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The longitudinal dynamics and natural 
history of clonal haematopoiesis

Margarete A. Fabre1,2,3,10, José Guilherme de Almeida4,10, Edoardo Fiorillo5, Emily Mitchell1,2,3, 
Aristi Damaskou2,3, Justyna Rak2,3, Valeria Orrù5, Michele Marongiu5, 
Michael Spencer Chapman1,2,3, M. S. Vijayabaskar2,3, Joanna Baxter6, Claire Hardy1, 
Federico Abascal1, Nicholas Williams1,2, Jyoti Nangalia1,2,3, Iñigo Martincorena1, 
Peter J. Campbell1,2, Eoin F. McKinney7, Francesco Cucca5,8, Moritz Gerstung4,9 ✉ & 
George S. Vassiliou1,2,3 ✉

Clonal expansions driven by somatic mutations become pervasive across human 
tissues with age, including in the haematopoietic system, where the phenomenon is 
termed clonal haematopoiesis1–4. The understanding of how and when clonal 
haematopoiesis develops, the factors that govern its behaviour, how it interacts with 
ageing and how these variables relate to malignant progression remains limited5,6. 
Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age 
or older over a median of 13 years. We find that 92.4% of clones expanded at a stable 
exponential rate over the study period, with different mutations driving substantially 
different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year 
(SRSF2P95H). Growth rates of clones with the same mutation differed by approximately 
±5% per year, proportionately affecting slow drivers more substantially. By combining 
our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of 
haematopoietic colonies from 7 individuals from an older age group, we reveal 
distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially 
expanded early in life and displayed slower growth in old age, in the context of an 
increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations 
drove expansion only later in life, whereas TET2-mutant clones emerged across all 
ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of 
malignant progression. Our findings characterize the lifelong natural history of clonal 
haematopoiesis and give fundamental insights into the interactions between somatic 
mutation, ageing and clonal selection.

Human haematopoiesis produces hundreds of billions of specialized blood 
cells every day, through a hierarchy of progressively more differentiated 
and numerous cells originating from a pool of long-lived haematopoietic 
stem cells (HSCs). Haematopoiesis remains highly efficient for decades, 
but is inevitably challenged by the erosive effects of ageing7–9 and the inexo-
rable acquisition of somatic DNA mutations10. Mutations that augment 
HSC fitness can drive clonal expansion of a mutant HSC and its progeny, a 
phenomenon known as clonal haematopoiesis1–4. Clonal haematopoiesis 
becomes ubiquitous with advancing age and is associated with an increased 
risk of myeloid leukaemias and some non-haematological diseases1,2,4,5,11,12.

The observation that clonal haematopoiesis-associated mutations 
affect a restricted set of genes that are also frequently mutated in leu-
kaemia1–4—most commonly those involved in epigenetic regulation 
(DNMT3A, TET2 and ASXL1), splicing (SF3B1 and SRSF2) and apoptosis 

(TP53 and PPM1D)—implies that these mutations inherently confer 
fitness to HSCs. In fact, recent evolutionary models assume that each 
specific mutation carries a fixed fitness advantage, and find that this 
largely explains the relative proportions and clonal sizes of clonal 
haematopoiesis driven by different mutations13. However, several 
observations suggest that non-mutational factors are also influential. 
For example, a handful of clonal haematopoiesis cases studied at two 
time points propose that clones driven by the same or similar muta-
tions can behave differently between individuals12,14. Also, the relative 
prevalence of different clonal haematopoiesis-driver gene mutations 
changes significantly depending on context; for example, in aplastic 
anaemia, clonal haematopoiesis is commonly driven by mutations 
that enhance immune evasion15–18, whereas genotoxic stress favours 
clones with mutations in DNA damage genes19–21. Furthermore, factors 
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such as inflammation22 and heritable genetic variation23–25 can affect 
the emergence of clonal haematopoiesis.

A major limitation to our understanding of the determinants of clonal 
haematopoiesis behaviour and fate up to now has been its reliance on 
cross-sectional studies capturing clonal haematopoiesis at single time 
points. Here, by tracking blood cell clones over long periods in a large 
cohort, and by reconstructing haematopoietic phylogenies, we uncover 
the lifelong dynamics and natural history of clonal haematopoiesis.

Mutational landscape of clonal haematopoiesis
We analysed 1,593 blood DNA samples from 385 adults aged 55–93 years 
at the time of entry into the SardiNIA longitudinal study26. The partici-
pants, who had no history of haematological malignancy, were sampled 
up to 5 times (median 4) over 3.2–16 years (median 12.9 years) (Fig. 1a, 
Extended Data Fig. 1a–c). We performed deep sequencing (mean 
1,065× coverage) of 56 genes associated with clonal haematopoiesis 
and haematological malignancy (Supplementary Table 1) and identi-
fied somatic mutations in 52 of these genes (Supplementary Table 2). 
Using the dNdScv algorithm, an implementation of dN/dS (the ratio of 
the number of nonsynonymous substitutions per non-synonymous site 

to the number of synonymous substitutions per synonymous site) that 
corrects for trinucleotide mutation rates, sequence composition and 
variable mutation rates across genes, we identified positive selection 
of missense and/or truncating variants in 17 of these genes27 (dN/dS > 1 
with q < 0.1) (Extended Data Figs. 1d–e, 2, Supplementary Table 3). We 
focussed on these genes for further analysis.

At least one somatic non-synonymous mutation was identified in 305 
of 385 individuals (79.2%), with clonal haematopoiesis prevalence, aver-
age clone size and number of mutations per individual increasing with 
advancing age, and clonal haematopoiesis was identified in more than 
90% of those aged 85 years or older (Fig. 1b, c). Mutations were most 
common in epigenetic regulator genes TET2 and DNMT3A, and also 
frequent in ASXL1, TP53, PPM1D and spliceosome genes (Fig. 1d, top). 
Notably, in this elderly cohort, advancing age affected the prevalence 
of different driver mutations in a gene-dependent manner (Fig. 1d, bot-
tom). In particular, the prevalence of DNMT3A mutations showed no sig-
nificant relationship with age overall (P = 0.12 for a binomial regression 
of gene prevalence versus age, controlling for sex). By contrast, clones 
with TET2 mutations showed a consistent increase with age, averaging 
at 6.8% per year (P = 0.00037), as did those with mutations in splicing 
genes (U2AF1, SRSF2 and SF3B1), whose prevalence increased by 5.4% 
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Fig. 1 | Experimental workflow and clonal haematopoiesis mutation 
characteristics. a, Study outline: 1,593 blood DNA samples were obtained 
from 385 elderly individuals sampled 2–5 times (median 4) over 3.2–16 years 
(median 12.9) and sequenced for mutations in 56 clonal haematopoiesis genes. 
Measured VAFs were used to fit observed clonal trajectories and extrapolate 
the clonal dynamics prior to the period of observation. Additional blood 
samples from 3 selected individuals were used to generate 288 (that is, 3 × 96) 
whole-genome-sequenced single cell-derived colonies for phylogeny 
reconstructions. b, Age distribution of average VAF per individual (n = 1,258 

VAF measurements). The boxes represent the 25th, 50th (median) and 75th 
percentiles of the data; the whiskers represent the lowest (or highest) datum 
within 1 interquartile range from the 25th (or 75th) percentile. c, Age-stratified 
prevalence of the number of mutations per individual. d, Prevalence of 
mutations in driver genes. Top, absolute prevalence in the cohort. Bottom, 
average number of mutations per individual in DNMT3A, TET2 and splicing 
genes (SF3B1, SRSF2 and U2AF1) at different ages, with error bars representing 
bootstrap 90% confidence intervals.
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per year (P = 0.025). These changes in driver prevalence with age could 
not have resulted from exclusion of individuals with haematological 
malignancies, as the incidence of these in the complete SardiNIA cohort 
was only 0.28% (22 out of 7,816), the majority of which were lymphoid.

Most clones expand steadily in older age
To investigate clonal behaviour over time, we used serial variant allele 
fraction (VAF) measurements—the fraction of sequencing reads report-
ing a mutation—as a surrogate for clone size, and fitted a saturating 
(logistic) exponential curve with a constant growth rate over time to 
each clonal trajectory. Such logistic growth behaviour is supported by 
simulations of evolutionary dynamics using Wright–Fisher models with 
constant fitness28 (Extended Data Fig. 3a, b). Remarkably, by assessing 
the fit between serial VAF measurements and the trajectories inferred by 
our model, we find that the great majority of clones (92.4%) expanded at 
a constant exponential rate over the study period (Fig. 2a, b, Extended 
Data Fig. 3c). The predominance of fixed-rate growth was particularly 
marked for genes such as DNMT3A and TET2, for which 99% and 94.3% of 

clones, respectively, grew steadily over time. Nevertheless, some clones 
behaved unpredictably, with proportions varying by mutant gene. Most 
notable were JAK2V617F-mutant clones, which showed irregular growth 
trajectories, with only 58% displaying stable growth. The likelihood of 
mutant clones displaying non-constant growth at older age was not 
affected either by the number of mutations in the same individual or 
by the number of available serial samples (Extended Data Fig. 3d, e).

We further assessed the consistency of clonal trajectories by test-
ing our ability to predict future clonal growth. Using additional 
prospectively-obtained blood samples from 11 individuals, we com-
pared observed versus predicted VAFs (Extended Data Fig. 3f–h, Sup-
plementary Table 4) and found good concordance (mean absolute 
error 3.5%), corroborating our model and providing further evidence 
that fixed-rate growth of clones is the norm in old age.

Determinants of clonal growth rate
To delineate the factors that determine each clone’s growth rate, 
our logistic regression model fits the following contributions of the 
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driver mutation: (1) mutated gene; (2) specific amino acid change (in 
recurrently mutated sites), and (3) mutation type (truncating versus 
non-truncating) (Supplementary Table 5). An additional component in 
our model, measuring variation not captured by (1)–(3), was also used 
and termed ‘unknown-cause growth’ (Extended Data Fig. 3i).

We found that clones bearing mutations in different genes expanded 
at different rates, with mutations affecting DNMT3A and TP53 displaying 
the slowest average annual growth rates of approximately 5% per year 
(Fig. 2c, Supplementary Table 6). Clones with mutations in the other 
most common driver genes (TET2, ASXL1, PPM1D and SF3B1), expanded 
at roughly twice this rate, that is, about 10% per year. The most rapidly 
expanding clones were those carrying mutations in SRSF2, PTPN11 
and U2AF1, which grew at 15–20% per yr on average. The only specific 
mutation displaying distinctive behaviour was SRSF2P95H, which was 
associated with significantly faster expansion compared with other 
SRSF2 mutations. By contrast, all other hotspot mutations drove growth 
at rates similar to mutations elsewhere in the same gene, including 
commonly mutated sites such as DNMT3AR882, SF3B1K666N and SF3B1K700E.

For most genes, truncating and missense mutations drove similar 
rates of growth, including TET2 and DNMT3A, in keeping with the simi-
lar functional consequences of these two types of mutation in these 
genes29,30. Exceptions were (1) TP53, for which clones with missense 
mutations expanded by 10% per year (90% confidence interval [3–18%]) 
faster than truncating mutations (which usually did not expand or even 
contracted), consistent with the reported strong dominant-negative 
effect of missense mutations in this gene31, and (2) CBL, for which clones 
with missense mutations grew 11% per year (90% confidence interval 
[3–19%]) slower than truncating mutations (Fig. 2c, Extended Data 
Fig. 3j, Supplementary Table 6).

To quantify the impact of factors other than driver mutations, we 
compared the observed growth rate of each clone with that predicted by 
the mutation (Fig. 2d). In Fig. 2d, vertical spread represents variability in 
growth rate between clones with the same driver mutation. On average, 
this growth of unknown cause contributed approximately ±5% per year 
to clonal expansion (Fig. 2e). Consequently, for fast-growing clones, 
including those associated with SRSF2P95H or mutant U2AF1, this effect 
was proportionately small and there was relatively little inter-individual 
variability in growth rate. By contrast, the effect on slow drivers such as 
DNMT3A was more substantial, with some clones growing twice as rapidly 
as predicted by the mutation, and others showing negligible expansion. 
Clones harbouring JAK2V617F mutations were an exception as they dis-
played an unusually high degree of inter-individual variability in relation 
to average growth rate (Fig. 2d, e, Extended Data Fig. 4a). In view of the 
well-described heritable contribution to myeloproliferative neoplasm 
(MPN) susceptibility23,24, we tested whether JAK2V617F-mutant clones grew 
more quickly in individuals carrying MPN risk alleles, but found no such 
relationship (Extended Data Fig. 4b, Supplementary Table 7).

The more general observation that certain individuals harboured 
more mutations in the same gene than would be expected by chance 
(Extended Data Fig. 4c) suggests that non-mutation factors influenc-
ing clonal growth are both individual- and gene-specific. We found no 
evidence that these non-mutation factors include either sex or smok-
ing history and that initial clone size made only a small contribution, 
whereas age was a significant factor specifically for TET2-mutant clones, 
which grew faster in older individuals (Spearman’s rho = 0.31; sum of 
squared rank differences (S) = 1.15 × 106; n = 216 TET2 clones; adjusted 
P = 2 × 10−6) (Extended Data Fig. 4d–g).

Lifelong natural history of clonal haematopoiesis
To compare the longitudinal clonal behaviours we observed in older age 
with lifelong clonal dynamics, we began by deriving and whole-genome 
sequencing (WGS) 96 haematopoietic colonies, each originating from 
a single stem or progenitor cell and expanded in vitro to a clone of 
hundreds to thousands of cells, from each of three individuals with 

splicing gene mutations (Fig. 3a–c, Extended Data Fig. 5), particularly 
as previous reports suggested a sharp increase in prevalence of these 
driver mutations late in life3. We constructed phylogenetic trees using 
somatic mutations as lineage-tracing barcodes and, since HSCs accu-
mulate mutations at a near constant rate, we used phylogenetic branch 
lengths to time the onset of clonal expansions (‘clades’)32–37. In PD41276, 
the phylogeny was dominated by an SF3B1K666N-mutant clone, begin-
ning between 23–47 years of age, with only a single SF3B1-wild-type 
colony, consistent with a near-complete clonal sweep (Fig. 3a). In 
PD34493, SF3B1K666N was acquired before the age of 35 years, whereas 
U2AF1Q157R initiated clonal growth later (41–61 years of age) in a previ-
ously expanded clade lacking recognizable drivers (Fig. 3b). Notably, 
an additional apparently driverless expansion—a phenomenon that has 
been recognized to occur in old age2,36—and three further such expan-
sions in PD41305 were observed in this individual (Fig. 3b), (Fig. 3c).  
In PD41305, since the SRSF2P95H mutation was present in only one colony, 
we could time its acquisition only to the broad interval between 13 years 
of age and the age of sampling (73 years of age).

We next used the timing and density of clonal branchings (also 
known as ‘coalescences’) to reconstruct the entire growth trajectories 
of expanded clades using phylodynamic principles33,38,39 (Fig. 3d–h). 
This revealed that the three clades with identified drivers (SF3B1K666N and 
U2AF1Q157R in PD34493, and SF3B1K666N in PD41276), expanded (Fig. 3d–f) 
at calculated rates similar to those observed in our time-series VAF 
measurements during older age (Fig. 3i, left). Of note, SF3B1K666N was 
associated with a substantially different growth rate in PD41276, where 
it expanded at 28% per year according to serial VAFs (29% per year by 
phylodynamic estimate), versus 10% per year in PD34493 (17% per year 
by phylodynamics) (Fig. 3i). Reasons for this difference are unclear, 
but it is notable that the faster-growing clone had antecedent Y loss 
(Fig. 3a), an aberration seen in clades from all three individuals and 
associated with only modest clonal expansion when isolated (Fig. 3a–c). 
Of note, clones without known drivers began to expand within the first 
two decades of life and grew over their lifetimes at rates similar to clones 
with known drivers (14–32% per year) (Fig. 3g, h, Extended Data Fig. 6).

Many clones decelerate before older age
As the phylodynamic reconstruction of a clone goes back to its incep-
tion, we investigated whether clonal growth dynamics during earlier life 
deviate from the stable growth observed during older age. To corrobo-
rate observations from the three individuals depicted in Fig. 3, we con-
ducted additional phylodynamic analyses of trees derived from 1,461 
whole-genome-sequenced single cell-derived colonies from another 
four individuals 75–81 years of age from the study by Mitchell et al.36. 
This revealed that, in many instances, the reconstructed effective popu-
lation size (Neff) of any individual clone grew more slowly towards the 
sampling date and before it saturated the HSC compartment (Fig. 4a, b, 
Extended Data Fig. 7a–c). This characteristic deceleration was quanti-
fied by fitting a biphasic exponential growth model to early and late 
parts of the trajectories (Fig. 4c). In most cases, extrapolating early 
growth (a consistent estimator of the fitness advantage of a clone in 
Wright–Fisher simulations; Extended Data Figs. 7d, 8) led to substan-
tial overestimations of clade size (median 35×; Fig. 4d, Extended Data 
Fig. 7e).

We used our longitudinal cohort to orthogonally test the lifelong 
stability of clonal growth by extrapolating the observed (fitted) trajec-
tory of each clone backwards in time to infer the age at clonal onset.  
To account for stochastic drift, which can lead to faster growth of small 
clones, and the finite carrying capacity of the HSC population, which 
naturally limits or slows large clones, we derived and used an approxi-
mation to a Wright–Fisher process (Extended Data Fig. 4a, b). Whereas 
estimates of age at clonal onset agreed with phylogenetic estimates for 
the fast-growing splice factor mutations (Fig. 3i), for many other clones, 
constant lifelong growth at the rate we observed during old age would 
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be too slow to explain the observed VAFs (Fig. 4e–g), suggesting that 
clonal expansion was faster in earlier life. These observations reveal 
that, at least for some clones and genes, the dynamics observed in later 
life are not representative of those that prevail earlier.

We then assessed the minimum lifetime rate at which clones must 
have grown in order to reach the observed VAFs in our longitudinal 
data—hereafter termed ‘historical growth’—by restricting fits and solu-
tions to growth rates that would place the age of clonal onset within 
individuals’ lifetimes (Fig. 4h, Supplementary Table 8). Expectedly, this 
minimal historical growth rate was typically higher than the growth 
rate observed during the study period (that is, in older age; Fig. 4i, 
Extended Data Fig. 7f). Moreover, the fold changes between histori-
cal and observed growth rates derived from longitudinal data were 
qualitatively in good agreement with the fold changes between late 

growth and expected growth (the latter assuming growth is constant 
through life and carrying capacity is fixed) derived from phylodynamic 
data (Fig. 4c, i, Extended Data Fig. 7f). Thus it emerges that many clones 
grew more rapidly early in life compared with the rate in old age.

Driver genes and lifelong clonal growth
The effect of deceleration was most marked for clones bearing muta-
tions in DNMT3A, BRCC3 and TP53, whose early growth was at least 
twice as fast as that measured during old age (Fig. 4i, j). Conversely, we 
observed almost no deceleration of fast-growing clones harbouring 
U2AF1, SRSF2P95H, PTPN11 or IDH1 mutations (Fig. 4i, j). It is particularly 
notable that the TET2-mutant clones were much less susceptible to 
deceleration than DNMT3A-mutant clones (Fig. 4i, j). This is consistent 
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with the observation that the prevalence of TET2-mutant clonal hae-
matopoiesis is higher at older ages and eventually exceeds that of 
DNMT3A-mutant clonal haematopoiesis, which is more prevalent at 
younger ages (Fig. 1d). A declining relative advantage of DNMT3A muta-
tions in older age was also suggested by the much lower proportion of 
DNMT3A-mutant clones reaching detectable limits during our study 
period compared with clones bearing mutations in other genes (‘incipi-
ent clones’) (Extended Data Fig. 9a).

To derive representative ranges for age at clone onset for each driver 
gene, we capped individual estimates at conception, thus avoiding esti-
mates that projected beyond individuals’ lifetimes (Fig. 4k, Extended 
Data Fig. 9b, c). We also validated this method using simulations and 
confirmed that these ranges are not affected by changes in Neff or gen-
eration time (Extended Data Fig. 9d, e). We estimated that the aver-
age latency between clone foundation and detection in peripheral 
blood at VAF ≥ 0.2% (Supplementary Note 1) was 30 years across all 
clones, with considerable variability between mutant genes, ranging 
from 38 years for DNMT3A-mutant clones to 12 years for U2AF1-mutant 
clones. Most drivers were projected to initiate expansions of clones 
throughout life, compatible with the notion that somatic mutations 
occur at a constant rate32–34. However, solutions for DNMT3A-mutant 
clones concentrated earlier in life, consistent with early initiation and 
rapid expansion followed by marked deceleration then slow growth, as 

previously mentioned. Of note, capping onset at conception is arbitrary 
and it remains possible that some clones start later and exhibit faster 
initial growth followed by even stronger deceleration, a scenario that 
would be more consistent with published fitness estimates of 11–19% 
per year based on cross-sectional VAF measurements13. By contrast, 
SRSF2P95H and U2AF1 mutations initiated clonal expansion always after 
30 years of age and with a median age at onset of 58 and 57 years, respec-
tively (Fig. 4k). This indicates that the reported rarity of these mutant 
clones1–3 in people aged less than 60 years is not owing to slow growth 
over decades, but rather owing to their late onset followed by rapid 
expansion, and provides a plausible explanation for the high risk of 
leukaemic progression associated with these mutations5,40.

Clonal haematopoiesis dynamics and malignancy
To investigate the links between mutation fitness and malignant pro-
gression, we built on our previous study of acute myeloid leukaemia 
(AML) risk prediction5, and revealed that among clonal haematopoiesis 
driver genes, a faster growth rate was associated with a higher AML risk 
(adjusted R2 = 0.55, P = 0.0037; Fig. 5a). For example, genes driving fast 
clonal haematopoiesis growth—such as SRSF2 and U2AF1—were associ-
ated with the highest risks of leukaemogenesis, whereas slow-growing 
clones—such as those bearing DNMT3A mutations—conferred a lower 
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risk. To confirm our findings in larger studies and include myeloid 
malignancies other than AML, we analysed large published datasets 
of AML41 (n = 1,540) and myelodysplastic syndromes42 (MDS) (n = 738) 
using a site-specific extension of the dNdScv algorithm to formally 
quantify the extent to which individual hotspots are under the influence 
of positive selection in these cancers25 (Supplementary Tables 9, 10). 
This analysis revealed a positive correlation between each hotspot’s 
growth coefficient in clonal haematopoiesis and its selection strength 
in myeloid cancer (adjusted R2 = 0.19, P = 0.0016; Fig. 5b), corrobo-
rating the AML risk analysis. Nevertheless, the observation that the 
same clonal haematopoiesis driver gene can progress to either AML 
or MDS, with variable predilections as quantified by gene-level dN/dS 
comparison (Extended Data Fig. 10, Supplementary Table 10), suggests 
that factors other than growth rate can also influence a mutation’s 
malignant potential.

Discussion
The phenomenon of clonal haematopoiesis has served as an exemplar 
in the developing understanding of somatic mutation, clonal selection 
and oncogenesis in human tissues10,43. However, the nature of these 
interrelated processes can change over time and their consequences 
develop only slowly, making them difficult to investigate. Here, we 
studied the longitudinal behaviour of clonal haematopoiesis over long 
periods (median 13 years) and combined this with lifelong phylody-
namic analyses of haematopoiesis to derive new insights into these 
fundamental biological processes.

First, we found that most clones (92%) display stable exponential 
growth dynamics in older age, at rates influenced by their driver muta-
tions. This enabled us to predict future clonal growth trajectories, 
a finding with potentially useful implications for clinical practice 
(Extended Data Fig. 3f–h). Notably, mutations in DNMT3A, report-
edly the most common clonal haematopoiesis driver gene1,2,4, were 
associated with slower clonal expansion than most other clonal hae-
matopoiesis genes. Also, DNMT3A hotspot mutations (for example, at 
codon R882) were not associated with faster growth than other DNMT3A 
mutations (Fig. 2c). By contrast, TET2-mutant clones expanded sig-
nificantly faster over the study period (Fig. 2c) and, reflecting this, 
also reached detectable levels much more frequently on-study than 
DNMT3A-mutant clones (Extended Data Fig. 9a). This resulted in TET2 
becoming the most prevalent clonal haematopoiesis driver after the 
age of 75 years (Fig. 1d).

These findings suggested that, although clonal growth is remark-
ably stable in old age, dynamics in earlier life may deviate from this 
behaviour, challenging the premise that mutation fitness is constant 
over the human lifespan13. To test this, we first attempted to derive 
when individual clonal haematopoiesis clones were founded, using 
simple retrograde extrapolation of observed trajectories. This led to 
projected ages at clonal foundation that preceded conception for a 
large number of clones (Fig. 4f, g), implying that their early growth must 
have been faster than that we observed during old age. This was most 
striking for DNMT3A, for which more than two thirds of projections 
were implausible (that is, onset pre-conception), but less common for 
TET2 and very uncommon for splicing factor genes (Fig. 4g).

To further investigate lifelong clonal behaviour, we analysed hae-
matopoietic phylogenies from healthy old individuals and found that 
aged haematopoiesis was dominated by a small number of expanded 
HSC clones, some of which lacked recognizable drivers36. Using phy-
lodynamic approaches to track clonal growth rates through life, in 
conjunction with findings from our longitudinal cohort, we reveal wide-
spread clonal deceleration prior to the period of stable growth during 
old age, in the context of an increasingly competitive oligoclonal HSC 
compartment (Fig. 4i). DNMT3A-mutant clones, as well as those bearing 
mutations in TP53 and BRCC3 and also apparently driverless clones, 
were among those displaying the most marked degree of deceleration 
(Fig. 4i). The faster growth of DNMT3A-mutant clones in early life is sup-
ported by comparison with the findings of Watson et al., who analysed 
cross-sectional VAF spectra from 50,000 individuals and estimated 
average clonal growth rates across the first 55 years of life; expansion 
of clones was substantially faster in younger individuals13 (15.0% per 
year) compared with older individuals (6.2% per year) (from our study) 
(Supplementary Table 11). By contrast, TET2 mutations appeared to 
drive more stable lifelong growth (Fig. 4h–j), which may underlie their 
apparent ability to initiate clonal expansion fairly uniformly through life 
(Fig. 4k) and the fact that TET2 ‘overtakes’ DNMT3A as the most common 
clonal haematopoiesis driver after 75 years of age (Fig. 1d and ref. 44).

In diametric contrast to DNMT3A and unlike other genes, clonal hae-
matopoiesis driven by mutant U2AF1 and SRSF2P95H initiated only late 
in life (Fig. 4k) and exhibited some of the fastest expansion dynam-
ics (Fig. 2c). These data were corroborated by phylogenetic analyses 
(Fig. 3b, f) and tally with the sharp increase in prevalence of splice 
factor-mutant clonal haematopoiesis3, MDS42,45,46 and AML41,47 in old 
age and the high risk of progression to myeloid cancers associated with 
these mutations5. The particular behaviour of these clones suggests 
a specific interaction with ageing, which could relate to cell-intrinsic 
factors or to cell-extrinsic changes in the aging haematopoietic niche 
that favour splice factor mutations48,49.

Finally, we explored the relationship between clonal growth rate 
in clonal haematopoiesis and the development of myeloid cancers. 
We find that mutations associated with faster clonal haematopoiesis 
growth are also those associated with higher risk of progression to 
AML (Fig. 5a) and are under the strongest selective pressure in AML 
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and MDS (Fig. 5b). Indeed, we show that the average annual growth 
per gene explains more than 50% of the variance in AML risk progres-
sion. This shows that an improved understanding of growth dynamics 
in clonal haematopoiesis can help identify those at risk of myeloid 
malignancies.

Collectively, our work gives new insights into the lifelong clonal 
dynamics of different subtypes of clonal haematopoiesis, the impact 
of ageing on haematopoiesis, and the processes linking somatic muta-
tion, clonal expansion and malignant progression.
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Methods

Study participants
Ethical permission for this study was granted by The East of England 
(Essex) Research Ethics Committee (REC reference 15/EE/0327).  
The SardiNIA longitudinal study recruited individuals from four towns 
in the Lanusei Valley in Sardinia, capturing 5 phases of sample and data 
collection26 over more than 20 years. Informed consent was obtained 
from all participants. We analysed serial samples from 385 individuals 
in the SardiNIA project.

Targeted sequencing and variant calling
Target enrichment of whole-blood DNA was performed using a custom 
RNA bait set (Agilent SureSelect ELID 3156971), designed complemen-
tary to 56 genes implicated in clonal haematopoiesis and haematologi-
cal malignancies (Supplementary Table 1). Libraries were sequenced on 
Illumina HiSeq 2000 and variant calling was performed as we described 
previously5,50. In brief, somatic single-nucleotide variants and small 
indels were called using Shearwater (v.1.21.5), an algorithm designed 
to detect subclonal mutations in deep sequencing experiments51.  
Two additional variant-calling algorithms were applied to complement 
this approach: CaVEMan (v.1.11.2) for single-nucleotide variants, and 
Pindel (v.2.2) for small indels52,53. VAF correction was performed using 
an in-house script (https://github.com/cancerit/vafCorrect). Finally, 
allele counts at recurrent mutation hotspots were verified using an 
in-house script (https://github.com/cancerit/allelecount). Variants 
were filtered as we described previously5,50, but were not curated with 
regard to existing notions of oncogenicity, that is, all somatic variants 
passing quality filters were retained for analysis.

If a variant was identified in an individual at any time point in the 
study, this site was re-queried in the same individual at all other time 
points, using an in-house script (cgpVAF) to provide pileup (SNV) and 
Exonerate (indel) output (https://github.com/cancerit/vafCorrect). No 
additional filters were applied to these back-called variants.

Selection analyses
To quantify selection, we used the dNdScv algorithm, a maximum- 
likelihood implementation of dN/dS, which measures the ratio of 
non-synonymous (N) to synonymous (S) mutations, while controlling 
for gene sequence composition and variable substitution rates27. We 
first applied this method to the mutation calls from the longitudinal 
SardiNIA cohort in order to identify which genes are under positive 
selection in the context of clonal haematopoiesis. For this analysis, 
any mutation that was present in a single individual at multiple time 
points was counted only once. We also compared dN/dS ratios at the 
beginning and end of study, and found the latter to be higher, consist-
ent with stronger cumulative effects of selection at older ages (Sup-
plementary Note 2).

To characterize patterns of selection in AML and MDS, we applied 
dNdScv to two published data sets. The AML set was derived from 1,540 
patients enrolled in three prospective trials of intensive therapy41.  
The MDS set included 738 patients with MDS or closely related neo-
plasms such as chronic myelomonocytic leukaemia42. Both used deep 
targeted sequencing of 111 cancer genes, which overlapped with 13 of 
the 17 genes of interest in our longitudinal clonal haematopoiesis study 
(PPM1D, CTCF, GNB1 and BRCC3 were not sequenced in the AML or MDS 
studies). We called and filtered variants in the 13 overlapping genes 
using the strategy described above (‘Targeted sequencing and variant 
calling’). Variants were identified in all 13 genes in both AML and MDS 
datasets (Supplementary Table 10). We calculated dN/dS values both 
at the level of individual genes, and at single-site level for hotspots, the 
latter using the sitednds function in the dNdScv R package.

Finally, we compared dN/dS ratios in shared and private branches of 
the three phylogenies, and found selection to be stronger in the former, 
consistent with the fact that mutations along shared branches were the 

ones driving subsequent clonal expansions (and therefore were more 
strongly selected) (Supplementary Note 2).

Modelling of clone trajectories through time
We use Bayesian hierarchical modelling to model clonal trajectories. 
Since we are unable to reliably phase different mutations into specific 
clones (Supplementary Note  3) and given that individual clonal  
haematopoiesis clones typically harbour a single driver mutation54, we 
assume that each mutation is heterozygous and its VAF is representative 
of the prevalence of a single clone. Accordingly, for a given individual j 
and mutation i, we have a mutant clone cij. We model the counts  
countscij

for cij  at age t as a binomial distribution (Bin), such that 
∼t t p tcounts ( ) Bin(cov ( ), ( ))c ij ijij

, with covij as the coverage of this muta-
tion at age t and p t α t β( ) Beta( ( ), )ij ∼  as the expected proportion of 
mutant allele copies. As such, ∼t t α t βcounts ( ) BB(cov ( ), ( ), )c ijij

, where 
BB is the beta binomial distribution. Here, ∼β N μ σ( , )od od  is the technical 
overdispersion parameterized as a normal distribution whose param-
eters (μod and σod, the mean and standard deviation, respectively) are 
estimated using replicate data (details below) and α t( ) =

βq t
q t
( )

1 − ( )
, where 

q t b b b t u( ) = ilogit(( + + ) × + )c ijgene sitei i ij
, with ilogit representing the 

inverse function. We use this parameterization to guarantee that 
E p[counts ] = covc ij ijij

. b N(0,0.1)genei
∼  and ∼b N(0,0.1)sitei

 are the gene 
and site growth effects for mutation i, respectively. b N(0,0.05)cij

∼  is 
the growth effect associated exclusively with mutation i in individual 
j—that is, of mutant clone cij—and uij is the offset accounting for the 

onset of different clones at different points in time. We also define the 
growth effect of cij as b b= ( +total geneij i

 b b+ )ucsitei ij
. Throughout this work 

we will refer to b b+gene sitei i
 as the driver (growth) effect and to bcij

 as 
the unknown-cause (growth) effect—the fraction of growth that is 
quantifiable but not explained by the driver mutation, and is attribut-
able to other factors that may affect clonal growth, but differ between 
individuals, such as age, sex, interclonal competition and others.

Preventing identifiability issues and reducing uninformed esti-
mates. To address possible identifiability issues in our model, when a 
gene has a single mutation (JAK2V617F and IDH2R140Q), the effect is con-
sidered to occur only at the site level. To avoid estimating the dynamics 
of a site from a single individual, we only model bsitei

 when two or more 
individuals have a missense mutation on site i, we refer to these sites 
as ‘recurrent sites’. Overall, we consider a total of 17 genes and 39 recur-
rent sites (Supplementary Table 5).

Estimating and validating growth parameters. Using the model de-
scribed above, we use Markov chain Monte Carlo (MCMC) with a Hamilto-
nian Monte Carlo (HMC) sampler with 150–300 leapfrog steps as imple-
mented in greta55. We sample for 5,000 iterations and discard the initial 
2,500 to get estimates for the distribution of our parameters. As such, 
our estimates for each parameter are obtained considering their mean, 
median and 95% highest density posterior interval for 2,500 samples.

We assess the goodness-of-fit using the number of outliers 
detected in any trajectory and consider only trajectories with no 
outliers as being explained by our model and, as such, growing at 
constant rate. Outliers are assessed by calculating the tail  
probabilities of the counts under our model with a hard cut- 
off at 2.5%. Thus, P = 1outlier if P b b b u t(counts | , , , , )c ijgene sitei i ij

|P b b<0.025 (counts | , ,gene sitei i
 b u t, , )c ijij

 >0.975 and P = 0outlier  other-
wise. We validate this approach using Wright–Fisher simulations 
(Supplementary Methods). We additionally assess the predictive 
power of this model on an additional time point that was available 
for a subset of individuals and that was not used in the inference of 
parameters in our model (Supplementary Methods).

Estimating the technical overdispersion parameter. Technical VAF 
overdispersion used two distinct sets of data:
(1)  Horizon Tru-Q-1 was serially diluted to VAFs of 0.05, 0.02, 0.01, 
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https://github.com/cancerit/allelecount
https://github.com/cancerit/vafCorrect


Article
0.005 and 0 using Horizon Tru-Q-0 (verified wild-type at these 
variant sites), then sequenced in duplicate or triplicate;

(2)  19 SardiNIA samples with mutations across 15 genes at a range of 
VAFs, were sequenced in triplicate.

Sample processing and analysis was performed as described in 
‘Targeted sequencing and variant calling’ section. Replicate samples 
were picked from the same stock of DNA, then library preparation and 
sequencing steps were performed in parallel. Variant calls for these 
replicate samples are in Supplementary Table 12.

For (1), we model the distribution over the expected VAF  as a  
beta distribution such that ∼ α βVAF Beta( , )  and for (2) we adopt a 
model identical to the one described earlier in this section but use only 
gene growth effects ( t t α t βcounts ( ) BB(cov ( ), ( ), ),c ijij

∼ α t( ) =
βq t

q t
( )

1 − ( )
, 

q t b t u( ) = ilogit( × + )ijgenei
). Here, we model ∼β rexp( ) with r  as a vari-

able with no prior. We use MCMC with HMC sampling with 400–500 
leapfrog steps as implemented in greta55 to estimate the mean and 
standard deviation of β. For this estimate we use 1,000 samples from 
the posterior distribution.

Non-mutation factors and clonal growth rate
Inherited polymorphisms and JAK2-mutant clonal growth.  
The SardiNIA cohort had previously been characterized using two 
Illumina custom arrays: the Cardio-MetaboChip and the Immuno-
Chip26. Inherited genotypes at 12 loci previously associated with MPN 
risk were extracted for the 12 individuals with JAK2V617F mutation23,24.  
The relationship between each individual’s total number of inher-
ited risk alleles and JAK2-mutant clonal growth rate was assessed by 
Pearson’s correlation. The 46/1 haplotype, which harbours 4 SNPs in 
complete linkage disequilibrium, was considered as a single risk allele.

Age, sex and smoking experience. We assess the association between 
unknown-cause growth and age through the calculation of a Pearson 
correlation considering all genes, both together and separately while 
controlling for multiple testing. We also assess the association between 
unknown-cause growth and sex and smoking history using a multivari-
ate regression where unknown-cause growth is the dependent variable 
and sex and previous smoking experience are the covariates, while also 
controlling for age.

Determining the age at clone onset
We consider that HSC clones grow according to a Wright–Fisher model. 
According to this, for an initial population of HSC n/2, we can consider 
two scenarios—that of a single growth process where the time at which 

the cell first starts growing t0 is described as 
( )

t =
u

b0

log −
n
1

total
, or that of 

a two-step growth process, where t tadjusted = + −
g b
b b0 0

log( / ) 1total

total total
, 

where g  is the number of generations per year. The latter scenario is 
the one chosen, due to its strong theoretical foundation and previous 
application to mathematical modelling of cancer evolution56. The two 
regimes that describe it are an initial stochastic growth regime and, 
once the clone reaches a sufficient population size, a deterministic 
growth regime. The adjustment made to t0 in t adjusted0  can be inter-
preted as first estimating the age at which the clone reached the deter-
ministic growth phase (t +

g b
b0

log( / )total

total
) followed by subtracting the 

expected time for a clone to overcome its stochastic growth phase 

( )b
1

total
. For both n and g we use the estimates based on ref. 33: n = 50,000 

and g = 2. We validate this approach using simulations (Supplementary 
Methods) and test the approach against our serial VAF data and verify 
that changes in n and g  do not have a marked effect on age at onset 
estimates by considering a range of values (n = {10,000; 50,000;
100,000; 200,000; 600,000} and g = {1; 2; 5; 10; 13; 20}).

Cell colonies and phylogenetic trees
Sample preparation and sequencing. We selected 3 individuals 
with splicing gene mutations from the SardiNIA cohort for detailed 

blood phylogenetic analysis. Peripheral blood samples were drawn 
into Lithium-heparin tubes (vacutest, kima, 9 ml) and buccal samples 
were taken (Orangene DNA OG-250). Peripheral blood mononuclear 
cells were isolated from blood and plated at 50,000 cells per ml in 
MethoCult 4034 (Stemcell Technologies). After 14 days in culture, 96 
single haematopoietic colonies were plucked per individual (total 288 
colonies, each made up of hundreds to thousands of cells) and lysed in 
50 μl of RLT lysis buffer (Qiagen).

Library preparation for WGS was performed using our low-input 
pipeline as previously described57,58. The 150 bp paired-end sequenc-
ing reads were generated using the NovaSeq 6000 platform to a mean 
sequencing depth of 15× per sample. Reads were aligned to the human 
reference genome (NCBI build37) using BWA-MEM.

Variant calling and filtering. Single-nucleotide variants (SNVs) and 
small indels were called against an unmatched reference genome using 
the in-house pipelines CaVEMan and Pindel, respectively52,53. ‘Normal 
contamination of tumour’ was set to 0.05; otherwise, standard settings 
and filters were applied. For all mutations passing quality filters in 
at least one sample, in-house software (cgpVAF, https://github.com/
cancerit/vafCorrect) was used to produce matrices of variant and 
normal reads at each mutant site for all colonies from that individual. 
Copy-number aberrations and structural variants were identified using 
matched-normal ASCAT59 and BRASS (https://github.com/cancerit/
BRASS). Low-coverage samples (mean <4×) were excluded from down-
stream analysis (n = 1, PD41305). Samples in which the peak density 
of somatic mutation VAFs was lower than expected for heterozygous 
changes (in practice VAF < 0.4) were suspected to be contaminated or 
mixed colonies, and were also excluded from further analysis (n = 3, 
PD41305; n = 9, PD41276; n = 3, PD34493).

Multiple post-hoc filtering steps were then applied to remove ger-
mline mutations, recurrent library prep or sequencing artefacts, and 
in vitro mutations, as described previously60 and detailed in custom R 
scripts (https://github.com/margaretefabre/Clonal_dynamics). Buccal 
samples were used as an additional filter; mutations were removed if 
the variant:normal count in the buccal sample was consistent with that 
expected for a germline mutation (0.5 for autosomes and 0.95 for X 
and Y chromosomes, binomial probability >0.01), and were retained 
if (1) the variant:normal count in the buccal sample was not consistent 
with germline (binomial probability <1 × 10−4) and (2) the mutation was 
not present in either of 2 large SNP databases (1000 Genomes Project 
and Kaviar) with MAF > 0.001.

Phylogenetic tree construction and assignment of mutations back 
to the tree. These steps were also performed as described previously60 
and are detailed here: https://github.com/margaretefabre/Clonal_ 
dynamics. In brief, samples were assigned a genotype for each mutation 
site passing filtering steps (‘present’ = ≥2 variant reads and probability > 
0.05 that counts came from a somatic distribution; ‘absent’ = 0 variant 
reads and depth ≥6; ‘unknown’ = neither ‘absent’ nor ‘present’ criteria 
met). The proportion of ‘unknown’ genotypes going into tree-building 
was low: 1.5% (PD34493), 1.4% (PD41276) and 1.3% (PD41305; Extended 
Data Fig. 5a–c). A genotype matrix of shared mutations was fed into the 
MPBoot program61, which constructs a maximum parsimony phylo-
genetic tree with bootstrap approximation. The in-house-developed  
R package treemut (https://github.com/NickWilliamsSanger/treemut), 
which uses original count data and a maximum likelihood approach, 
was then used to assign mutations back to individual branches on the 
tree. Since individual edge length is influenced by the sensitivity of 
variant calling, lengths were scaled by 1/sensitivity, where sensitivity 
was calculated as the proportion of germline variants called (mean 
sensitivity: 85.4%, 87.0% and 83.5% for PD41305, PD41276 and PD34493, 
respectively). The approaches we used to validate the phylogenies, in-
cluding comparison of MPBoot with an alternative phylogeny-inference 
algorithm, SCITE62, are detailed in Supplementary Methods.

https://github.com/cancerit/vafCorrect
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Reconstruction of population trajectories. Phylogenies were made 
ultrametric (branch lengths normalized) using a bespoke R function 
(make.tree.ultrametric, https://github.com/margaretefabre/Clon-
al_dynamics/my_functions). With the root of the tree representing 
conception and the tips representing age at sampling, we scaled the age 
axis in two phases by: (1) assigning the first 55 mutations to the period 
between conception and birth (in light of evidence for this higher rate 
of mutation acquisition during this period36,60, and (2) scaling the axis 
linearly throughout life after birth (in light of evidence for a constant 
rate of mutation acquisition in HSCs during postnatal life32–37. We then 
analysed population size trajectories by fitting Bayesian nonparametric 
phylodynamic reconstructions (BNPR) as implemented in the phylodyn 
R package38,39 to clades - sets of samples in a phylogenetic tree sharing 
a most recent common ancestor (MRCA)—defined by either having a 
driver mutation on the MRCA or a MRCA branch length that spans more 
than 10% of the tree depth and with 5 tips or more. We also estimated 
the lower and upper bounds for age at onset of clonal expansion to be 
the limits of the branch containing the most recent common ancestor.

Detection of clonal deceleration
We detect deceleration using two different approaches—the ratio 
between expected and observed clone size using phylodynamic esti-
mates and the ratios between observed and historical (from longitu-
dinal data) and between late and expected (from phylogenetic data), 
respectively. To obtain the late growth rate we fit a biphasic log-linear 
model to our phylodynamic estimation of Neff—this enables us to obtain 
an early and a late growth rate (details in the Supplementary Methods).

Expected and observed clone size. The expected clone size is calcu-
lated by extrapolating the early growth rate until the age of sampling; 
having this we can calculate the ratio between expected and observed 
growth. The ratio between these quantities is then used as a measure 
of deceleration (details in the Supplementary Methods).

Growth ratio in phylogenetic data. The late growth rate is defined as 
the late growth rate defined in the previous section of the methods.  
The expected growth rate for the phylogenies is calculated as the 
growth coefficient for a sigmoidal regression that assumes a popula-
tion size of 200,000 HSC as the carrying capacity. We then use the 
ratio between these quantities as a measure of deceleration (1 implies 
no deceleration; <1 implies deceleration).

Growth ratio in longitudinal data. The observed growth rate is defined 
as the growth rate inferred directly from the data. The minimal histori-
cal growth is the growth rate estimate obtained by restricting clone 
initiation to a time after conception (age at at onset > −1).

Clonal haematopoiesis dynamics and malignant progression
To calculate the association between clonal haematopoiesis dynam-
ics and AML we used the risk coefficients from our previous work 
in predicting the onset of AML5, which were calculated by fitting a 
Cox-proportional hazards model that calculated the risk of AML onset 
associated with each gene (agnostic of clone size) while controlling for 
age, sex and cohort, and estimate the coefficient of correlation between 
the expected value of the annual growth for the posterior distribution 
of each gene (considering gene, site and unknown-cause effects) and 
the AML progression risk.

The association between clonal haematopoiesis dynamics and selec-
tion in MDS and AML use the dN/dS values calculated with dNdScv as 
previously described in the methods, using two distinct cohorts from 
previous studies41,42. dN/dS values were calculated for all hotspots and 
their coefficient of correlation with the expected value of the annual 
growth for the posterior distribution of each hotspot (also considering 
gene, site and unknown-cause effects) was calculated.

Statistical analyses
All statistical analyses were conducted using the R software63 - MCMC 
models were fitted using greta55 and hypothesis testing, generalized 
linear models and maximum likelihood fits were performed in base R.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data files necessary to run the analysis in https://github.
com/josegcpa/clonal_dynamics are freely available at https://
doi.org/10.6084/m9.figshare.15029118. All sequencing data have 
been deposited in the European Genome–phenome Archive (EGA) 
(https://www.ebi.ac.uk/ega/). Targeted sequencing data have been 
deposited with EGA accession numbers EGAD00001007682 and 
EGAD00001007683; WGS data have been deposited with accession 
number EGAD00001007684. Data from the EGA are accessible for 
research use only to all bona fide researchers, as assessed by the Data 
Access Committee (https://www.ebi.ac.uk/ega/about/access). Data 
can be accessed by registering for an EGA account and contacting the 
Data Access Committee.

Code availability
All analyses reported in this study used the statistical software R 
(v.3.6.3). All R files used for the longitudinal and phylodynamic mod-
elling and validation are publicly available at https://github.com/
josegcpa/clonal_dynamics. All files used for the construction of phy-
logenetic trees are publicly available at https://github.com/margarete-
fabre/Clonal_dynamics.
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Extended Data Fig. 1 | Longitudinal cohort characteristics and mutation 
prevalence and selection across the studied genes. a, Distribution of the 
number of serial samples obtained per individual. b, Duration of follow-up per 
individual. c, Distribution of participants’ ages at each of the five sampling 
phases of the SardiNIA study. The boxes represent the 25th, 50th (median) and 
75th percentiles of the data; the whiskers represent the lowest (or highest) 
datum within 1 interquartile range from the 25th (or 75th) percentile.  
d, Observed-to-expected (dN/dS) ratios for the 17 genes with missense and/or 
truncating mutations under positive selection (with q < 0.1). The dashed line 

indicates a dN/dS value of 1, which represents neutrality (no selection). Error 
bars depict 95% CIs. e, Waterfall plot showing the number and distribution of 
mutations among participants. Each column represents 1 individual, and each 
row 1 gene. Coloured squares indicate the presence of a mutation with the 
specific colour indicating the number of distinct mutations in that gene 
identified in that individual. For individuals with the same mutation identified 
at multiple serial time-points, the serially-observed mutation is counted only 
once.
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Extended Data Fig. 2 | Distribution of somatic mutations within driver 
genes (previous page). Lolliplots show the longest protein isoform of each 
gene, with protein domains depicted by grey rectangles. Each circle represents 
a somatic mutation. The vertical distance of the circle from the protein cartoon 
indicates its recurrence in the cohort (quantified on the y-axis). Amino acid 

codons recurrently mutated (ie. observed in more than one individual) in our 
cohort are explicitly labelled. Circle colours indicate the mutation type as per 
key. Non-truncating mutations (missense, inframe, synonymous) are depicted 
above and truncating mutations (nonsense, frameshift) below the protein 
cartoon.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Modelling CH dynamics in older age using time-
series VAF data (previous page). a, Representation of a Wright-Fisher 
simulation, showing two phases of clonal growth. The likelihood of a clone 
transitioning from stochastic to deterministic growth is inversely proportional 
to the product of its fitness (f) and the total number of stem cells (N). Clones 
with no fitness advantage (depicted in yellow) are unlikely to exceed their drift 
thresholds and tend to disappear or remain undetectable. Fitter clones 
(depicted in red) are more likely to reach deterministic growth. b, Association 
between the driver mutation effect used in the Wright-Fisher simulations and 
the driver effect inferred using our model (R2 = 0.92; n = 270 simulated clones). 
Error bars represent 90% highest posterior density interval (HDPI).  
c, Comparison of observed (golden) and inferred (mean estimate; red) 
trajectories for all recurrently mutated sites. Grey bands represent 95% highest 
posterior density intervals. d, Relationship between the number of mutations 
co-occurring within an individual and the proportion of clones growing at a 
fixed rate over time (n = 685 clones; the number of clones used to calculate 
each ratio estimate is represented on each bar and in brackets is the number of 
explained trajectories). e, Relationship between the number of available 
timepoints in a trajectory and the proportion of clones growing at a fixed rate 

over time (n = 659 clones; the number of clones used to calculate each ratio 
estimate is represented on each bar and in brackets is the number of explained 
trajectories). Error bars represent the beta-distributed 90% confidence 
intervals (in d and e). f, Association between predicted and observed VAF in 
additional prospectively-collected samples from 11 individuals with 15 CH 
driver mutations, not used for growth rate inference. The dotted line depicts 
theoretical perfect agreement between predicted and observed VAF.  
g,h, Example trajectories of clones with SF3B1-K666N (f) and SRSF2-P95H (g) 
mutations. Points represent VAFs used in our model to fit the growth curve 
(train), and crosses represent prospectively tested VAFs used (test), showing 
good agreement between predicted and observed VAFs. Bands represent the 
95% HPDI. i, Illustration of the determinants of growth in our model. Each 
mutation drives an expected rate of clonal growth. j, Comparison of growth 
rate associated with truncating vs non-truncating mutations in genes with both 
driver types. Points above the dashed line show faster growth for truncating 
mutations, and points below show faster growth for non-truncating mutations 
(n = 514 clones). Intervals represent the 90% HPDI for the difference between 
truncating and non-truncating mutations.



Extended Data Fig. 4 | Differences in growth rate between individuals/
clones with the same driver. a, For each gene, we contrast the mean annual 
growth rate among individuals/clones bearing a mutation in that gene, with the 
spread in this rate (defined here as the standard deviation of the 
unknown-cause (UC) growth). Circles represent point estimates, with circle 
size indicating the number of clones bearing a mutation in that gene, and lines 
representing the 90% confidence interval (CI). For the standard deviation, the 
90% CI was calculated assuming that Chisq n( − 1)n s

σ

( − 1) 2

2 ∼ , with n being the 
sample size, s the standard deviation estimate and σ 2 the true population 
variance. SRSF2-P95H mutations are plotted separately to other SRSF2 
mutations, as they are associated with significantly different growth dynamics 
(n = 633 clones). b, Relationship between number of inherited MPN risk alleles 
and JAK2-mutant clonal growth rate (Pearson R2 = 0.03; p = 0.27 (two-sided)). 
The grey band represents the 95% confidence interval for the linear regression. 
c, The number of mutations per individual in each gene is plotted. Each 
data-point is a pie-chart, the size of which reflects the number of individuals. 
For each gene, given the observed mutation prevalence in our cohort, the pie is 
fully light grey if the number of individuals we observed with the specific 
number of mutations is the same as the number of individuals we expected by 

chance. The presence of a white segment indicates that we found fewer 
individuals with that number of mutations than expected. The presence of a 
dark grey segment indicates that we found an excess of individuals with that 
number of mutations. We estimate the expected number of mutations in each 
gene in each individual through Monte Carlo estimation; assuming the 
prevalence of mutations in the cohort is uniform for each gene across 
individuals, we simulate 1,000 scenarios where we randomly distribute these 
mutations given the number of mutations in each individual. d, Association 
between sex and smoking history and the average UC effect for each individual 
(n.s.; n = 628 clones). The boxes represent the 25th, 50th (median) and 75th 
percentiles of the data; the whiskers represent the lowest (or highest) datum 
within 1 interquartile range from the 25th (or 75th) percentile. e, Association 
between VAF at study entry and the average UC effect for each individual 
(R2 = 0.062; CI95% = [0.029,0.107]; p = 2.42*10−9). f, Association between age at 
study entry and the average UC effect for each individual (n.s.). g, Association 
between age at mutation detection and UC effect for each TET2-mutant clone 
(Spearman’s rho = 0.31; p = 2.33*10−6 (two-sided)). The grey band represents 
the 95% confidence interval for the linear regression.



Article

Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Data quality and validation of phylogenetic trees.  
a–c, Heatmaps of the genotype data used for tree inference for the three 
individuals for which trees were derived in our study (PD34493, PD41305 and 
PD41276, respectively), with colours corresponding to the presence (red), 
absence (blue) and uncertainty (grey) of each genotype (rows) across all 
colonies (columns). For both colonies and genotypes, dendrograms derived 
from the hierarchical clustering of each are shown and are not representative 
of the derived phylogenetic trees. d, Internal consistency of the shared 
mutation data for each individual as determined by the disagreement score.  

A perfect phylogeny has a score of zero. We compare scores for the data with 
scores for random shuffles of the genotype data at each locus. e, Comparison 
of phylogenetic trees built by alternative phylogeny-inference algorithms, 
MPBoot and SCITE, for each of the 3 individuals. For all three we present the 
Robinson-Fould (RF) similarity between trees built by the two methods, with 0 
representing completely different trees and 1 representing identical trees. 
Branching events that are different between trees constructed using the two 
methods are highlighted in red.
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Extended Data Fig. 6 | Lifelong growth in phylogenetic trees. Comparison 
between annual growth derived from phylogenies and growth observed in 
longitudinal data. For the phylogenies this was obtained by fitting an 
exponential growth curve to the entire phylodynamic trajectory. For growth 
rates derived from longitudinal data, error bars represent the 90% HPDI; for 
growth rates derived from phylogenies (colonies), error bars represent +/− the 
standard error.



Extended data Fig. 7 | See next page for caption.
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Extended data Fig. 7 | Examples and consistency of clonal deceleration 
from simulations and real data. a, Simulated BNPR trajectories from Wright-
Fisher simulations with a fixed population size across 800 generations for a 
range of fitness effects (0.005, 0.010, 0.015, 0.020, 0.025, 0.030).  
b, Comparison between Wright-Fisher simulations (grey) and BNPR estimates 
from phylogenies obtained from these simulations (pink). The horizontal 
golden line in each plot represents the HSC population carrying capacity 
(200,000). c, Representation of effective population size (Neff) trajectories 
using three distinct methods (BNPR, mcmc.popsize and skyline; details in 
the Supplementary Methods) for their estimation across a range of clade sizes 
and fitness effects. d, Quantification of the association between true and 

inferred fitness values for three distinct methods of Neff estimation.  
e, Schematic representation of all trajectories from Mitchell et al.36 and how 
extrapolating from the initial growth rate leads to the overestimation of the 
observed clone size (here the observed clone size is obtained by scaling the 
proportion of tips in a clade by a total Neff of either 200,000 or 1,000,000 HSC 
x yr). f, Quantification of the deceleration effect from real data and simulations 
(n = 177/n = 37/n = 633 clones detected in simulated phylogenies (top)/
haematopoietic phylogenies (middle)/with targeted sequencing (bottom) 
respectively). The boxes represent the 25th, 50th (median) and 75th percentiles 
of the data; the whiskers represent the lowest (or highest) datum within 1 
interquartile range from the 25th (or 75th) percentile.



Extended Data Fig. 8 | Estimation of the true clone fitness from 
phylodynamic estimation. Three fits were tested to estimate the true clone 
fitness from phylodynamic estimation of the population size and these 
estimates were plotted as a function of the true fitness size (0.005, 0.010, 
0.015, 0.020, 0.025 or 0.030). a, A log-linear fit; b–c, A biphasic fit that 
estimates an early and a late growth rate and a change-point between both and 
d, a sigmoidal fit (n = 241 simulated trajectories). e, Coefficient of correlation 

(R2) for all four inferred coefficients. f, Root mean squared error (RMSE) for all 
four inferred coefficients. In this figure red represents “low variance 
trajectories” (the average estimated variance for the logarithm of the 
trajectory is under 5) and blue represents “all trajectories”. The boxes in a-d 
represent the 25th, 50th (median) and 75th percentiles of the data; the whiskers 
represent the lowest (or highest) datum within 1 interquartile range from the 
25th (or 75th) percentile.
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Extended Data Fig. 9 | Age at clone detection and onset. a, Proportion of 
clones driven by different driver mutations that were incipient on-study, ie. 
undetectable at time-point 1 and detectable by the end-of-study. Absolute 
numbers are given above each bar. b, Relationship between age at onset and 
observed annual growth rate, with points representing the mean annual 
growth/median age at onset and intervals representing, respectively, the 
90%/95% highest posterior density intervals (HPDI). The black line and grey 
shaded area represent the theoretical limit of detection at 80 years of age 
(n = 615 clones). c, Violin plot showing the distribution of projected ages at 
onset for all clones, assuming stable lifelong growth at the same fixed rate we 
observed during older age. d, Association between the age at which clones 

appeared in the simulations and the age at clone foundation inferred using our 
time-series data (R2 = 0.75). Boxplots show that, while these estimates may have 
high variance, the distribution of expected values is close to the true value 
(n = 250 simulated clones). The boxes represent the 25th, 50th (median) and 
75th percentiles of the data; the whiskers represent the lowest (or highest) 
datum within 1 interquartile range from the 25th (or 75th) percentile.  
e, Sensitivity analysis depicting the median (dot) and the 95% confidence 
interval of the ages at onset for each gene when considering different 
population sizes ( 104, 5*104, 105, 2*105 and 6*105) and numbers of generations 
per year (1, 2, 5, 10, 13, 20; n = 615 clones).



Extended Data Fig. 10 | Selection in myeloid malignancies. a, Ratio between 
AML dN/dS and MDS dN/dS for different genes and mutation types (missense, 
truncating). If this ratio is >1 there is a bias towards AML, if it is <1 there is a bias 
towards MDS. Error bars depict 95% CIs.
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