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Clonal expansions driven by somatic mutations become pervasive across human
tissues with age, including in the haematopoietic system, where the phenomenonis
termed clonal haematopoiesis'*. The understanding of how and when clonal
haematopoiesis develops, the factors that govern its behaviour, how it interacts with
ageing and how these variables relate to malignant progression remains limited>®.
Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age
orolder over amedian of 13 years. We find that 92.4% of clones expanded at a stable
exponential rate over the study period, with different mutations driving substantially
different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year
(SRSF2™"), Growth rates of clones with the same mutation differed by approximately
+5% per year, proportionately affecting slow drivers more substantially. By combining
our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of
haematopoietic colonies from 7 individuals from an older age group, we reveal
distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially
expanded early in life and displayed slower growth in old age, in the context of an
increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations
drove expansion only later in life, whereas TET2-mutant clones emerged across all
ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of
malignant progression. Our findings characterize the lifelong natural history of clonal
haematopoiesis and give fundamental insights into the interactions between somatic
mutation, ageing and clonal selection.

Human haematopoiesis produces hundreds of billions of specialized blood
cells every day, through a hierarchy of progressively more differentiated
and numerous cells originating fromapool of long-lived haematopoietic
stem cells (HSCs). Haematopoiesis remains highly efficient for decades,
butisinevitably challenged by the erosive effects of ageing” * and the inexo-
rable acquisition of somatic DNA mutations'®. Mutations that augment
HSC fitness can drive clonal expansion of amutant HSC and its progeny, a
phenomenonknown as clonal haematopoiesis' . Clonal haematopoiesis
becomesubiquitous withadvancingage andisassociated withanincreased
risk of myeloidleukaemias and some non-haematological diseases"**>*12,

The observation that clonal haematopoiesis-associated mutations
affect arestricted set of genes that are also frequently mutated in leu-
kaemia'*—most commonly those involved in epigenetic regulation
(DNMT3A, TET2 and ASXL1), splicing (SF3B1 and SRSF2) and apoptosis

(TP53 and PPM1D)—implies that these mutations inherently confer
fitness to HSCs. In fact, recent evolutionary models assume that each
specific mutation carries a fixed fitness advantage, and find that this
largely explains the relative proportions and clonal sizes of clonal
haematopoiesis driven by different mutations'®. However, several
observations suggest that non-mutational factors are also influential.
For example, a handful of clonal haematopoiesis cases studied at two
time points propose that clones driven by the same or similar muta-
tions canbehave differently between individuals''". Also, the relative
prevalence of different clonal haematopoiesis-driver gene mutations
changes significantly depending on context; for example, in aplastic
anaemia, clonal haematopoiesis is commonly driven by mutations
that enhance immune evasion™ 8, whereas genotoxic stress favours
clones with mutations in DNA damage genes' 2. Furthermore, factors
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Fig.1|Experimental workflow and clonal haematopoiesis mutation
characteristics. a, Study outline: 1,593 blood DNA samples were obtained
from385elderly individuals sampled 2-5 times (median 4) over 3.2-16 years
(median12.9) and sequenced for mutations in 56 clonal haematopoiesis genes.
Measured VAFs were used to fit observed clonal trajectories and extrapolate
the clonal dynamics prior to the period of observation. Additional blood
samples from 3 selected individuals were used to generate 288 (that s, 3 x 96)
whole-genome-sequenced single cell-derived colonies for phylogeny
reconstructions. b, Age distribution of average VAF perindividual (n=1,258

2325 can affect

such as inflammation? and heritable genetic variation
the emergence of clonal haematopoiesis.

Amajor limitation to our understanding of the determinants of clonal
haematopoiesis behaviour and fate up to now has beenits reliance on
cross-sectional studies capturing clonal haematopoiesis atsingle time
points. Here, by tracking blood cell clones over long periodsin alarge
cohort,and by reconstructing haematopoietic phylogenies, we uncover

the lifelong dynamics and natural history of clonal haematopoiesis.

Mutational landscape of clonal haematopoiesis

We analysed 1,593 blood DNA samples from 385 adults aged 55-93 years
atthetime of entry into the SardiNIA longitudinal study®. The partici-
pants, who had no history of haematological malignancy, were sampled
upto5times (median4) over 3.2-16 years (median 12.9 years) (Fig. 1a,
Extended Data Fig. 1a-c). We performed deep sequencing (mean
1,065x% coverage) of 56 genes associated with clonal haematopoiesis
and haematological malignancy (Supplementary Table 1) and identi-
fied somatic mutations in 52 of these genes (Supplementary Table 2).
Using the dNdScv algorithm, animplementation of dNV/dS (the ratio of
the number of nonsynonymous substitutions per non-synonymous site
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VAF measurements). The boxes represent the 25th, 50th (median) and 75th
percentiles of the data; the whiskers represent the lowest (or highest) datum
withinlinterquartile range from the 25th (or 75th) percentile. ¢, Age-stratified
prevalence of the number of mutations perindividual. d, Prevalence of
mutationsindriver genes. Top, absolute prevalence in the cohort. Bottom,
average number of mutations perindividualin DNMT3A, TET2 and splicing
genes (SF3B1, SRSF2and U2AF1) at different ages, with error bars representing
bootstrap 90% confidenceintervals.

to the number of synonymous substitutions per synonymoussite) that
corrects for trinucleotide mutation rates, sequence composition and
variable mutation rates across genes, we identified positive selection
of missense and/or truncating variantsin17 of these genes” (dN/dS >1
withg <0.1) (Extended DataFigs.1d-e, 2, Supplementary Table 3). We
focussed on these genes for further analysis.

Atleast one somatic non-synonymous mutation was identified in 305
of385individuals (79.2%), with clonal haematopoiesis prevalence, aver-
age clone size and number of mutations per individual increasing with
advancing age, and clonal haematopoiesis was identified in more than
90% of those aged 85 years or older (Fig. 1b, ¢). Mutations were most
common in epigenetic regulator genes TET2 and DNMT3A, and also
frequentin ASXL1, TP53, PPMID and spliceosome genes (Fig. 1d, top).
Notably, inthiselderly cohort, advancing age affected the prevalence
of different driver mutationsin agene-dependent manner (Fig.1d, bot-
tom). In particular, the prevalence of DNMT3A mutations showed no sig-
nificant relationship with age overall (P=0.12 forabinomial regression
of gene prevalence versus age, controlling for sex). By contrast, clones
with TET2mutations showed a consistentincrease with age, averaging
at 6.8% per year (P=0.00037), as did those with mutations in splicing
genes (U2AF1, SRSF2 and SF3BI), whose prevalence increased by 5.4%
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Fig.2|Thelongitudinal dynamics of clonal haematopoiesisinolder age.

a, Examples of fitted exponential growth of clones with mutations at six
common hotspots. Points represent observed data, coloured lines represent
estimated VAF trajectories and grey bands represent the 90% highest posterior
density interval (HPDI). Each data pointisrepresented by adotifit conformsto
our model of fixed-rate exponential growth and by a cross otherwise (outlier,
defined as tail probability <2.5%). b, Proportion of clonal trajectories showing
fixed-rate growth—thatis, those with no outlying data-points as definedina.
Barsrepresentthe proportionand errorbarsrepresent the 90%
beta-distributed confidenceinterval. ¢, Annual clonal growth associated with
different driver mutations, for both genes and specific sites. For gene-wise
growth, truncating (T) and missense (M) mutations are modelled separately for
geneswhereboth are enriched. Sites are modelled separately to genesif
mutated recurrently within our cohort. Point estimates for growth and 90%

peryear (P=0.025). These changesindriver prevalence with age could
not have resulted from exclusion of individuals with haematological
malignancies, as the incidence of these in the complete SardiNIA cohort
wasonly 0.28% (22 out of 7,816), the majority of which were lymphoid.

Most clones expand steadily in older age

Toinvestigate clonal behaviour over time, we used serial variant allele
fraction (VAF) measurements—the fraction of sequencing reads report-
ing a mutation—as a surrogate for clone size, and fitted a saturating
(logistic) exponential curve with a constant growth rate over time to
each clonal trajectory. Suchlogistic growth behaviouris supported by
simulations of evolutionary dynamics using Wright-Fisher models with
constant fitness?® (Extended DataFig. 3a, b). Remarkably, by assessing
thefitbetween serial VAF measurements and the trajectoriesinferred by
our model, we find that the great majority of clones (92.4%) expanded at
aconstant exponential rate over the study period (Fig. 2a, b, Extended
DataFig.3c). The predominance of fixed-rate growth was particularly
marked for genes such as DNMT3A and TET2, for which 99% and 94.3% of

HPDIarerepresented for each site (dot and line, respectively, with dot size
proportional torecurrence) and each gene (horizontal line and rectangle,
respectively).d, Relationship between clonal growth predicted by the identity
ofthedriver mutation and actual observed growth (points), with 90% HPDI
represented by vertical and horizontal lines, respectively.n = 633 clones.

e, Distribution of the unknown-cause effect for different genes. Each point
representsasingle clone and box plotsrepresent the distribution of these
effects for each gene. The value of unknown-cause growthis positive for clones
growing faster than expected by the identity of the driver mutation, and
negative for clones growing slower than expected (n =633 clones). Theboxes
represent the 25th, 50th (median) and 75th percentiles of the data; the whiskers
represent the lowest (or highest) datum withinlinterquartile range from the
25th (or 75th) percentile. Pred., predicted; obs., observed. Cl, confidence
interval.

clones, respectively, grew steadily over time. Nevertheless, some clones
behaved unpredictably, with proportions varying by mutant gene. Most
notable were JAK2"*”F-mutant clones, which showed irregular growth
trajectories, withonly 58% displaying stable growth. The likelihood of
mutant clones displaying non-constant growth at older age was not
affected either by the number of mutations in the same individual or
by the number of available serial samples (Extended Data Fig. 3d, e).

We further assessed the consistency of clonal trajectories by test-
ing our ability to predict future clonal growth. Using additional
prospectively-obtained blood samples from 11 individuals, we com-
pared observed versus predicted VAFs (Extended Data Fig. 3f~h, Sup-
plementary Table 4) and found good concordance (mean absolute
error 3.5%), corroborating our model and providing further evidence
that fixed-rate growth of clones is the normin old age.

Determinants of clonal growthrate

To delineate the factors that determine each clone’s growth rate,
our logistic regression model fits the following contributions of the
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driver mutation: (1) mutated gene; (2) specific amino acid change (in
recurrently mutated sites), and (3) mutation type (truncating versus
non-truncating) (Supplementary Table 5). An additional componentin
our model, measuring variation not captured by (1)-(3), was also used
and termed ‘unknown-cause growth’ (Extended Data Fig. 3i).

We found that clones bearing mutations in different genes expanded
atdifferent rates, withmutations affecting DNMT3A and TP53 displaying
the slowest average annual growth rates of approximately 5% per year
(Fig. 2¢, Supplementary Table 6). Clones with mutations in the other
mostcommondriver genes (TET2,ASXL1, PPM1D and SF3BI), expanded
atroughly twice thisrate, thatis, about 10% per year. The most rapidly
expanding clones were those carrying mutations in SRSF2, PTPN11
and U2AFI1, which grew at 15-20% per yr on average. The only specific
mutation displaying distinctive behaviour was SRSF2”*, which was
associated with significantly faster expansion compared with other
SRSF2mutations. By contrast, all other hotspot mutations drove growth
at rates similar to mutations elsewhere in the same gene, including
commonly mutated sites such as DNMT3AR?, SF3B1¥¢%N and SF3BI1*7°%,

For most genes, truncating and missense mutations drove similar
rates of growth, including TET2and DNMT3A, in keeping with the simi-
lar functional consequences of these two types of mutation in these
genes®°, Exceptions were (1) TP53, for which clones with missense
mutations expanded by 10% per year (90% confidence interval [3-18%])
faster than truncating mutations (which usually did not expand or even
contracted), consistent with the reported strong dominant-negative
effect of missense mutationsin this gene, and (2) CBL, for which clones
with missense mutations grew 11% per year (90% confidence interval
[3-19%]) slower than truncating mutations (Fig. 2c, Extended Data
Fig. 3j, Supplementary Table 6).

To quantify the impact of factors other than driver mutations, we
compared the observed growthrate of each clone with that predicted by
the mutation (Fig. 2d). InFig. 2d, vertical spread represents variability in
growthratebetween clones with the same driver mutation. Onaverage,
this growth of unknown cause contributed approximately +5% per year
to clonal expansion (Fig. 2e). Consequently, for fast-growing clones,
including those associated with SRSF2" or mutant U2AFI, this effect
was proportionately smalland there wasrelatively little inter-individual
variability ingrowth rate. By contrast, the effect on slow drivers such as
DNMT3Awas more substantial, with some clones growing twice as rapidly
aspredicted by the mutation, and others showing negligible expansion.
Clones harbouring JAK2"5"f mutations were an exception as they dis-
played an unusually high degree of inter-individual variability in relation
to average growth rate (Fig. 2d, e, Extended Data Fig. 4a). In view of the
well-described heritable contribution to myeloproliferative neoplasm
(MPN) susceptibility”**, we tested whether JAK2"*”F-mutant clones grew
more quickly inindividuals carrying MPN risk alleles, but found nosuch
relationship (Extended Data Fig. 4b, Supplementary Table 7).

The more general observation that certain individuals harboured
more mutations in the same gene than would be expected by chance
(Extended Data Fig. 4c) suggests that non-mutation factors influenc-
ing clonal growth are both individual- and gene-specific. We found no
evidence that these non-mutation factors include either sex or smok-
ing history and that initial clone size made only a small contribution,
whereas age was asignificant factor specifically for TET2-mutant clones,
which grew faster in older individuals (Spearman’s rho = 0.31; sum of
squared rank differences (S) =1.15x10°% n =216 TET2 clones; adjusted
P=2x107°) (Extended Data Fig. 4d-g).

Lifelong natural history of clonal haematopoiesis

To compare the longitudinal clonal behaviours we observedin older age
withlifelong clonal dynamics, we began by deriving and whole-genome
sequencing (WGS) 96 haematopoietic colonies, each originating from
a single stem or progenitor cell and expanded in vitro to a clone of
hundreds to thousands of cells, from each of three individuals with
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splicing gene mutations (Fig. 3a-c, Extended Data Fig. 5), particularly
as previous reports suggested asharp increase in prevalence of these
driver mutations lateinlife’. We constructed phylogenetic trees using
somatic mutations as lineage-tracing barcodes and, since HSCs accu-
mulate mutations at anear constant rate, we used phylogenetic branch
lengths to time the onset of clonal expansions (‘clades’)* . In PD41276,
the phylogeny was dominated by an SF3B1°°**-mutant clone, begin-
ning between 23-47 years of age, with only a single SF3B1-wild-type
colony, consistent with a near-complete clonal sweep (Fig. 3a). In
PD34493, SF3B1"°" was acquired before the age of 35 years, whereas
U2AFI%Rinitiated clonal growth later (41-61years of age) in a previ-
ously expanded clade lacking recognizable drivers (Fig. 3b). Notably,
anadditional apparently driverless expansion—a phenomenon that has
been recognized to occur in old age*>**—and three further such expan-
sions in PD41305 were observed in this individual (Fig. 3b), (Fig. 3c).
InPD41305, since the SRSF2™*" mutation was present in only one colony,
we couldtime its acquisition only to the broad interval between 13 years
of age and the age of sampling (73 years of age).

We next used the timing and density of clonal branchings (also
known as ‘coalescences’) to reconstruct the entire growth trajectories
of expanded clades using phylodynamic principles®***** (Fig. 3d-h).
Thisrevealed that the three clades withidentified drivers (SF3B1****¥and
U2AFI%"RinPD34493, and SF3B1%"in PD41276), expanded (Fig. 3d-f)
at calculated rates similar to those observed in our time-series VAF
measurements during older age (Fig. 3i, left). Of note, SF3B1*¢**¥ was
associated with asubstantially different growth rate in PD41276, where
it expanded at 28% per year according to serial VAFs (29% per year by
phylodynamic estimate), versus 10% per yearin PD34493 (17% per year
by phylodynamics) (Fig. 3i). Reasons for this difference are unclear,
but it is notable that the faster-growing clone had antecedent Y loss
(Fig. 3a), an aberration seen in clades from all three individuals and
associated with only modest clonal expansion whenisolated (Fig. 3a-c).
Ofnote, clones without known drivers began to expand within the first
twodecades of life and grew over their lifetimes at rates similar to clones
withknown drivers (14-32% per year) (Fig. 3g, h, Extended Data Fig. 6).

Many clones decelerate before older age

Asthe phylodynamic reconstruction of a clone goes back toits incep-
tion, weinvestigated whether clonal growth dynamics during earlier life
deviate from the stable growth observed during older age. To corrobo-
rate observations fromthe threeindividuals depicted in Fig. 3, we con-
ducted additional phylodynamic analyses of trees derived from 1,461
whole-genome-sequenced single cell-derived colonies from another
four individuals 75-81 years of age from the study by Mitchell et al.>®.
Thisrevealed that,in many instances, the reconstructed effective popu-
lation size (V) of any individual clone grew more slowly towards the
sampling date and before it saturated the HSC compartment (Fig.4a, b,
Extended DataFig. 7a-c). This characteristic deceleration was quanti-
fied by fitting a biphasic exponential growth model to early and late
parts of the trajectories (Fig. 4c). In most cases, extrapolating early
growth (a consistent estimator of the fitness advantage of a clone in
Wright-Fisher simulations; Extended Data Figs. 7d, 8) led to substan-
tial overestimations of clade size (median 35x; Fig. 4d, Extended Data
Fig.7e).

We used our longitudinal cohort to orthogonally test the lifelong
stability of clonal growth by extrapolating the observed (fitted) trajec-
tory of each clone backwards in time to infer the age at clonal onset.
Toaccount for stochastic drift, which canlead to faster growth of small
clones, and the finite carrying capacity of the HSC population, which
naturally limits or slows large clones, we derived and used an approxi-
mation toa Wright-Fisher process (Extended DataFig.4a,b). Whereas
estimates of age at clonal onset agreed with phylogenetic estimates for
the fast-growing splice factor mutations (Fig. 3i), for many other clones,
constant lifelong growth at the rate we observed during old age would
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Fig.3|Haematopoietic phylogenetic trees. a-c, Haematopoietic
phylogenies of participants PD41276 (a), PD34493 (b) and PD41305 (c). Each
tree tipis asingle cell-derived colony and tips with shared mutations coalesce
toanancestral branch, from which all coloniesinsuch a‘clade’ arose. Branch
lengths are proportional to the number of somatic mutations, which
accumulatelinearly with age except before birth, at which point approximately
55mutations have beenacquired®. Branches containing known driver
mutations or chromosomal aberrations are annotated. Clonal expansions are
coloured: SF3BI1*****-mutant expansions in orange, U2AF1%*®-mutant
expansionsingreen,and expansions without identified drivers (unknown
driver (UD)) in black.d-h, Growth trajectories of each clonal expansion, as
determined by phylogenies (effective populationsize (N;) estimated using
phylodynamic methods) and time-series data (using serial VAF measurements

be too slow to explain the observed VAFs (Fig. 4e-g), suggesting that
clonal expansion was faster in earlier life. These observations reveal
that, atleast for some clones and genes, the dynamics observedin later
life are not representative of those that prevail earlier.

We then assessed the minimum lifetime rate at which clones must
have grown in order to reach the observed VAFs in our longitudinal
data—hereafter termed ‘historical growth’—by restricting fits and solu-
tions to growth rates that would place the age of clonal onset within
individuals’ lifetimes (Fig. 4h, Supplementary Table 8). Expectedly, this
minimal historical growth rate was typically higher than the growth
rate observed during the study period (that is, in older age; Fig. 4i,
Extended Data Fig. 7f). Moreover, the fold changes between histori-
cal and observed growth rates derived from longitudinal data were
qualitatively in good agreement with the fold changes between late

and modelled historical growth, asillustrated in Fig. 2, if available).
SF3BI-mutant expansions for PD42176 (d) and PD34493 (e), U2AFI-mutant
expansions for PD34493 (f), and unknown driver expansions clone 1(g) and
clone 3 (h) for PD41305. Phylogeny-derived age at clone onset range is
represented asahorizontal coloured bar on the x-axis, with the limits of the bar
corresponding to the age range of the phylogeny branch along which the
corresponding driver mutation was acquired. i, Comparison of the ages at
onset (right) and growth rate during the study period (left) derived from
phylogenetic trees and longitudinal data. For the age at onset and growth rates
derived fromlongitudinal data, the intervals represent the 90% HPDI; age at
onsetintervalsderived from phylogeniesrepresent the age limits defined by
phylogenetic branching patterns. For annual growth estimates using
phylogenies, intervals represent the standard error. yo, yearsold.

growth and expected growth (the latter assuming growth is constant
throughlife and carrying capacity is fixed) derived from phylodynamic
data (Fig.4c, i, Extended Data Fig. 7f). Thus it emerges that many clones
grew more rapidly early in life compared with the rate in old age.

Driver genes and lifelong clonal growth

The effect of deceleration was most marked for clones bearing muta-
tions in DNMT3A, BRCC3 and TP53, whose early growth was at least
twice as fast as that measured during old age (Fig. 4i,j). Conversely, we
observed almost no deceleration of fast-growing clones harbouring
U2AF1,SRSF2™", PTPN11 or IDHI mutations (Fig. 4i,j). Itis particularly
notable that the TET2-mutant clones were much less susceptible to
decelerationthan DNMT3A-mutant clones (Fig.4i,j). This is consistent
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Fig.4 |Evidence for clonal decelerationfromsingle-cell phylogeniesand
longitudinal data. a, b, Effective population size (N.) trajectories inferred from
single-cell phylogenies in this paper (a) and in Mitchell et al.?, using previously
determined HSC population size estimates® (b). Dotted lines represent parts of
thetrajectory with highvariance (log(var(N.)) > 5). Coal., coalescence.
c,Representation of biphasic fit to N.estimates and extrapolation from early
growth (observed clonesizeis calculated as the clonal fractionin the phylogeny
scaledbyanN,;0f200,000 HSCs x yr; comparison with1,000,000 HSC x yrin
Extended DataFig. 7e).d, Ratio of observed to expected (extrapolated from early
growth) clonessize from phylogenies (n =37 expanded clones detectedin
haematopoietic phylogenies). e, Representation of extrapolated trajectories
derived fromlongitudinal data, assumingstable lifelong growth at the same
fixed rate we observed during older age; some projections are not feasible (that
is, they exceed lifetime, with onset pre-conception). f, Relationship between age

with the observation that the prevalence of TET2-mutant clonal hae-
matopoiesis is higher at older ages and eventually exceeds that of
DNMT3A-mutant clonal haematopoiesis, which is more prevalent at
younger ages (Fig.1d). A declining relative advantage of DNMT3A muta-
tionsin older age was also suggested by the much lower proportion of
DNMT3A-mutant clones reaching detectable limits during our study
period compared with clones bearing mutationsin other genes (‘incipi-
ent clones’) (Extended Data Fig. 9a).

Toderiverepresentative ranges for age at clone onset for each driver
gene, we capped individual estimates at conception, thus avoiding esti-
mates that projected beyond individuals’ lifetimes (Fig. 4k, Extended
Data Fig. 9b, c). We also validated this method using simulations and
confirmed that these ranges are not affected by changesin N or gen-
eration time (Extended Data Fig. 9d, e). We estimated that the aver-
age latency between clone foundation and detection in peripheral
blood at VAF = 0.2% (Supplementary Note 1) was 30 years across all
clones, with considerable variability between mutant genes, ranging
from 38 years for DNMT3A-mutant clones to 12 years for U2AFI-mutant
clones. Most drivers were projected to initiate expansions of clones
throughout life, compatible with the notion that somatic mutations
occur at a constant rate**, However, solutions for DNMT3A-mutant
clones concentrated earlierin life, consistent with early initiation and
rapid expansion followed by marked deceleration then slow growth, as
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Growth per year (%) Possible age at onset (yr)

and observed growthrate of clones and VAF (longitudinal data; lightblue
represents clones with projected onset withinlifetime and golden represents
those exceeding lifetime). g, Quantification of unfeasible clones (exceeding
lifetime) per gene (longitudinal data, n=633). Intervalsrepresent the
beta-distributed 90% confidenceinterval. h, Representation of the calculation
of minimum (min.) historical growth. i, Ratio of observed to historical
(longitudinal data) and late to expected (phylogenetic data) growth (n=37
clonesdetectedin phylogenies (top); n =633 inlongitudinal data (bottom)).

j, Differences between the median observed and historical growth per year for
eachgene.k, Projected ages at onset for all clones, assuming stablelifelong
growthatthesamefixed rate we observed duringolder age.Boxesind, i,
represent the 25th, 50th (median) and 75th percentiles of the data; the whiskers
represent the lowest (or highest) datumwithinlinterquartile range fromthe
25th (or 75th) percentile.

previously mentioned. Of note, capping onset at conceptionis arbitrary
and it remains possible that some clones start later and exhibit faster
initial growth followed by even stronger deceleration, a scenario that
would be more consistent with published fitness estimates of 11-19%
per year based on cross-sectional VAF measurements®. By contrast,
SRSF2™ and U2AF1 mutations initiated clonal expansion always after
30yearsof age and withamedian age at onset of 58 and 57 years, respec-
tively (Fig. 4k). Thisindicates that the reported rarity of these mutant
clones'in people aged less than 60 years is not owing to slow growth
over decades, but rather owing to their late onset followed by rapid
expansion, and provides a plausible explanation for the high risk of
leukaemic progression associated with these mutations>*°.

Clonal haematopoiesis dynamics and malignancy

Toinvestigate the links between mutation fitness and malignant pro-
gression, we built on our previous study of acute myeloid leukaemia
(AML) risk prediction®, and revealed that among clonal haematopoiesis
driver genes, afaster growth rate was associated with a higher AML risk
(adjusted R?=0.55, P=0.0037; Fig. 5a). For example, genes driving fast
clonal haematopoiesis growth—such as SRSF2 and U2AFI—were associ-
ated with the highest risks of leukaemogenesis, whereas slow-growing
clones—such as those bearing DNMT3A mutations—conferred alower
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Fig. 5| Clonal haematopoiesis dynamics and progression to myeloid
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risk. To confirm our findings in larger studies and include myeloid
malignancies other than AML, we analysed large published datasets
of AML* (n =1,540) and myelodysplastic syndromes* (MDS) (n = 738)
using a site-specific extension of the dNdScv algorithm to formally
quantify the extent to whichindividual hotspots are under the influence
of positive selection in these cancers® (Supplementary Tables 9, 10).
This analysis revealed a positive correlation between each hotspot’s
growth coefficientin clonal haematopoiesis and its selection strength
in myeloid cancer (adjusted R*=0.19, P= 0.0016; Fig. 5b), corrobo-
rating the AML risk analysis. Nevertheless, the observation that the
same clonal haematopoiesis driver gene can progress to either AML
or MDS, with variable predilections as quantified by gene-level dN/dS
comparison (Extended DataFig.10, Supplementary Table 10), suggests
that factors other than growth rate can also influence a mutation’s
malignant potential.

Discussion

The phenomenon of clonal haematopoiesis has served as an exemplar
inthe developing understanding of somatic mutation, clonal selection
and oncogenesis in human tissues'®**, However, the nature of these
interrelated processes can change over time and their consequences
develop only slowly, making them difficult to investigate. Here, we
studied the longitudinal behaviour of clonal haematopoiesis over long
periods (median 13 years) and combined this with lifelong phylody-
namic analyses of haematopoiesis to derive new insights into these
fundamental biological processes.

First, we found that most clones (92%) display stable exponential
growth dynamicsinolder age, atrates influenced by their driver muta-
tions. This enabled us to predict future clonal growth trajectories,
a finding with potentially useful implications for clinical practice
(Extended Data Fig. 3f-h). Notably, mutations in DNMT3A, report-
edly the most common clonal haematopoiesis driver gene**, were
associated with slower clonal expansion than most other clonal hae-
matopoiesis genes. Also, DNMT3A hotspot mutations (forexample, at
codon R882) were not associated with faster growth than other DNMT3A
mutations (Fig. 2¢). By contrast, TET2-mutant clones expanded sig-
nificantly faster over the study period (Fig. 2¢) and, reflecting this,
also reached detectable levels much more frequently on-study than
DNMT3A-mutant clones (Extended Data Fig. 9a). Thisresultedin TET2
becoming the most prevalent clonal haematopoiesis driver after the
age of 75 years (Fig. 1d).

These findings suggested that, although clonal growth is remark-
ably stable in old age, dynamics in earlier life may deviate from this
behaviour, challenging the premise that mutation fitness is constant
over the human lifespan®. To test this, we first attempted to derive
when individual clonal haematopoiesis clones were founded, using
simple retrograde extrapolation of observed trajectories. This led to
projected ages at clonal foundation that preceded conception for a
large number of clones (Fig. 4f, g), implying that their early growth must
have been faster than that we observed during old age. This was most
striking for DNMT3A, for which more than two thirds of projections
wereimplausible (thatis, onset pre-conception), but less common for
TET2 and very uncommon for splicing factor genes (Fig. 4g).

To further investigate lifelong clonal behaviour, we analysed hae-
matopoietic phylogenies from healthy old individuals and found that
aged haematopoiesis was dominated by a small number of expanded
HSC clones, some of which lacked recognizable drivers®. Using phy-
lodynamic approaches to track clonal growth rates through life, in
conjunction with findings fromour longitudinal cohort, we reveal wide-
spread clonal deceleration prior to the period of stable growth during
oldage, inthe context of anincreasingly competitive oligoclonal HSC
compartment (Fig. 4i). DNMT3A-mutant clones, as well asthose bearing
mutations in TP53 and BRCC3 and also apparently driverless clones,
were among those displaying the most marked degree of deceleration
(Fig. 4i). The faster growth of DNMT3A-mutant clonesin early life is sup-
ported by comparison with the findings of Watson et al., who analysed
cross-sectional VAF spectra from 50,000 individuals and estimated
average clonal growth rates across the first 55 years of life; expansion
of clones was substantially faster in younger individuals® (15.0% per
year) compared with olderindividuals (6.2% per year) (from our study)
(Supplementary Table 11). By contrast, TET2 mutations appeared to
drive more stable lifelong growth (Fig. 4h-j), which may underlie their
apparentability toinitiate clonal expansion fairly uniformly through life
(Fig.4k) and the fact that TET2‘overtakes’ DNMT3A as the most common
clonal haematopoiesis driver after 75 years of age (Fig. 1d and ref. **).

Indiametric contrast to DNMT3A and unlike other genes, clonal hae-
matopoiesis driven by mutant U2AFI and SRSF27* initiated only late
in life (Fig. 4k) and exhibited some of the fastest expansion dynam-
ics (Fig. 2c). These data were corroborated by phylogenetic analyses
(Fig. 3b, f) and tally with the sharp increase in prevalence of splice
factor-mutant clonal haematopoiesis®, MDS***#¢ and AML** in old
age andthe highrisk of progressionto myeloid cancers associated with
these mutations®. The particular behaviour of these clones suggests
a specific interaction with ageing, which could relate to cell-intrinsic
factorsor to cell-extrinsic changesin the aging haematopoietic niche
that favour splice factor mutations*s*.

Finally, we explored the relationship between clonal growth rate
in clonal haematopoiesis and the development of myeloid cancers.
We find that mutations associated with faster clonal haematopoiesis
growth are also those associated with higher risk of progression to
AML (Fig. 5a) and are under the strongest selective pressure in AML
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and MDS (Fig. 5b). Indeed, we show that the average annual growth
per gene explains more than 50% of the variance in AML risk progres-
sion. This shows that animproved understanding of growth dynamics
in clonal haematopoiesis can help identify those at risk of myeloid
malignancies.

Collectively, our work gives new insights into the lifelong clonal
dynamics of different subtypes of clonal haematopoiesis, the impact
ofageing on haematopoiesis, and the processes linking somatic muta-
tion, clonal expansion and malignant progression.
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Methods

Study participants

Ethical permission for this study was granted by The East of England
(Essex) Research Ethics Committee (REC reference 15/EE/0327).
The SardiNIA longitudinal study recruited individuals from four towns
inthe Lanusei Valley in Sardinia, capturing 5 phases of sample and data
collection® over more than 20 years. Informed consent was obtained
fromall participants. We analysed serial samples from 385 individuals
inthe SardiNIA project.

Targeted sequencing and variant calling

Target enrichment of whole-blood DNA was performed using a custom
RNAbaitset (Agilent SureSelect ELID 3156971), designed complemen-
taryto 56 genesimplicated in clonal haematopoiesis and haematologi-
cal malignancies (Supplementary Table1). Libraries were sequenced on
Illumina HiSeq 2000 and variant calling was performed as we described
previously*>*®. In brief, somatic single-nucleotide variants and small
indels were called using Shearwater (v.1.21.5), an algorithm designed
to detect subclonal mutations in deep sequencing experiments>.
Two additional variant-calling algorithms were applied to complement
this approach: CaVEMan (v.1.11.2) for single-nucleotide variants, and
Pindel (v.2.2) for smallindels®>*3. VAF correction was performed using
anin-house script (https://github.com/cancerit/vafCorrect). Finally,
allele counts at recurrent mutation hotspots were verified using an
in-house script (https://github.com/cancerit/allelecount). Variants
were filtered as we described previously>*°, but were not curated with
regard to existing notions of oncogenicity, that is, all somatic variants
passing quality filters were retained for analysis.

If a variant was identified in an individual at any time pointin the
study, this site was re-queried in the same individual at all other time
points, using anin-house script (cgpVAF) to provide pileup (SNV) and
Exonerate (indel) output (https://github.com/cancerit/vafCorrect).No
additional filters were applied to these back-called variants.

Selection analyses

To quantify selection, we used the dNdScv algorithm, a maximum-
likelihood implementation of dNV/dS, which measures the ratio of
non-synonymous (N) to synonymous (S) mutations, while controlling
for gene sequence composition and variable substitution rates?. We
first applied this method to the mutation calls from the longitudinal
SardiNIA cohort in order to identify which genes are under positive
selection in the context of clonal haematopoiesis. For this analysis,
any mutation that was present in a single individual at multiple time
points was counted only once. We also compared dN/dS ratios at the
beginning and end of study, and found the latter to be higher, consist-
ent with stronger cumulative effects of selection at older ages (Sup-
plementary Note 2).

To characterize patterns of selection in AML and MDS, we applied
dNdScvtotwo published data sets. The AML set was derived from 1,540
patients enrolled in three prospective trials of intensive therapy*..
The MDS set included 738 patients with MDS or closely related neo-
plasms such as chronic myelomonocytic leukaemia*. Both used deep
targeted sequencing of 111 cancer genes, which overlapped with 13 of
the17 genes of interest in our longitudinal clonal haematopoiesis study
(PPM1D, CTCF, GNB1and BRCC3were not sequenced in the AML or MDS
studies). We called and filtered variants in the 13 overlapping genes
using the strategy described above (‘Targeted sequencing and variant
calling’). Variants were identified in all 13 genes in both AML and MDS
datasets (Supplementary Table 10). We calculated dN/dS values both
atthelevel ofindividual genes, and at single-site level for hotspots, the
latter using the sitednds function in the dNdScv R package.

Finally, we compared dN/dSratios in shared and private branches of
the three phylogenies, and found selection to be stronger in the former,
consistent with the fact that mutations along shared branches were the

ones driving subsequent clonal expansions (and therefore were more
strongly selected) (Supplementary Note 2).

Modelling of clone trajectories through time

We use Bayesian hierarchical modelling to model clonal trajectories.
Since we are unable to reliably phase different mutations into specific
clones (Supplementary Note 3) and given that individual clonal
haematopoiesis clones typically harbour a single driver mutation®*, we
assume that eachmutationis heterozygous andits VAF is representative
of the prevalence of a single clone. Accordingly, for a given individualj
and mutation i, we have a mutant clone c;. We model the counts
countscijfor cjatagetasa binomial distribution (Bin), such that
counts, (£) ~ Bin(cov(t), p; (¢)), withcov, v;;as the coverage of this muta-
tion at age tand p; (t) Beta(a(t) B) as the expected proportion of
mutant allele coples Assuch, counts, (t) BB(covy(t), a(t), B), where
BBis thebetabinomial distribution. Here B~Ny,,, 0,4)is the technical
overdispersion parameterized as a normal distribution whose param-
eters (i,q and 0,4, the mean and standard deviation, respectively) are
estimated using replicate data (details below) and a(¢) = ;= q(t)) ,where
q(¢) =ilogit((bgene, * bsice, bc,) x t+uy), with ilogit representing the
inverse function. We use this parameterlzatlon to guarantee that
E[countscj] P;CoVy: Dgene, ~N(0,0.1)and b, ~ N(0,0.1)are the gene
andsite growth effects for mutationi, respectlvely b, i N(0,0.05)is
the growth effect associated exclusively with mutation i in individual
J—thatis, of mutant clone c;—and u; is the offset accounting for the
onset of different clones at different points intime. We also define the
growtheffectofc;as beotal; = Dgene; tsite, + Duc; ). Throughout this work
we will refer to bgene + bs,te as the driver (growth) effect and to b, as
the unknown-cause (growth) effect—the fraction of growth that is
quantifiable but not explained by the driver mutation, and is attribut-
ableto other factors that may affect clonal growth, but differ between
individuals, such as age, sex, interclonal competition and others.

Preventing identifiability issues and reducing uninformed esti-
mates. To address possible identifiability issues in our model, when a
gene has a single mutation (JAK2"*”F and IDH2"#%?), the effect is con-
sidered to occuronly at the site level. To avoid estimating the dynamics
of asite fromasingleindividual, we only model b, whentwo or more
individuals have a missense mutation on site {, we refer to these sites
as ‘recurrentsites’. Overall, we consider a total of 17 genes and 39 recur-
rentsites (Supplementary Table 5).

Estimating and validating growth parameters. Using the model de-
scribed above, we use Markov chain Monte Carlo (MCMC) with aHamilto-
nian Monte Carlo (HMC) sampler with 150-300 leapfrog steps asimple-
mented ingreta®. We sample for 5,000 iterations and discard the initial
2,500 to get estimates for the distribution of our parameters. As such,
our estimates for each parameter are obtained considering their mean,
median and 95% highest density posterior interval for 2,500 samples.

We assess the goodness-of-fit using the number of outliers
detected in any trajectory and consider only trajectories with no
outliers as being explained by our model and, as such, growing at
constant rate. Outliers are assessed by calculating the tail
probabilities of the counts under our model with a hard cut-
off at 2.5%. Thus, Pygier=1 if P(counts | bgene,, bsice, b, i U O
<0.025|P(counts | byene,, bsite;» e, ,j,t) >0.975and P, Out[,er-o other-
wise. We validate this approach using Wright-Fisher simulations
(Supplementary Methods). We additionally assess the predictive
power of this model on an additional time point that was available
for asubset of individuals and that was not used in the inference of
parameters in our model (Supplementary Methods).

Estimating the technical overdispersion parameter. Technical VAF
overdispersion used two distinct sets of data:
(1) Horizon Tru-Q-1was serially diluted to VAFs of 0.05, 0.02, 0.01,
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0.005 and 0 using Horizon Tru-Q-0 (verified wild-type at these
variant sites), then sequenced in duplicate or triplicate;

(2) 19SardiNIAsamples with mutations across 15genes at arange of
VAFs, were sequenced in triplicate.

Sample processing and analysis was performed as described in
‘Targeted sequencing and variant calling’ section. Replicate samples
were picked from the same stock of DNA, then library preparation and
sequencing steps were performed in parallel. Variant calls for these
replicate samples are in Supplementary Table 12.

For (1), we model the distribution over the expected VAF as a
beta distribution such that VAF ~ Beta(a, 8) and for (2) we adopta
modelidenticaltothe one described earlierin this section but use only
gene growth effects (countscy(t) ~ BB(covy(t), a(t), B), a(t) = fq;:;) ,
q(t)= ilogit(bgenei Xt+ u,-j)). Here, we model 8 ~ exp(r) with r as a vari-
able with no prior. We use MCMC with HMC sampling with 400-500
leapfrog steps as implemented in greta® to estimate the mean and
standard deviation of B. For this estimate we use 1,000 samples from
the posterior distribution.

Non-mutation factors and clonal growth rate

Inherited polymorphisms and JAK2-mutant clonal growth.
The SardiNIA cohort had previously been characterized using two
Illumina custom arrays: the Cardio-MetaboChip and the Immuno-
Chip®. Inherited genotypes at 12 loci previously associated with MPN
risk were extracted for the 12 individuals with JAK2""F mutation?>?*,
The relationship between each individual’s total number of inher-
ited risk alleles and JAK2-mutant clonal growth rate was assessed by
Pearson’s correlation. The 46/1 haplotype, which harbours 4 SNPs in
completelinkage disequilibrium, was considered as a single risk allele.

Age, sex and smoking experience. We assess the association between
unknown-cause growth and age through the calculation of a Pearson
correlation considering all genes, both together and separately while
controlling for multiple testing. We also assess the association between
unknown-cause growth and sex and smoking history using a multivari-
ateregression where unknown-cause growthis the dependent variable
and sex and previous smoking experience are the covariates, while also
controlling for age.

Determining the age at clone onset

We consider that HSC clones grow according to a Wright-Fisher model.
Accordingtothis, for aninitial population of HSC n/2, we can consider
two scenarios—that of asingle growth process where the time at which

0
the cell first starts growing ¢, is described as ¢, = b" ,or that of
tota
atwo-step growth process, where tjadjusted = ¢, + log@/brora) _ 1
biotal biotal

where g is the number of generations per year. The latter scenario is
theone chosen, duetoits strong theoretical foundation and previous
application to mathematical modelling of cancer evolution®. The two
regimes that describe it are an initial stochastic growth regime and,
once the clone reaches a sufficient population size, a deterministic
growth regime. The adjustment made to ¢, in tyadjusted can be inter-
preted as first estimating the age at which the clone reached the deter-
ministic growth phase (¢, + bg(f/ﬂ ) followed by subtracting the
expected time for a clone to ovéTtome its stochastic growth phase

bt;a] .Forbothnand gwe use the estimates based onref.*:n= 50,000

and g =2.We validate thisapproachusing simulations (Supplementary
Methods) and test the approach against our serial VAF data and verify
that changes in nand g do not have a marked effect on age at onset
estimates by considering a range of values (n={10,000; 50,000;
100,000;200,000; 600,000} and g ={1;2; 5;10; 13; 20}).

Cell colonies and phylogenetic trees
Sample preparation and sequencing. We selected 3 individuals
with splicing gene mutations from the SardiNIA cohort for detailed

blood phylogenetic analysis. Peripheral blood samples were drawn
into Lithium-heparin tubes (vacutest, kima, 9 ml) and buccal samples
were taken (Orangene DNA OG-250). Peripheral blood mononuclear
cells were isolated from blood and plated at 50,000 cells per mlin
MethoCult 4034 (Stemcell Technologies). After 14 days in culture, 96
single haematopoietic colonies were plucked per individual (total 288
colonies, eachmade up of hundreds to thousands of cells) and lysed in
50 pl of RLT lysis buffer (Qiagen).

Library preparation for WGS was performed using our low-input
pipeline as previously described”®. The 150 bp paired-end sequenc-
ing reads were generated using the NovaSeq 6000 platform toamean
sequencing depth of 15x per sample. Reads were aligned to the human
reference genome (NCBI build37) using BWA-MEM.

Variant calling and filtering. Single-nucleotide variants (SNVs) and
smallindels were called against an unmatched reference genome using
thein-house pipelines CaVEMan and Pindel, respectively®>**. ‘Normal
contamination of tumour’ was set to 0.05; otherwise, standard settings
and filters were applied. For all mutations passing quality filters in
at least one sample, in-house software (cgpVAF, https://github.com/
cancerit/vafCorrect) was used to produce matrices of variant and
normal reads at each mutant site for all colonies from thatindividual.
Copy-number aberrations and structural variants were identified using
matched-normal ASCAT*® and BRASS (https://github.com/cancerit/
BRASS). Low-coverage samples (mean <4x) were excluded from down-
stream analysis (n =1, PD41305). Samples in which the peak density
of somatic mutation VAFs was lower than expected for heterozygous
changes (in practice VAF < 0.4) were suspected to be contaminated or
mixed colonies, and were also excluded from further analysis (n =3,
PD41305; n=9,PD41276; n = 3,PD34493).

Multiple post-hoc filtering steps were then applied to remove ger-
mline mutations, recurrent library prep or sequencing artefacts, and
invitro mutations, as described previously®® and detailed in customR
scripts (https://github.com/margaretefabre/Clonal_dynamics). Buccal
samples were used as an additional filter; mutations were removed if
the variant:normal countin the buccal sample was consistent with that
expected for a germline mutation (0.5 for autosomes and 0.95 for X
and Y chromosomes, binomial probability >0.01), and were retained
if (1) the variant:normal countin the buccal sample was not consistent
with germline (binomial probability <1x107*) and (2) the mutation was
not presentin either of 2 large SNP databases (1000 Genomes Project
and Kaviar) with MAF > 0.001.

Phylogenetic tree construction and assignment of mutations back
to the tree. These steps were also performed as described previously*®
and are detailed here: https://github.com/margaretefabre/Clonal_
dynamics. Inbrief, samples were assigned agenotype for each mutation
site passing filtering steps (‘present’=>2 variant reads and probability >
0.05 that counts came from asomatic distribution; ‘absent’ = O variant
reads and depth =6; ‘unknown’ = neither ‘absent’ nor ‘present’ criteria
met). The proportion of ‘unknown’ genotypes going into tree-building
was low:1.5% (PD34493),1.4% (PD41276) and 1.3% (PD41305; Extended
DataFig.5a-c). Agenotype matrix of shared mutations was fed into the
MPBoot program®, which constructs a maximum parsimony phylo-
genetic tree with bootstrap approximation. The in-house-developed
R package treemut (https://github.com/NickWilliamsSanger/treemut),
which uses original count data and a maximum likelihood approach,
was then used to assign mutations back to individual branches on the
tree. Since individual edge length is influenced by the sensitivity of
variant calling, lengths were scaled by 1/sensitivity, where sensitivity
was calculated as the proportion of germline variants called (mean
sensitivity: 85.4%, 87.0% and 83.5% for PD41305, PD41276 and PD34493,
respectively). The approaches we used to validate the phylogenies, in-
cluding comparison of MPBoot with an alternative phylogeny-inference
algorithm, SCITE®, are detailed in Supplementary Methods.
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Reconstruction of population trajectories. Phylogenies were made
ultrametric (branch lengths normalized) using a bespoke R function
(make.tree.ultrametric, https://github.com/margaretefabre/Clon-
al_dynamics/my_functions). With the root of the tree representing
conception and the tips representing age at sampling, we scaled the age
axisintwo phasesby: (1) assigning the first 55 mutations to the period
between conception and birth (inlight of evidence for this higher rate
of mutation acquisition during this period®**°, and (2) scaling the axis
linearly throughout life after birth (in light of evidence for a constant
rate of mutation acquisition in HSCs during postnatal life*> >, We then
analysed population size trajectories by fitting Bayesian nonparametric
phylodynamic reconstructions (BNPR) asimplemented in the phylodyn
R package®* to clades- sets of samples in a phylogenetic tree sharing
amost recent common ancestor (MRCA)—defined by either havinga
driver mutation onthe MRCA oraMRCA branch length that spans more
than 10% of the tree depth and with 5 tips or more. We also estimated
thelower and upper bounds for age at onset of clonal expansionto be
thelimits of the branch containing the most recent common ancestor.

Detection of clonal deceleration

We detect deceleration using two different approaches—the ratio
between expected and observed clone size using phylodynamic esti-
mates and the ratios between observed and historical (from longitu-
dinal data) and between late and expected (from phylogenetic data),
respectively. To obtain the late growth rate we fit abiphasic log-linear
model to our phylodynamic estimation of N z—this enables usto obtain
anearly and alate growthrate (detailsin the Supplementary Methods).

Expected and observed clone size. The expected clonessizeis calcu-
lated by extrapolating the early growth rate until the age of sampling;
having this we can calculate the ratio between expected and observed
growth. The ratio between these quantities is then used as a measure
of deceleration (details in the Supplementary Methods).

Growth ratio in phylogenetic data. The late growth rate is defined as
the late growth rate defined in the previous section of the methods.
The expected growth rate for the phylogenies is calculated as the
growth coefficient for a sigmoidal regression that assumes a popula-
tion size 0f 200,000 HSC as the carrying capacity. We then use the
ratio between these quantities as ameasure of deceleration (1implies
no deceleration; <limplies deceleration).

Growth ratio in longitudinal data. The observed growthrateis defined
asthegrowthrateinferred directly from the data. The minimal histori-
cal growth is the growth rate estimate obtained by restricting clone
initiation to a time after conception (age at at onset > -1).

Clonal haematopoiesis dynamics and malignant progression

To calculate the association between clonal haematopoiesis dynam-
ics and AML we used the risk coefficients from our previous work
in predicting the onset of AMLS, which were calculated by fitting a
Cox-proportional hazards model that calculated the risk of AML onset
associated with each gene (agnostic of clone size) while controlling for
age, sexand cohort, and estimate the coefficient of correlation between
the expected value of the annual growth for the posterior distribution
of each gene (considering gene, site and unknown-cause effects) and
the AML progression risk.

Theassociation between clonal haematopoiesis dynamics and selec-
tion in MDS and AML use the dN/dS values calculated with dNdScv as
previously described inthe methods, using two distinct cohorts from
previous studies**?, dN/dS values were calculated for all hotspots and
their coefficient of correlation with the expected value of the annual
growth for the posterior distribution of each hotspot (also considering
gene, site and unknown-cause effects) was calculated.

Statistical analyses

All statistical analyses were conducted using the R software®*- MCMC
models were fitted using greta® and hypothesis testing, generalized
linear models and maximum likelihood fits were performed in base R.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data files necessary to run the analysis in https://github.
com/josegcpa/clonal_dynamics are freely available at https://
doi.org/10.6084/m9.figshare.15029118. All sequencing data have
been deposited in the European Genome-phenome Archive (EGA)
(https://www.ebi.ac.uk/ega/). Targeted sequencing data have been
deposited with EGA accession numbers EGAD0O0001007682 and
EGADO00001007683; WGS data have been deposited with accession
number EGAD00001007684. Data from the EGA are accessible for
research use only to all bona fide researchers, as assessed by the Data
Access Committee (https://www.ebi.ac.uk/ega/about/access). Data
canbeaccessed by registering for an EGA account and contacting the
Data Access Commiittee.

Code availability

All analyses reported in this study used the statistical software R
(v.3.6.3). AlIR files used for the longitudinal and phylodynamic mod-
elling and validation are publicly available at https://github.com/
josegcpa/clonal_dynamics. All files used for the construction of phy-
logenetictrees are publicly available at https://github.com/margarete-
fabre/Clonal_dynamics.
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Extended DataFig.3|Modelling CHdynamicsinolder age using time-
series VAF data (previous page). a, Representation of a Wright-Fisher
simulation, showing two phases of clonal growth. The likelihood of a clone
transitioning from stochastic to deterministic growthis inversely proportional
to the product ofits fitness (f) and the total number of stem cells (N). Clones
withnofitness advantage (depictedin yellow) are unlikely to exceed their drift
thresholds and tend to disappear or remain undetectable. Fitter clones
(depictedinred) are more likely to reach deterministic growth. b, Association
betweenthedriver mutation effect used in the Wright-Fisher simulations and
thedriver effect inferred using our model (R*= 0.92; n =270 simulated clones).
Errorbarsrepresent 90% highest posterior density interval (HDPI).

¢, Comparison of observed (golden) and inferred (mean estimate; red)
trajectories forallrecurrently mutated sites. Grey bands represent 95% highest
posterior density intervals. d, Relationship between the number of mutations
co-occurringwithinanindividualand the proportion of clones growing ata
fixed rate over time (n = 685 clones; the number of clones used to calculate
eachratio estimateis represented oneach barandinbrackets is the number of
explainedtrajectories). e, Relationship between the number of available
timepointsinatrajectoryandthe proportion of clones growing at a fixed rate

over time (n = 659 clones; the number of clones used to calculate eachratio
estimateis represented oneachbarandinbracketsis the number of explained
trajectories). Error bars represent the beta-distributed 90% confidence
intervals (indande). f, Associationbetween predicted and observed VAF in
additional prospectively-collected samples from11individuals with15 CH
driver mutations, not used for growth rateinference. The dotted line depicts
theoretical perfect agreementbetween predicted and observed VAF.

g,h, Example trajectories of clones with SF3B1-K666N (f) and SRSF2-P95H (g)
mutations. Points represent VAFs used in our model to fit the growth curve
(train), and crosses represent prospectively tested VAFs used (test), showing
good agreement between predicted and observed VAFs. Bands represent the
95%HPDL.1, Illustration of the determinants of growth in our model. Each
mutationdrives an expected rate of clonal growth. j, Comparison of growth
rate associated with truncating vs non-truncating mutationsin genes withboth
driver types. Points above the dashed line show faster growth for truncating
mutations, and points below show faster growth for non-truncating mutations
(n=514clones). Intervals represent the 90% HPDI for the difference between
truncatingand non-truncating mutations.
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Extended DataFig. 4 | Differencesin growthratebetweenindividuals/
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spreadinthisrate (defined here as the standard deviation of the
unknown-cause (UC) growth). Circles represent point estimates, with circle
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representing the 90% confidence interval (Cl). For the standard deviation, the
90% Clwas calculated assuming that @ ~ Chisq(n-1), with nbeing the
samplesize, sthestandard deviation estimateando2the true population
variance. SRSF2-P95H mutations are plotted separately to other SRSF2
mutations, as they are associated with significantly different growth dynamics
(n=633clones).b, Relationship between number of inherited MPN risk alleles
andJAK2-mutant clonal growthrate (Pearson R?=0.03; p = 0.27 (two-sided)).
Thegreybandrepresentsthe 95% confidenceinterval for the linear regression.
¢, The number of mutations perindividualin each geneis plotted. Each
data-pointisa pie-chart, the size of which reflects the number of individuals.
Foreachgene, given the observed mutation prevalenceinour cohort, the pieis
fully light grey if the number of individuals we observed with the specific
number of mutations is the same as the number of individuals we expected by
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Extended DataFig. 5| Data quality and validation of phylogenetic trees.
a-c,Heatmapsofthegenotype dataused for treeinference for the three
individuals for which trees were derived in our study (PD34493, PD41305 and
PD41276, respectively), with colours corresponding to the presence (red),
absence (blue) and uncertainty (grey) of each genotype (rows) across all
colonies (columns). For both colonies and genotypes, dendrograms derived
fromthe hierarchical clustering of each are shown and are not representative
ofthe derived phylogenetictrees.d, Internal consistency of the shared
mutation dataforeachindividual as determined by the disagreement score.

Aperfect phylogeny has ascore of zero. We compare scores for the data with
scores for random shuffles of the genotype dataateachlocus. e, Comparison
of phylogenetic trees built by alternative phylogeny-inference algorithms,
MPBoot and SCITE, for each of the 3 individuals. For all three we present the
Robinson-Fould (RF) similarity between trees built by the two methods, with 0
representing completely different treesand 1representingidentical trees.
Branching events that are different between trees constructed using the two
methods are highlighted inred.
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Extended DataFig. 6 | Lifelong growthin phylogenetic trees. Comparison
betweenannual growth derived from phylogenies and growth observedin
longitudinal data. For the phylogenies this was obtained by fitting an
exponential growth curve to the entire phylodynamic trajectory. For growth
rates derived from longitudinal data, error bars represent the 90% HPDI; for
growthrates derived from phylogenies (colonies), error barsrepresent +/-the
standard error.



1e+08 1e+08 1e+08 1e+08 1e+08
a b 1e+05 1e+405 1e+05 1e+05 1e+05
1e+02 16402 16402~ 16402 16402
_ $=0.005 §=0.01 $=0.015 02468 02468 02468 02468 02468
g e : = BB B8 BEL - B8~
s il e e e e e
§19% 2 jf 16402 16402 {2 16402 | 1e402{,”_ 1e+02
5 1e+02 7 02468 02468 02468 02468 02468
£ oo SlE) o~ ) 5B 58~ 8-
= 3 1e e e e e =
g $=0.02 $=0.025 $=0.03 sl ] 1] el 1eip
g 1e+06 > - 02468 02468 02468 02468 02468
2| G ST BB L BB 8B B
= : / e = le e e - e
3 tes02 1102 161020y 1e102]  1es02]// " 16402
1 1e+00 02468 02468 02468 02468 02468
0 200400 600 0 200 400 600 0 200 400 600 10408 10408 10408
Time since first coal. (generations 1e+05 1e+05 1e+405 - — BNPR estimat
© ) 1e+021_f 1e+021/ 1e+021 / NP estimate
— Simulated
02468 02468 02468
Generation (x100)
id=14 (N=5;5=0.02)  id=18 (N=5;5=0.025)  id=20 (N=5;5=0.03)  id=22 (N=5;5=0.03)  id=10 (N=6;5=0.02)  id=28 (N=6;5=0.03)
16407
Tew0d | —_— — ~ — ~—
id=7 (N=6;5=0.02)  id=9 (N=6;s=0.02)  id=17 (N=7;5=0.025) id=24 (N=7;5=0.03)  id=26 (N=7;5=0.03) id=8 (N=7;5=0.02)
16407
1e+04
164014 = = E ol r ~ =
id=12 (N=8;5=0.02)  id=33 (N=8;5=0.03)  id=11 (N=9;s=0.02)  id=21 (N=9;5=0.03)  id=25 (N=9;5=0.03)  id=29 (N=10;5=0.03)
1e+07
led] oy —— e
16401 7 7 ~
=
2 id=16 (N=11:5=0.025) id=23 (N=12;5=0.03) id=13 (N=14;5=0.02) id=27 (N=14;5=0.03) id=4 (N=15;5=0.015) id=19 (N=16;5=0.025)
18407
Toi04] e —~— —— —
id=3 (N=17;5=0.015)  id=2 (N=19;5=0.015)  id=6 (N=29;5=0.02)  id=5 (N=39;5=0.015) id=15 (N=58;5=0.025) id=1 (N=74;5=0.015)
16407
1e+04 p———— ="'_'.,..,.4’—! N w
1e01 =Y 7
id=32 (N=92;5=0.03) id=30 (N=09;5=0.03) id=31 (N=99;s=0.03) 200 400 600 800 200 400 600 800 200 400 600 800
1e+07
10404 & BNPR
to01] =" .«"""z u‘”’: & meme.popsize
& skyline

200 400 600 800 200 400 600 800 200 400 600 800

Log-linear

Early log-linear

Time (generations)

BNPR mcmc.popsize Skyline

f

Neff

slowing down accelerating

R? with simulated ffitness

0.04 0.08 0.12 0.16

Near %% x x .
constant * = * ato/eart
P T ate/early
Saturatingq ¥ = - (phylodin.)
Real data BHCCS 5—«—.—-
Obs./plaus. DNMT3A obs./min. hist.
growth ratio ﬁ \ growth ratio
<1 0 05 1 2\
Growth ratio Eg/‘?f,z’P%H

e Fabre etal. 2021 = Simulated FPTPNT1

+ Mitchell et al. 2021

KX004 KX004 KX004 KX007 KX003 KX007
16408 Clade7 Clade8 DNMT3A-R309G Clade7 Clade5 Clade6
1e405

- L8 o

tew02]{ pov — L /""—. ,_.’-/

KX004 KX008 KX003 KX004 KX007 KX004
16408 Clade6 _ Clade6 Clade4 DNMT3A-G843S Clade2 Clade4
16405 v og e
16402 //-1 / /_l /‘ /-‘ /J—J

KX004 KX003 KXi KX004 KX003 KX007
16408 Clade5 Clade3 SETD2 L981V Clade3 Clade2 CREBBP—N2111S
1e+05
16402 / /——1 /\‘l /——1 //J //-1

KX004 KX008 KX008 KX008 KX004
16408 Clade2 Clade5 Clade3 Clade4 DNMT3A-F752S8 DNMTSA P904L
16405 . nl- : - - —
10102 /—" /_1 /" /‘l / /-_'

_—

KX008 KX004 KX008 KX004 KX003 20 40 60 80

16408 Clade2 Clade1 Clade1 DNMT3A-? Clade1 . 2 BNPR
y = Early growth (fit)

1e+05 //! Early growth
1e+02 (extrapolation)

20 40 60 80

Extended dataFig.7|See next page for caption.

20 40 60 80

20 40 60 80

Time (years)

= Late growth
o Observed clone size
® (Neff=1M; Neff=200k)

20 40 60 80 20 40 60 80



Article

Extended dataFig.7|Examples and consistency of clonal deceleration

from simulations and real data. a, Simulated BNPR trajectories from Wright-

Fisher simulations with a fixed population size across 800 generations fora
range of fitness effects (0.005, 0.010, 0.015, 0.020, 0.025, 0.030).

b, Comparisonbetween Wright-Fisher simulations (grey) and BNPR estimates
from phylogenies obtained from these simulations (pink). The horizontal
goldenlineineachplotrepresents the HSC population carrying capacity
(200,000). ¢, Representation of effective population size (Neff) trajectories
using three distinct methods (BNPR, mcmc.popsize and skyline; detailsin

the Supplementary Methods) for their estimation across arange of clade sizes
andfitness effects. d, Quantification of the association between true and

inferred fitness values for three distinct methods of Neff estimation.

e, Schematic representation of all trajectories from Mitchell et al.** and how
extrapolating fromthe initial growth rate leads to the overestimation of the
observed clonesize (here the observed clone size is obtained by scaling the
proportionoftipsinaclade by atotal Neff of either 200,000 0or 1,000,000 HSC
xyr).f, Quantification of the deceleration effect fromreal data and simulations
(n=177/n=37/n=633 clones detected in simulated phylogenies (top)/
haematopoietic phylogenies (middle)/with targeted sequencing (bottom)
respectively). Theboxesrepresent the 25th, 50th (median) and 75th percentiles
ofthe data; the whiskers represent the lowest (or highest) datum within1
interquartile range from the 25th (or 75th) percentile.
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Extended DataFig.9|Ageatclonedetectionandonset.a, Proportion of
clones driven by different driver mutations that were incipient on-study, ie.
undetectable at time-point1and detectable by the end-of-study. Absolute
numbers are given above each bar. b, Relationship between age at onset and
observed annual growth rate, with pointsrepresenting the mean annual
growth/median age at onsetand intervals representing, respectively, the

90%/95% highest posterior density intervals (HPDI). The black line and grey

shaded arearepresent the theoretical limit of detectionat 80 years of age

(n=615clones). ¢, Violin plot showing the distribution of projected ages at
onset forall clones, assuming stable lifelong growth at the same fixed rate we
observed during older age.d, Association between the age at which clones
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appearedinthe simulations and the age at clone foundationinferred using our
time-series data (R?=0.75). Boxplots show that, while these estimates may have
highvariance, the distribution of expected values is close to the true value
(n=250simulated clones). The boxes represent the 25th, 50th (median) and
75th percentiles of the data; the whiskers represent the lowest (or highest)
datumwithin linterquartile range from the 25th (or 75th) percentile.

e, Sensitivity analysis depicting the median (dot) and the 95% confidence
interval of the ages at onset for each gene when considering different
populationsizes (10* 5*10%,10%,2*10°and 6*10°) and numbers of generations
peryear(1,2,5,10,13,20; n =615 clones).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed
|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|z A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|z A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|Z| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

& For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|Z For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 O 0O 00 0O OO0

|Z Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Image processing from sequencing data using standard lllumina NovaSeq and HiSeq pipelines.

Data analysis Read alignment was performed using BWA-MEM (v0.7.17). Somatic mutation calling and VAF quantification was performed using Shearwater
(v.1.21.5), CaVEMan (v.1.11.2), Pindel (v.2.2) and the in-house script vafCorrect (https://github.com/cancerit/vafCorrect). Allele counts at
recurrent mutation hotspots were verified using an in-house script (github.com/cancerit/allelecount). Copy number aberrations in blood
colonies WGS were determined using ASCAT (v4.2.1) and BRASS (https://github.com/cancerit/BRASS). Phylogenetic trees were derived using
MPBoot (version 1.1.0 for Linux (http://www.igtree.org/mpboot)) and treemut (https://github.com/NickWilliamsSanger/treemut) and
validated using SCITE (https://gitlab.com/jahnka/SCITE). Population size trajectories were determined using Bayesian nonparametric
phylodynamic reconstructions (BNPR) implemented in the phylodyn (v0.9.2) package for R. dNdScv (v.0.0.1.0) was used to quantify selection
for somatic mutations. Wright-Fisher simulations of the haematopoietic system were performed using clonex (https://github.com/gerstung-
lab/clonex).

All statistical analyses used the software R (v.3.6.3). All R files used for the longitudinal and phylodynamic modelling and validation are publicly
available at https://github.com/josegcpa/clonal_dynamics. All files used for the construction of phylogenetic trees are publicly available at
https://github.com/margaretefabre/Clonal_dynamics.

Alist of all the R packages explicitly used (excluding package prerequisites) and their respective versions (in brackets) is provided here: MASS
(v7.3), ape (v5.4), bayesplot (v1.7.2), car (v3.0), castor (v1.6.4), coda (v0.19), colorspace (v1.4), cowplot (v1.1.0), dendextend (v1.14.0),
extraDistr (v1.9.1), ggforce (v0.3.2), ggpubr (v0.4.0), ggrepel (v0.8.2), ggridges (v0.5.2), ggsci (v2.9), ggsignif (v0.6.0), ggtree (v2.0.4), greta
(v0.3.1), gridExtra (v2.3), gtools (v3.8.2), nlme (v3.1), openxlsx (v4.2.2), phangorn (v2.5.5), phylodyn (v0.9.2), reghelper (v1.0.1), rreticulate
(v1.16), scatterpie (v0.1.5), stringr (v1.4.0), survival (v3.2), survminer (v0.4.8), tensorflow (v2.2.0), tidyverse (v1.3.0), zoo (v1.8), deepSNV
(v1.21.5) and dNdScv (v.0.0.1.0).
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data files necessary to run the analysis in https://github.com/josegcpa/clonal_dynamics are freely available at https://doi.org/10.6084/m39.figshare.15029118.
All sequencing data have been deposited in the European Genome-phenome Archive (EGA) (https://www.ebi.ac.uk/ega/). Targeted sequencing data have been
deposited with EGA accession numbers EGAD0O0001007682 and EGAD00001007683; WGS data have been deposited with accession number EGADO0001007684.
Data from the EGA are accessible for research use only to all bona fide researchers, as assessed by the Data Access Committee (https://www.ebi.ac.uk/ega/about/
access). Data can be accessed by registering for an EGA account and contacting the Data Access Committee.

AML datasets were retrieved from Papaemmanuil et al, NEJM, 2016 (Ref...)

MDS datasets were retrieved from Papaemmanul et al, Blood 2013 (Ref...)
Phylogenetic data from the Mitchell et al companion paper was kindly shared with us from the authors of the paper.
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Life sciences study design
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Sample size To enable us to derive robust estimates of clonal dynamics over time we wanted to study a sufficient number of individuals with clonal
haematopoiesis driven by each of its 9 most common driver genes (DNMT3A, TET2, ASXL1, SF3B1, TP53, SRSF2, PPM1D, JAK2 and U2AF1). Our
expectation was that clones driven by mutations in the same gene would behave relatively similarly, but the extent of similarity was not
known at the outset of the study. We therefore aimed to capture at least 6-8 cases of CH driven by each of these genes. As U2AF1 is the least
commonly mutated of these genes (approximately 2-3% of individuals in the studied age range), this was the gene that determined our
sample size of 385 participants, which gave an expectation that we would identify approximately 7-12 individuals with U2AF1-driven clonal
haematopoiesis. In the end we identified 8 such cases, whilst numbers of individuals with mutations in each of the other 8 genes were
greater.

Data exclusions  We excluded DNA sequencing reads that did not meet widely accepted quality metrics. We also excluded 16 single cell colony-derived WGS
data that did not meet set quality criteria.

Replication This is the first study to sequence serially obtained samples in order to study the dynamic behaviour of clonal haematopoiesis. As such, no
comparable datasets are available for replication.

Randomization  N/A-there was no intervention or treatment studied.

Blinding N/A - there was no intervention or treatment studied.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|Z| |:| Antibodies |Z |:| ChiIP-seq

|Z| |:| Eukaryotic cell lines |Z |:| Flow cytometry

|Z| |:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
|Z| |:| Animals and other organisms

|:| Human research participants

X|[] clinical data

XI|[] pual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics The 385 study participants (199 women) were aged 54-93 years (median 69.3) at study entry and were sampled up to 5 times
(median 4) over 3.2-16 years (median 12.9 years). The participants had no history of haematological malignancy, but were
otherwise unselected.

Recruitment Participants were recruited as part of the Sardinia study. The study recruited unselected Sardinians aged 14-102 years with
the initial sample cohort of >6000 people including over 62% of the eligible population living in the catchment region in
Ogliastra. Recruitment of the individuals in the cohort occurred prior to the large studies by us and others reporting the
frequency of clonal haematopoiesis and the commonly mutated driver genes in 2014-2015. Our study investigated 385
individuals aged 54 years or older, who were randomly selected from Sardinia study participants without any identifiable
selection bias (see - https://sardinia.nia.nih.gov/). Individuals who developed a haematological malignancy before or after
recruitment were excluded from the present study.

Ethics oversight Ethical permission for this study was granted by The East of England (Essex) Research Ethics Committee (REC reference 15/
EE/0327). All applicants signed informed consent, which is now stated clearly in the manuscript.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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