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The nonsense-mediated mRNA decay 
(NMD) pathway is responsible 

for the rapid degradation of eukaryotic 
mRNAs on which ribosomes fail to 
terminate translation properly. NMD 
thereby contributes to the elimination of 
aberrant mRNAs, improving the fidel-
ity of gene expression, but also serves 
to regulate gene expression at the post-
transcriptional level. Here we discuss 
recent evidence as to how and where 
mRNAs targeted to NMD are degraded 
in human cells. We discuss accumulating 
evidence that the decay step of human 
NMD can be initiated by two different 
mechanisms: either by SMG6-mediated 
endonucleolytic cleavage near the aber-
rant stop codon, or by deadenylation 
and decapping. While there is evidence 
that mRNAs targeted for NMD have the 
capacity to accumulate with other trans-
lationally repressed mRNAs in P-bodies, 
there is currently no evidence that this 
is required for the degradation of the 
NMD substrate. It therefore remains an 
open question whether NMD in human 
cells is restricted to a particular cellular 
location or whether it can be initiated 
wherever translation of the NMD sub-
strate takes place.

Introduction

Given the complex chain of biochemical 
reactions involved in transforming the 
genetic information of an organism into 
gene products, the overall accuracy of 
gene expression is quite astonishing. At 
the mRNA level, the nonsense-mediated 
mRNA decay (NMD) pathway contrib-
utes to the high fidelity of gene expres-
sion in eukaryotes by recognizing and 
eliminating aberrant mRNAs on which 

ribosomes terminate translation prema-
turely. The truncation of the open reading 
frame (ORF) as a result of gene expres-
sion errors that lead to introduction of 
premature termination codons (PTCs), 
represents a well-studied feature that tar-
gets an mRNA for NMD, but transcrip-
tome-wide profiling also revealed many 
seemingly normal, physiological mRNAs 
as NMD substrates. Thus, one of the key 
questions remains how the NMD machin-
ery identifies its substrates. This topic has 
been extensively covered in several recent 
reviews.1-6 Here, we discuss another key 
question about the NMD pathway: once 
identified as an NMD substrate, how and 
where is the target mRNA degraded? We 
focus our discussion on recent findings in 
mammalian cells and compare and con-
trast these to previous observations in 
the yeast Saccharomyces cerevisiae and the 
fruitfly Drosophila melanogaster.

Nip the End or Slice in Half?  
Different Species—Different  

Answers

Eukaryotic mRNAs are protected from 
mRNA decay by the 5' N7-methyl-
guanosine cap and the 3' poly(A) tail. The 
initiation of mRNA decay requires an event 
that exposes the mRNA ends to 5'-to-3' 
or 3'-to-5' exonucleases. Depending on 
the specific mRNA decay pathway, this is 
achieved by removal of either the cap by the 
process of decapping, or the poly(A) tail 
by deadenylation. Alternatively, mRNA 
decay can be initiated by an endonuclease 
cutting the mRNA into two pieces, which 
also generates unprotected ends accessible 
to exonucleases.7

NMD requires the UPF proteins, 
UPF1, 2 and 3, which are conserved 
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On the other hand, recent reports have 
provided evidence for endonucleolytic 
cleavage near the PTC in human cells.22,23 
As in Drosophila cells, nonsense mRNA-
specific polyadenylated 3' fragments could 
be observed in XRN1-depleted human 
cells.22 The appearance of these 3' endo-
cleavage fragments was dependent on 
UPF1, but was not affected by knockdown 
of DCP2.22 Moving the position of the 
PTC in three different reporter transcripts 
led to a corresponding change in the size 
of the 3' fragment, indicating that endo-
nucleolytic cleavage occurs in the vicinity 
of the PTC, but apparently not at a spe-
cific site, since cloning and sequencing of 
3' fragments suggested that the cleavage 
can occur without any apparent sequence 
preference within a range of 40 nucleotides 
upstream or downstream of the PTC.22

What is the endonuclease in mam-
malian and Drosophila NMD? The 
identification of a PIN domain in the 
NMD factor SMG6 with in vitro nucle-
ase activity,24 made SMG6 the prime 
candidate. Indeed, bacterially expressed 
PIN domain of human SMG6 degrades 
circular RNA in vitro, demonstrating its 
endonuclease activity.22 Notably, the PIN 
domain of the exosome component DIS3/
RRP44 has also recently been identified as 
an endonuclease,25,26 suggesting that other 
proteins with PIN domains might also 
exhibit endonuclease activity, provided 
they contain critical aspartic acid residues 
in the catalytic center.24 In vivo knock-
down and reconstitution experiments fur-
ther demonstrated that SMG6 is the factor 
responsible for the endonucleolytic cleav-
age of NMD substrates both in mammals 
and in flies.22,23 Earlier studies suggested 
that in erythrocytes, PTC-containing 
b-globin mRNA, and to a lesser extent 
also the wild-type mRNA, undergoes 
endonucleolytic cleavage by a PMR-like 
enzyme,27,28 but these cleavages occurred 
at specific sites (preferentially UG dinu-
cleotides) and independently of the PTC 
position, suggesting that this phenomenon 
was caused by a different mechanism than 
the UPF1- and SMG6-dependent cleavage 
near the PTC.

How can the seemingly contradic-
tory evidence for initiation of NMD 
by decapping and deadenylation versus 
endonucleolytic cleavage in human cells 

inhibited: detection of the 5' fragment 
required simultaneous knockdown of 
three exosome components, RRP4, CSL4 
and SKI2, while the 5' fragment was 
detectable after knockdown of the 5'-to-3' 
exonuclease XRN1.13 Endonucleolytic 
cleavage was observed for several exoge-
nously expressed nonsense mRNAs as well 
as for an endogenous mRNA, suggesting 
that it represents a major general decay 
route for NMD substrates in flies.

In cultured mammalian cells, seem-
ingly contradictory observations have been 
reported and the situation appears to be 
more complicated than in yeast and flies. 
On the one hand, evidence for initiation 
of nonsense mRNA decay by deadenyla-
tion and decapping has been reported.14-17 
NMD targets showed enhanced deadeny-
lation as compared to normal mRNAs, 
and accumulated as full-length transcripts 
upon knockdown of enzymes involved in 
decapping, deadenylation, or in 5'-to-3' 
or 3'-to-5' exonucleolysis.14-17 Specifically, 
RNAi-mediated downregulation of DCP2, 
the catalytic subunit of the decapping com-
plex, of XRN1, and of RRP6/PM-Scl100/
EXOSC10 (a nucleolus-enriched homolog 
of the nucleus-specific yeast exosome 
component Rrp6p18) increased nonsense 
mRNA abundance and slowed their decay 
rate.16 With regards to deadenylation, one 
study reported increased nonsense mRNA 
abundance upon knockdown of PARN,16 
a deadenylase that primarily localizes in 
the nucleus. By contrast, a separate study 
reported no effect on NMD of PARN 
overexpression or knockdown, whereas 
inhibition of NMD was observed upon 
knockdown, or upon overexpression of 
inactive mutants, of the CCR4-CAF1 
and PAN2-PAN3 deadenylase complex-
es.17 The ability of the NMD pathway 
to activate decapping and deadenylation 
is supported by reports that UPF1 inter-
acts with the decapping complex through 
a recently discovered bridging factor, 
and that UPF proteins co-purify with 
PARN.16,19-21 Moreover, UPF proteins have 
been reported to exist in complex with the 
5'-to-3' exonucleases XRN1 and XRN2/
RAT1, and several exosome components.16 
These observations are consistent with 
the idea that NMD in human cells, as in 
yeast, can be initiated by decapping and 
deadenylation.

among known eukaryotes. In addition, 
a UPF1 kinase, SMG1, and phospho-
UPF1-interacting proteins, SMG 5, 6 and 
7, are important for NMD in metazo-
ans (reviewed in refs. 5 and 8). How do 
these NMD factors engage the mRNA 
decay machinery to degrade mRNAs 
targeted to NMD (hereafter called non-
sense mRNAs)? This has been most thor-
oughly studied in the yeast S. cerevisiae, 
where the rapid decay of NMD substrates 
seems to be initiated primarily through 
an accelerated rate of mRNA decapping. 
This conclusion was based on observa-
tions that no deadenylated NMD sub-
strate intermediate could be observed in 
pulse-chase mRNA decay assays, and that 
inhibition of 5'-to-3' exonucleolytic decay 
in cis by a guanosine-tract or in trans by 
depletion of decapping or 5'-to-3' exonu-
clease enzymes resulted in accumulation 
of polyadenylated decay intermediates.9,10 
In addition, deadenylation followed by 
exosome-mediated 3'-to-5' exonucleolysis 
has also been reported to contribute to 
NMD in yeast.11,12 This is based on the 
observations (1) that nonsense mRNAs 
were stabilized in yeast cells lacking com-
ponents of the 3'-to-5' exonuclease com-
plex (the exosome), (2) that degradation 
in the 3'-to-5' direction proceeded more 
rapidly in a Upf- and exosome-dependent 
manner on nonsense mRNAs than on 
normal mRNAs, and (3) that an interac-
tion of Upf1p with the exosome-associated 
Ski7p promoted exosome-mediated 3'-to-
5' degradation. Kinetic analyses suggested 
that NMD speeds up 3'-to-5' decay pri-
marily by accelerating the deadenylation 
rate, and that the initiation of NMD by 
decapping or deadenylation is dependent 
on the relative position of the PTC to the 
cap and poly(A) tail.9 Thus all evidence in 
yeast suggests that NMD is initiated from 
the end, by the removal of the cap and/or 
poly(A) tail.

It came therefore as a surprise when 
it was discovered that in D. melanogaster 
S2 cells, degradation of nonsense mRNA 
begins with an endonucleolytic cleavage 
in the vicinity of the PTC, followed by 
rapid exonucleolytic degradation of the 
two resulting RNA fragments.13 These 
decay intermediates are highly unstable 
and were only detected when the respec-
tive exonuclease activities were sufficiently 
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possess Ebs1p, a protein homologous to 
SMG7,32 NMD initiates by decapping and 
deadenylation.

This “branched NMD pathway model” 
also raises several questions. First, are there 
transcript-specific preferences for one or 
the other pathway, or is the activity of each 
decay route regulated developmentally 
and in a tissue-specific manner? Second, 
if the mechanism of nonsense mRNA 
decay is determined by the identity of the 
recruited SMG5-7 protein, could this be 
regulated, for example through differ-
ential phosphorylation of UPF1. Third, 
what would be the biological significance 
of multiple pathways to decay? Are they 

of UPF1.29 However, whereas the PIN 
domain of SMG6 possesses endonuclease 
activity,22 the PIN domain of SMG5 lacks 
important catalytic residues and SMG7 
has no PIN domain at all.24 SMG7 on 
the other hand activates mRNA decay 
in a DCP2- and XRN1-dependent man-
ner, but independently of SMG6, when 
tethered to a reporter mRNA.30 Is it pos-
sible that the identity of the SMG5-7 
protein(s) recruited to the NMD complex 
determines the mechanism of decay? This 
idea may explain why in flies, which lack 
a paralog of SMG7,31 NMD appears to 
rely on SMG6-mediated endocleavage, 
whereas in yeast, which lack SMG6 but 

be reconciled? The simplest hypothesis is 
that after PTC recognition, a transcript 
can be subjected to either degradation 
route: it is either degraded through the 
“normal” mRNA turnover pathway start-
ing with deadenylation and/or decapping 
or through endonucleolytic cleavage. 
In either case, this is followed by exo-
nucleolytic decay of the resulting RNA 
fragments from the unprotected ends  
(Fig. 1). If so, what determines which 
pathway is activated? Interestingly, SMG5, 
SMG6 and SMG7 are all proteins of simi-
lar structure that, at least in part, inter-
act through 14-3-3-like domains with 
the phosphorylated C-terminal domain 

Figure 1. Model of the decay step(s) of human NMD. Aberrant translation termination gives time for UPF1 to bind to the stalled ribosome through 
interaction with eRF3. Subsequent phosphorylation of UPF1 induces a conformational change that increases UPF1’s affinity for RNA and marks the 
mRNA for degradation. Phosphorylated UPF1 can either be bound by SMG6 or the heterodimer SMG5/SMG7. Binding of the SMG6 endonuclease will 
cleave the RNA near the aberrant termination codon and the resulting decay intermediates will be rapidly degraded by 5'-to-3' (light blue PacMan) 
and 3'-to-5' exonucleases (violet PacMan). in contrast, binding of SMG5/SMG7 results in recruitment of deadenylases (purple PacMan) and decapping 
enzyme (dark blue PacMan). The decapped and deadenylated body of the mRNA is subsequently degraded by exonucleases.
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P-bodies. Thus, whether NMD in human 
cells is restricted to a particular cellular 
location or whether it can be initiated 
wherever translation takes place remains a 
question for future study.
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