is the trial-by-trial mean of the Gaussian

prior at the second level and R(t) := x(t)
1 . µ̂

(t)
2 is updated by a

precision-weighted RPE

µ̂
(t+1)
2 = µ

(t)
2 = µ̂

(t)
2 + σ

(t)
2 δt

1

where σ
(t)
2 is the trial-by-trial variance at level 2. It can be

expressed by a ratio of precision estimates π̂

σ
(t)
2 =

π̂
(t)
1

π̂
(t)
2 π̂

(t)
1 + 1

π̂
(t)
2 :=

1

σ
(t−1)
2 + eµ

(t−1)
3 +ω

π̂
(t)
1 :=

1

s(µ(t−1)
2 )(1− s(µ(t−1)

2 )
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FIGURE 3 | Hierarchical Gaussian filter model according to Hauser et al.
(2014). Markovian states are denoted by X1 to X2 and ω, and β are the free
parameters. These parameters determine the actual choice behavior (γ)
probablisticly.

For the update equations at level 3 and for the derivation of the
equations, please refer to Mathys et al., 2011.

Both HGF learning models were combined with a softmax
decision model [commonly used for reversal learning and
decision-making tasks (e.g., Niv et al., 2012; Diaconescu et al.,
2014; Hauser et al., 2014, 2017; Boehme et al., 2016)], i.e., a
model describing how internal beliefs of value representations are
translated into binary decisions (e.g., left or right button press).

p (A) =
1

1+ e−β(VA−VB)

where p (A) denotes the probability of choosing object A and β

is a free parameter.
Using this combination of learning and decision model,

the following free parameters can be estimated: (a) decision
parameter β (i.e., the free parameter of the softmax decision
function), (b) volatility parameter ω, and (c) meta-volatility
parameter ϑ, (fixed to −3.5066 or estimated). (a) The decision
function parameter β determines to what extent the internal
beliefs of value representations are directly translated into
behavior which favors the best option or how strong the choice
is influenced by randomness. A smaller β would indicate more
“decision noise” or randomness, but implicitly result in stronger
behavioral tendencies to explore options which are currently non-
favored by the internal model. Thus, β can also be considered
an indication of the exploration-exploitation dimension of the
participant’s behavior. A higher β would indicate a more frequent
exploitation of the best option (Cohen Jonathan and Aston-
Jones, 2005; Cohen et al., 2007; Hauser et al., 2014), which we
hypothesize might be valid for individuals with less subclinical
rigid and repetitive behavior. (b) The subject-specific volatility
parameter ω allows for individual differences in the updating
of the internal beliefs of stimulus-reward associations and thus

governs to what extent new (conflicting) information is used
to update the estimation of the prediction strength. A smaller
ω would indicate that new information (i.e., received feedback)
is used less readily to update existing internal beliefs (i.e.,
beliefs about which stimulus is being rewarded). (c) The meta-
volatility parameter ϑ indicates how variable the state-dependent
volatility estimate (x3) is, and thus can be regarded as a
subjects’ tendency to believe volatility is changing over time. For
both HGF models, all parameters were estimated separately for
the three feedback conditions. Furthermore, we also extracted
individual “learning rates” (i.e., weighting of RPE updates) per
trial and computed the average learning rate per participant.
In both HGF models, RPE updating is governed by the trial-
by-trial variance at x2 and highly resembles the learning rate
α from Rescorla-Wagner models. Taken together, the model
parameters of interest and the learning rate indicate how well
participants learn and how efficiently they are able to integrate
the feedback information to their current beliefs, given a model-
based approach.

We performed Bayesian model selection (BMS) for groups
across all participants and for each age group separately. To
further investigate learning and decision-making impairments,
we compared the parameter estimates of the model that
performed best across all subjects using Mann-Whitney tests.

Behavioral Analyses of Error Patterns
We also performed a standard analysis of error types, to compare
against earlier studies (D’Cruz et al., 2013). In addition to the
percentage of overall errors, we further distinguished between
two specific types of errors: (1) regressive errors are made
when participants choose the previously reinforced target (now
incorrect choice) after having already chosen the new and correct
target at least once, and (2) perseverative errors are made when
participants continue to choose the previously reinforced target
(now incorrect choice) before they chose the new and correct
target. Regressive errors thus indicate failure to retain a newly
identified and correct pattern while perseverative errors indicate
failure to quickly shift the response after a reversal.

RESULTS

Model Comparison
Using Bayesian Model Selection (BMS) for groups (Stephan
et al., 2009; Rigoux et al., 2014), we found that the HGF model
with meta-volatility parameter ϑ being fixed performed better
compared to the HGF including an estimation of the meta-
volatility parameter ϑ and the anti-correlated RW model across
all subjects as well as for both age groups separately (i.e., children
and adolescents; Px = 0.95; Px is the exceedance probability), thus
the probability that the HGF including a fixed meta-volatility
parameter ϑ performs better than the other two models included
in the comparison is 95% (see Table 1).

To further validate our model selection, we aimed to recover
the selected model in a simulated data set. We therefore simulated
data sets for children and adolescents using the estimated
parameters from the wining model and applied the same model
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TABLE 1 | Exceedence probability for the model comparison between the HGF
model with meta-volatility parameter ϑ being fixed, the HGF including an
estimation of the meta-volatility parameter ϑ and the anti-correlated RW model.

Exceedence Probability

HGF ϑ being fixed
versus
RW

Across all
conditions

0.95

HGF ϑ being fixed
versus
HGF ϑ being estimated

Across all
conditions

0.99

fitting and selection procedure as to the actual data set. These
additional analyses further confirmed that the HGF including
a fixed theta was the best fitting model. For more detailed
description and analyses see Supplementary Material.

Model Parameter Comparison
For a complete overview of the model parameter comparison see
Table 2. Mann-Whitney tests comparing the model parameters
and average learning rate across participants and conditions
revealed that TD children and adolescents showed no significant
overall difference in the decision parameter (β: children, 5.96
[4.18]; adolescents, 5.91 [4.01]; U = 344; z =−1.443; p > 0.05).

We also found no significant differences between age
groups for the overall subject-specific volatility estimate across
conditions (ω: children, 0.77 [0.81]; adolescents, 0.50 [0.79];
U = 269; z = −1.443; p > 0.05). However, detailed inspection
of group differences between specific conditions revealed that
the subject-specific volatility estimate ω differed between age-
groups in the control feedback condition (ω: children, 1.01 [1.13];
adolescents, 0.34 [0.80]; U = 222; z = −2.281; p = 0.023), but
less pronounced for the other conditions (individual feedback
condition: children 0.83 [1.01] and adolescents 0.58 [0.87];
U = 317; z = −0.588; p > 0.05 and social feedback condition:
children 0.47 [1.11] and adolescents 0.58 [0.89]; U = 347;
z =−0.53; p > 0.05).

Children and adolescents did not differ in their average
learning rate across conditions (children, 0.21 [0.12]; adolescents,
0.26 [0.12]; U = 220; z = −0.160; p > 0.05), but in the control
feedback condition (children, 0.18 [0.16]; adolescents, 0.28 [0.12];
U = 182; z = −2.36; p = 0.018), though not in the individual
feedback (children, 0.21 [0.13]; adolescents, 0.26 [0.16]; U = 293;
z = −0.585; p > 0.05) and social feedback condition (children,
0.24 [0.12]; adolescents, 0.25 [0.12]; U = 291; z = −0.417;
p > 0.05).

To further illustrate the impact of differential model
parameters on the dynamics of internal beliefs, we extracted
individual estimates of hierarchical states within the HGF model
on a trial-by-trial basis. We first extracted the averaged learning
rate and the current value representation across conditions
aligned to reversal trials and two trials before and six trials
thereafter (Figures 4, 5B). We then averaged a sequential series
of trials, aligned to reversal trials. The learning rate of adolescents
increased rapidly at the time of reversal and decreased quickly
thereafter, along with a quick decline in the value representation

for the choice of stimulus A. On the other hand, children had a
smaller learning rate during reversals, along with a slower value
representation update.

Percentage of Overall Error
All error rates were normally distributed. A mixed 3× 2 ANOVA
analysis with type of feedback (Social/Individualized/Control
Feedback) as within-group factor and the between-group factor
age-group (Children/Adolescents) revealed a significant feedback
x age-group interaction [F(2,102) = 5.65; p = 0.006] and a
main effect for age-group [F(1,51) = 8.57; p = 0.005], see
Figure 6A. Post hoc independent-samples t-test revealed that
children (M = 40.42%; SD = 7.95) made significantly more errors
than adolescents (M = 33.44%; SD = 9.4; t(51) = 2.93; p = 0.005).
Additional post hoc independent-samples t-tests further revealed
that children made significantly more errors in the control
(children: M = 41.22%; SD = 8.77; adolescents: M = 32.27%; SD
7.61; t(51) = 3.95; p < 0.001) and individual feedback condition
(children: M = 41.94%; SD = 9.38; adolescents: M = 32.87%; SD
11.38; t(51) = 3.17; p = 0.003), but not in the social feedback
condition (children: M = 38.12%; SD = 8.51; adolescents:
M = 33.19%; SD 12.45; t(51) = 1.01; p = 0.319). There was no
order effect, neither for the social [F(1,51) = 0.02; p = 0.977], or
the individual [F(1,51) = 0.25; p = 0.778] or the control feedback
[F(1,51) = 0.41; p = 0.669].

Percentage of Regressive Errors
A regressive error is defined as an error whereby participants
choose the previously reinforced response after having already
chosen the new and correct choice at least once. The regressive
errors thus indicate how well someone retains the new
and correct pattern after having identified the new target
at least once correctly. A mixed 3 × 2 ANOVA analysis
with type of feedback (Social/Individualized/Control Feedback)
as a within-group factor and the between-group factor age-
group (Children/Adolescents) revealed no significant interaction
[F(2,102) = 2.27; p = 0.114] nor a main effect for condition
[F(1,102) = 2.74; p = 0.074], but a significant main effect for
age-group (F1,51) = 10.84; p = 0.002) (see Figure 6B). Post hoc
independent samples t-test revealed that children (M = 27.67%;
SD = 10.99) made significantly more regressive errors than
adolescents (M = 18.19%; SD = 9.82; t(51) = 3.29; p = 0.002).
There was no order effect, neither for the social [F(1,51) = 0.07;
p = 0.932], or the individual [F(1,51) = 1.10; p = 0.341] or the
control feedback [F(1,51) = 0.70; p = 0.501].

Percentage of Perseverative Errors
A perseverative error is defined as a trial in which participants
chose the previously reinforced response despite ongoing
negative feedback before they chose the new and correct target.
The perseverative errors thus indicate how fast someone shifts
the response after a reversal. A mixed 3 × 2 ANOVA analysis
with type of feedback (Social/Individualized/Control Feedback)
as within-group factors and the between-group factor age-
group (Children/Adolescents) revealed no significant interaction
[F(2,102) = 1.51; p = 0.231], but a significant main effect for
feedback condition [F(2,102) = 3.77; p = 0.030] and age-group
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TABLE 2 | Model parameter and learning rate comparison using Mann-Whitney tests across participants and conditions.

Children Adolescents Significance

Decision parameter β –
mean [SD]

Across all conditions 5.96 [4.18] 5.91 [4.00] U = 344; z = −1.443
p > 0.05

Subject-specific volatility
estimate ω- mean [SD]

Across all conditions 0.77 [0.81] 0.50 [0.79] U = 269; z = −1.443
p = 0.149

Control feedback 1.01 [1.13] 0.34 [0.80] U = 222; z = −2.281
p = 0.023

Social feedback 0.47 [1.11] 0.58 [0.89] U = 347; z = −0.53
p > 0.05

Individualized Feedback 0.83 [1.01] 0.58 [0.87] U = 317; z = −0.588
p > 0.05

Learning rate
- mean [SD]

Across all conditions 0.21 [0.12] 0.26 [0.12] U = 220; z = −0.160
p > 0.05

Control feedback 0.18 [0.16] 0.28 [0.12] U = 182; z = −2.36
p > 0.05

Social feedback 0.24 [0.12] 0.25 [0.12] U = 291; z = −0.417
p = 0.018

Individualized Feedback 0.21 [0.13] 0.26 [0.16] U = 293.5; z = −0.585
p > 0.05

FIGURE 4 | (A) Average learning rate. (B) Value representation [1: stable internal belief that stimulus (A) is being rewarded, and 0: stable internal beliedf that stimulus
(B) is being rewarded] for a time frame aligned to reversals [two trials before a reversal (–2 and –1), and six trials after a reversal (0–5) across all conditions]. Blue:
adolescents, red: children. Note, the values at a specific trial (e.g. 0, the reversal trial) indicate the changes in values after feedback has been received.

[F(1,51) = 4.67; p = 0.035] were observed (see Figure 6C). First,
post hoc independent-samples t-test revealed that adolescents
(M = 13.43%; SD = 5.30) made significantly more perseverative
errors than children across all conditions (M = 10.20%; SD = 5.56;
t(51) = 2.16; p = 0.035). Second, post hoc paired-sample t-test
revealed that across age groups significantly more errors were
made during the social feedback (M = 12.82%; SD = 0.10)
than during the control feedback condition (M = 10.91%;
SD = 0.01; t(51) = 2.56; p = 0.014) and the individual feedback
condition (M = 11.11%; SD = 0.06; t(51) = 2.14; p = 0.037),
but no significant difference between the control and individual
feedback conditions (t(51) = 0.32; p = 0.745). There was no order
effect, neither for the social [F(1,51) = 0.15; p = 0.864], or the
individual [F(1,51) = 1.50; p = 0.232] or the control feedback
[F(1,51) = 1.50; p = 0.232].

Error Rates in Simulated Models
We further aimed to recover the empirical differences in error
rates between children and adolescents in a simulated data set,

using the empirically determined mean estimated parameters
from the model estimation step (see Supplementary Material for
details of the simulation). These recovered error rates revealed a
comparable pattern as the empirical error rates described above
(see section “Percentage of Regressive Errors” and “Percentage
of Perseverative Errors ”). That is, adolescents made more
perseverative errors than children, and at the same time less
regressive errors than children.

Valence Rating of Feedback Videos
A mixed 3 × 2 × 2 ANOVA analysis with type of feedback
(Social/Individualized/Control Feedback) and valence
(Rewarding/Non-rewarding) as within-group factors and
the between-group factor age-group (Children/Adolescents)
revealed a significant main effect for valence [F(1,51) = 256.92;
p < 0.001], but no significant three-way interaction
[F(1,44) = 0.445; p = 0.644], main effect for age-group
[F(1,51) = 1.84; p = 0.182], or main effect of type of feedback
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FIGURE 5 | Exemplary averaged learning rate (A) and valye representation (B) across all feedback conditions for two children (red lines) and two adolescents (blue
lines) aligned to reversal trials (“0”) and two trials before and 5 trials thereafter.

FIGURE 6 | Mean percentage of (A) overall errors, (B) regressive errors, and (C) perseverative errors per condition and age group. CF, control feedback; IF,
individualized feedback; SF, social feedback.

[F(1,51) = 0.500; p = 0.610]. As intended, participants rated
the rewarding feedback videos (M = 6.99; SD = 1.39) as more
rewarding [t(51) = 16.05, p < 0.001] than the non-rewarding
feedback videos (M = 2.39; SD = 1.39).

Correlational Analyses
First, we computed correlational analyses between the (a)
extracted model parameters and the learning rate and (b) errors
in order to gain further insight into the relation between the
model parameters and measurable behavior (i.e., error rates)
to ensure face validity of the parameter value interpretations.
Second, we computed correlational analyses between extracted

model parameters and a clinical measure of “restrictive interests
and repetitive behavior” measured by a subscale of the Social
Responsiveness parent-questionnaire [SRS-RRB]. This subscale
reflects rigid behavior and stereotypes typically observable in
children with ASD, but also subclinical variance in typically
developing (TD) children.

Model Parameters and Errors
The exploration-exploitation estimate β correlated with the
percentage total errors (r = −0.292; p = 0.034), but not
with perseverative errors (r = 0.114; p = 0.421) or regressive
errors (r = −0.094; p = 0.507). The subject-specific volatility
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estimate ω did not correlate with the percentage of total
errors (r = −0.11; p = 0.424), regressive errors (r = −0.23;
p = 0.109), or perseverative errors (r = 0.227; p = 105). All
results remain significant when Bonferroni corrected. The overall
average learning rate correlated negatively with the percentage
of total errors (r = −0.289; p < 0.05), but not with regressive
errors (r = −0.166; p > 0.05) or with perseverative errors
(r = 0.14; p > 0.05).

Level of Social Responsiveness (SRS-2)
The SRS Total score was marginally correlated with the parameter
β (r = 0.27; p = 0.059) and the SRS-RRB score was positively
correlated with the parameter β (r = 0.32; p = 0.025), suggesting
a link between the shape of the decision function translating
value representation into behavior and inflexibility in everyday
behavior. The subject-specific volatility estimate ω did not
correlate with the SRS-RRB (r = 0.01; p = 0.954).

DISCUSSION

Cognitive flexibility is an essential skill that allows us to cope
with the demands of a continuously changing environment and
moreover is deficient in a broad range of neurodevelopmental
and psychiatric disorders. We investigated the (1) developmental
differences from childhood to adolescents in probabilistic
reversal learning as an index of cognitive flexibility (2) using a
computational modeling approach (3) comparing various types
of feedback. In addition to mere differences in error rates, the
analysis of model parameters provides a more nuanced picture of
the psychological processes underlying performance differences
during development from childhood to adolescence.

First, children made more overall errors than adolescents,
which is in line with previous studies demonstrating an
improvement of executive functioning from childhood to
adolescence (Blakemore and Choudhury, 2006), including
decision-making (Crone et al., 2003; Kerr and Zelazo, 2004;
Overman, 2004; Van Duijvenvoorde et al., 2012), cognitive
flexibility (Crone et al., 2004; Alvarez and Emory, 2006; Zelazo
and Carlson, 2012), and (probabilistic) feedback learning (Van
Duijvenvoorde et al., 2008; Eppinger and Kray, 2009; Hämmerer
and Eppinger, 2012; Van Duijvenvoorde et al., 2013). However,
the exact mechanisms underlying developmental differences
in cognitive flexibility from childhood to adolescence to date
remain poorly understood and are difficult to infer from
error patterns alone. Hence, previous studies provided various
explanations for behavioral differences in cognitive flexibility
during development, such as difficulties in distinguishing
informative and non-informative feedback (see for a discussion:
Kirkham and Diamond, 2003), differences in monitoring
(Davies et al., 2004; van Leijenhorst et al., 2006), inhibitory
(Huizinga et al., 2006) or cognitive control mechanisms (Van
Duijvenvoorde et al., 2008). Modeling approaches might thus
help to understand how participants integrate information
throughout the task by providing a more stringent mapping
between model parameters and assumed psychological processes.
Specifically, the HGF modeling has been successfully used to infer

mechanisms underlying cognitive flexibility (Jiang et al., 2014)
under multiple forms of uncertainty (e.g., perceptual uncertainty
and environmental volatility) (Mathys et al., 2011). The HGF
approach can model how the brain flexibly integrates information
across different time scales to predict change by dynamically
updating predictions based on integrating past information with
recent observations (see for review: Jiang et al., 2014). In the
specific case of probabilistic reversal learning, this implies that
the participants use the given feedback to improve future choices
via maximization of favorable outcomes.

Second and with respect to the parameter ω, our results
suggest that children had a bias toward a slower update of their
estimation of the prediction strength for a rewarding outcome
than adolescents as reflected by a smaller individual volatility
parameter in the control feedback condition. This is also related
to a smaller learning rate in the control feedback condition
(see section “Model Parameter Comparison” and Figure 4A for
the learning rate specifically around a reversal). Thus, our data
suggest that children use new and conflicting information less
readily and less immediately than adolescents to update their
internal beliefs of stimulus-reward associations, resulting in less
efficient learning in the context of an unstable environment (see
Figure 4), specifically when the feedback is a simple cross or
check mark (control feedback). This conclusion is consistent with
previous accounts suggesting a less efficient updating based on
feedback (Eppinger and Kray, 2009; Hämmerer and Eppinger,
2012; Van Duijvenvoorde et al., 2013, 2008). It is plausible that
this mechanism also underlies the higher overall and the higher
regressive error rate in children as compared to adolescents.
Children, who update their internal beliefs of stimulus-reward
association slower, are also likely to make more errors. Note
that on the other hand a “too fast” updating could also result
in increased number of errors. Thus, it is rather necessary to
have an optimal updating “speed.” This is particularly relevant
for regressive errors in later stages after a reversal, since with
slower learning rates children are slower in reaching a level of
internal beliefs where the correct option is clearly represented as
favorable (see Figures 4A,B). In other words, they seem to have
a less stable representation of the stimulus-reward association,
which in turn might result in more changes of response choice
and hence in less preservative but more regressive errors. The
findings of (i) the negative correlation between overall average
learning rate and the number of total and regressive errors, but
(ii) no correlation with perseverative errors as well as (iii) the
negative correlation between the parameter ω and the number
of total and regressive errors, but (iv) positive correlation with
perseverative errors further substantiates this conclusion. On the
other hand, fast updating in adolescents after each reversal results
in relatively few overall errors as well as few regressive errors since
the correct option is clearly represented as favorable soon after a
reversal with only a short period of “doubt” (see Figures 4, 5).

Third, slight differences between conditions could be
observed. First, the difference between children and adolescents
was most pronounced for both total number of errors and the
parameter ω during the control feedback condition. Second, with
respect to overall errors we found less prominent differences
between children and adolescents during the social feedback
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conditions. Third, we also found more perseverative errors
during social feedback compared to control and individualized
feedback across age-groups. On the one hand, it might be
hypothesized that specifically in real life settings social feedback
is typically more consistent and that contingencies usually do not
change as fast as during this laboratory setting, resulting in slower
updating of a value contingency. On the other hand, it might also
be plausible that social feedback generates a stronger association
resulting in more “difficulties” to reverse an association and learn
a new one. Presumably, additional motivational mechanisms
may come into play for social and individual feedback conditions
whereas the control feedback condition might best reflect “pure”
reversal learning to reveal general mechanisms.

Lastly, we observed a relationship between external measures
of everyday behavior and modeling parameters, suggesting that
our findings may extend, at least to a certain degree, beyond the
specific paradigm in a laboratory setting. We found a correlation
between the specific decision-making model parameter beta and
a measure of rigidity in everyday life (i.e., SRS-RBB). Thus,
there could be a link between rigidity and a tendency to always
stick to the potentially best option as favored by an acquired
internal model, i.e., exploit the inferred contingencies. This is
in line with the interpretation of the parameter beta in terms of
implicit exploration/exploitation behavior (Cohen Jonathan and
Aston-Jones, 2005; Cohen et al., 2007; Hauser et al., 2014) and
would be a maladaptive behavior in highly volatile environments.
This relationship may provide one possible explanation of
how impairments in cognitive flexibility translate into behavior.
Further studies in patients with high levels of behavioral rigidity
(e.g., Obsessive-compulsive disorder, Autism spectrum disorder
or Anorexia nervosa) are needed to explore this hypothesis.

Taken together, we could show for the first time that
hierarchical Bayesian modeling (here: HGF-model) is a valid
approach to assess developmental effects in reversal learning. We
observed that the subject-specific volatility parameter changes
during typical development from childhood to adolescence and
that children in general have a smaller learning rate. Differences
in these parameters may explain the typical differences in error
patterns in children and adolescents during a probabilistic
reversal learning task, and are associated with overall cognitive
flexibility. That is, children might be less sure which stimulus
will most probably be rewarded, because they use the feedback
less readily and immediately to adapt their behavior. Adolescents,
on the other hand, used the feedback they received in a more
efficient way, since after having established stronger stimulus
response associations they changed their response choice when
their stimulus-reward association had been updated quickly and
efficiently. In line with this interpretation, Van Duijvenvoorde
et al. (2013) showed that children and adolescents are not
generally impaired in probabilistic feedback monitoring, but
are specifically impaired in updating their stimulus-reward
association based on received probabilistic feedback.

Developmental differences in performance on decision-
making or feedback learning have often been attributed to less
mature frontal brain development in children, resulting in less
developed control, monitoring and/or inhibitory capabilities in
children compared to adolescents (e.g., Crone et al., 2004; Davies

et al., 2004; van Leijenhorst et al., 2006), suggesting a top-
down modulation of learning. Our results support the idea of
developmental differences in hierarchical top-down processing,
since we observed superiority of the HGF model in comparison
to a simple bottom-up learning model in both age-groups, but
further development and “shaping” of the model parameters
with increasing age. The latter may be associated with cortical
maturation or accumulated experience (e.g., estimating the
environment as more volatile in adolescence than in childhood)
that occurs from childhood to adolescence.

Yet, in future investigations, neuroimaging methods such
as functional magnetic resonance imaging (fMRI) should be
used to reveal differential developmental neural mechanisms
associated with respective model parameters. Previous studies
have attributed differences in probabilistic feedback learning
to regional and connectivity changes of the prefrontal cortex
(Hämmerer and Eppinger, 2012; van den Bos et al., 2012) that
undergoes prominent changes during adolescence (e.g., Paus,
2005; Crone and Dahl, 2012; Konrad et al., 2013) and is associated
with cognitive control, monitoring, and inhibitory mechanisms.
However, it would be crucial to investigate to what extent the
Bayesian modeling approach may add to that knowledge by
relating developmental changes in model parameters to specific
functional brain changes. For example, Hauser et al. (2015b)
demonstrated that adolescents and adults performed comparably
in a probabilistic reversal learning task. However, differences in
modeling parameters indicated that adolescents learned faster
from negative feedback, which was associated with altered brain
activation within the anterior insula.

Furthermore, the modeling approach to reversal learning
is particularly promising to study participants with various
neurodevelopmental and/or psychiatric disorders to investigate
atypical development and the disturbance of cognitive flexibility
and reward processing during development and its impact on
various domains. Specifically, we found a correlation between the
model parameter beta and a measure of subclinical rigidity in
everyday life. Children and adolescents with varying psychiatric
disorders, including ASD, OCD, and ADHD, show deficits in
cognitive flexibility and reward processing (Demurie et al., 2011;
Kohls et al., 2011; Hauser et al., 2014; Verfaillie et al., 2016; Tezcan
et al., 2017). Appropriate model-based approaches provide
the opportunity to augment standard behavioral analyses and
provide a closer link to underlying psychological mechanisms
and their underlying neural substrates.
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