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Achieving complete, accurate, and cost-effective assembly of human genomes is of great importance for realizing the prom-

ise of precision medicine. The abundance of repeats and genetic variations in human genomes and the limitations of existing

sequencing technologies call for the development of novel assembly methods that can leverage the complementary

strengths of multiple technologies. We propose a Hybrid Structural variant Assembly (HySA) approach that integrates se-

quencing reads from next-generation sequencing and single-molecule sequencing technologies to accurately assemble and

detect structural variants (SVs) in human genomes. By identifying homologous SV-containing reads from different technol-

ogies through a bipartite-graph-based clustering algorithm, our approach turns a whole genome assembly problem into a

set of independent SV assembly problems, each of which can be effectively solved to enhance the assembly of structurally

altered regions in human genomes. We used data generated from a haploid hydatidiform mole genome (CHM1) and a dip-

loid human genome (NA12878) to test our approach. The result showed that, compared with existing methods, our ap-

proach had a low false discovery rate and substantially improved the detection of many types of SVs, particularly novel

large insertions, small indels (10–50 bp), and short tandem repeat expansions and contractions. Our work highlights the

strengths and limitations of current approaches and provides an effective solution for extending the power of existing se-

quencing technologies for SV discovery.

[Supplemental material is available for this article.]

The complete, accurate, and cost-effective assembly of human
genomes is a prerequisite for genomicmedicine. Advances in trans-
lational genomics are hampered by technical challenges in assem-
bling structurally altered regions in human genomes, which are
shown to be essential for generating genetic diversities and in hu-
man diseases (Feuk et al. 2006; Sharp et al. 2006; Lupski 2007).
Advances in next-generation sequencing (NGS) technologies
havegreatly facilitated theassemblyanddetectionof structural var-
iations (SVs) inhumangenomes (Alkanet al. 2011a).Manycompu-
tational methods have been developed to identify SVs through
examining the alignment of paired-end reads to the human refer-
ence genome, scanning for abnormally aligned reads (such as un-
mapped reads, discordant read pairs, clipped reads, and reads
with large gaps) and variation of read depths, and inferring SV po-
sitions andorientations (Chenet al. 2009;Wanget al. 2011;Rausch
et al. 2012; Sindi et al. 2012; Layer et al. 2014). Othermethods per-
form whole-genome assembly (WGA) or targeted assembly of se-
quencing reads and identify SVs from pairwise alignment of
assembled contigs against the reference (Iqbal et al. 2012; Chen
et al. 2014; Xie et al. 2014). AlthoughNGS reads have lowbase-call-
ing error rates (Ross et al. 2013), their read lengths are often limited
(e.g., 100–200 bp for Illumina HiSeq instruments). The short read
length leads to a bias against the assembly and detection of SVs,
which often occur near segmental duplications or large repeats in
the genome (Alkan et al. 2011b). Moreover, complex sequence al-

terations around SV breakpoints (e.g., microhomology, micro-
indels [Hackl et al. 2014], andkataegis [Alexandrovet al. 2013]) sub-
stantially hamper the sensitivity and specificity of SV detection
methods that depend on aligning individual reads against the ref-
erence (The 1000 Genomes Project Consortium 2010).

The advent of single-molecule sequencing (SMS) technolo-
gies greatly changed the landscape of genome assembly approach-
es by providing much longer reads (e.g., 12 kb on average for
Pacific Biosciences (PacBio) reads in P6-C4 chemistry). As a result,
many SVsmissed byNGS could be detected (Chaisson et al. 2015b)
by SMS. Unfortunately, SMS technologies are error-prone due to
the use of one molecule for real-time sequencing. For example,
PacBio reads typically have an error rate of 15%, and the majority
(14%) of the errors are indels (Ross et al. 2013). This high error rate
has posed new challenges to bioinformatics tools that perform
alignment or assembly. To tackle these challenges, BLASR
(Chaisson and Tesler 2012) was developed to align noisy PacBio
reads in a computationally efficient way. The widely used BWA al-
gorithm (Li and Durbin 2009) was also extended to align PacBio
reads (Li 2013). It is plausible to infer SVs based on the analysis
of the alignment of long reads to the reference by searching
for indel signals (gaps inside a read alignment) and stop signals
(clipped ends) (English et al. 2014; Chaisson et al. 2015b).
However, it is often difficult for the aligners to assign gaps or
stops accurately due to high error rates, long read lengths, and
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the prevalence of repeats. Thus, it is challenging to parse PacBio
read alignment to accurately determine SVs and breakpoints, par-
ticularly those resulting from novel (nonreference) insertions.

On the other hand, de novo genome assembly approaches
have rapidly advanced to achieve high quality and computational
efficiency (Chaisson et al. 2015a). Overall, three different para-
digms have been developed: (1) overlap-layout-consensus (OLC)
(e.g., Mira [Chevreux et al. 2004], Newbler [Margulies et al.
2005], andCeleraAssembler [Myers et al. 2000]); (2) de Bruijn graph
(e.g., Velvet [Zerbino and Birney 2008], SOAPdenovo [Xie et al.
2014], ABySS [Simpson et al. 2009], and ALLPATHS [Butler et al.
2008]); and (3) string graph (Myers 2005). Approaches based on
the de Bruijn graph require high quality reads and are only applica-
ble to NGS data, whereas approaches based on the OLC and string
graphs are applicable to both NGS and SMS data. For example,
FALCON (Chin et al. 2016), a recently developed assembly algo-
rithm, utilizes string graphs to assemble a diploid genome from
PacBio reads. Although constructing string graphs using the
Ferragina-Manzini (FM)-index only takes time linear to the num-
ber of reads, FALCON is still computationally intensive due to an
error correction step that requires pairwise alignment of all
PacBio reads. Chin et al. (2013) also utilized relatively short
PacBio reads to correct long PacBio reads before performing assem-
bly. Berlin et al. (2015) made use of a statistical hashing technique
for identifying pairwise overlaps, which greatly reduces the com-
putation time. For SV detection, however, de novo whole-genome
assembly is not optimal since themajority of the genome does not
contain SVs. WGA often requires computational resources not
widely available when assembling large mammalian genomes
(∼3 Gbp) (Pendleton et al. 2015), and such approaches are often
not optimized to assemble diploid genomes containing heteroge-
neous SVs. In comparison, targeted SV assembly approaches (Chen
et al. 2014; Chong et al. 2016) that aim to assemble sequences
spanning SVs are often more effective in terms of computational
efficiency and SV detection power, as they dissect aWGA problem
into a set of independent local assembly problems that can be
more effectively solved. However, in addition to performing pow-
erful local assembly, targeted approaches need to (1) achieve com-
prehensive unbiased selection of targets, and (2) ensure that the
results obtained from local solutions are also globally optimal.

Considering the advantages and disadvantages of the tech-
nologies, i.e., NGS reads are short but accurate, whereas SMS reads
are long but inaccurate, a hybrid assembly approach that combines
data from the two or more technologies can potentially achieve
more powerful assembly and SV detection. Ideally, the accuracy
of NGS reads can be used to correct errors in SMS reads, whereas
the length of SMS reads can be used to anchor assemblies confi-
dently to the reference. A few efforts aiming to achieve such com-
bination, although not specifically for SV detection, have been
proposed. A toolbox has been developed to simulate the integra-
tion of multiple technologies for optimal personal genome assem-
bly (Du et al. 2009). PacBioToCA (Koren et al. 2012) performs
hybrid de novo WGA by aligning all NGS short reads to all
PacBio reads for error correction. LSC (Au et al. 2012) applies a sim-
ilar strategy but aims to reduce the error rate in homopolymer runs.
While thesemethods utilize the high fidelity of NGS reads and the
long length of PacBio reads, they tend to be computationally in-
tensive and are not designed for SV detection. MultiBreak-SV
(Ritz et al. 2014), on the other hand, uses a probabilistic approach
that combines the alignment of individual SMS and NGS reads for
detecting SVs, particularly in regions involving multiple SVs.
However, it is not suitable for detecting novel insertions since it re-

lies on accurate alignment of individual reads to the reference.
Moreover, it only examines discordantly aligned NGS read pairs
(but not unmapped or clipped NGS reads).

In short, there lacks a computationally efficient hybrid assem-
bly approach for accurate SV detection despite a pressing demand
in applying the technologies. Themain obstacle is a lackof compu-
tationally efficient algorithms that can effectively synergize het-
erogeneous data sources of highly discrepant properties (e.g.,
read length and sequencing error) with highly structured contents
(e.g., sequence homology in human genomes).

Results

Method overview

We propose a novel Hybrid Structural variant Assembly (HySA)
method that identifies and performs genome-wide SV assembly
from both NGS and SMS data (Fig. 1A). The complementary prop-
erties of NGS and SMS data allow ascertainment of SVs in genomic
regions that cannot be confidently mapped by short reads and im-
prove accuracy of gap or novel sequence assignment in noisy long
reads. HySA requires two sets of input data: Set A, the reference
alignment of paired-end short reads generated by low-error-rate
NGS (such as Illumina HiSeq); and set B, long reads generated by
high-error-rate SMS (such as PacBio SMRT-seq). HySA first identi-
fies and extracts unmapped, discordantly paired and end-clipped
short reads in set A and then aligns them to the set of long reads
in set B (Methods; Supplemental Results). The set of aligned short
and long reads form a bipartite graph in which one set of nodes
represents short reads, the other represents long reads, and the
edges between them represent confident pairwise alignments.
The extracted short reads are often from disjointed regions of
unique sequence context, due to the sparseness of SVs and the
short fragment size of set A. Consequently, the bipartite graph is
often sparsely connected and can be computationally efficiently
(near linear complexity with regard to the number of nodes) de-
composed into connected components (CC) using the Union-
Find algorithm. Each CC often corresponds to one SV-containing
sequence with at least one breakpoint and its size (number of
nodes and edges) is proportional to the average physical coverage
in both sets A and B. False alignments between short and long
reads can lead to inaccurate nodes and edges in the graph and re-
sult in erroneously large connected components (ELCC). When
that occurs, we further decompose the ELCCs into small commu-
nities via a network flow-based graph algorithm (Fig. 1B; Rosvall
and Bergstrom 2008). This algorithm iteratively merges and splits
small communities in a random order until they reach expected
sizes and no better partitioning can be found. Each resulting CC
or community contains a cluster of long and short reads that are
expected to come from a single genomic origin. Assembling long
reads in each cluster into contigs and aligning them to the refer-
ence facilitates the discovery of SVs. To reduce the false discovery
rate, short reads in the same clusters as the long reads are aligned
to the assembled contigs to confirm the identified SVs (Fig. 1A).

Important features of our algorithm include:

1. The read-clustering approach via the partitioning of a bipartite
graph is reference-agnostic, allowing reads containing novel
nonreference sequences to be clustered and assembled together
and thus facilitates the assembly of nonreference insertions;

2. Only the subset of reads that potentially contain variants is an-
alyzed, which leads to substantial savings in computational
cost, as compared with the WGA approaches; and
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3. No direct alignment of individual long reads to the reference is
needed. This not only reduces computation but also alleviates
challenges in assigning gaps or stops in aligning noisy long
reads.

Obtaining accurate clustering is important for subsequent analy-
sis. Thus, we used simulation data to examine how clustering accu-
racy changes with respect to Illumina coverage, PacBio coverage,
and Illumina read length (Supplemental Results). At 25× PacBio
coverage, the clustering qualitymetric JI90 (Supplemental Results)
reached 0.8, indicating that Illumina and PacBio reads were effec-
tively hybridized and generated a reasonably accurate representa-
tion of the targeted regions in the genome (Supplemental
Results; Supplemental Fig. 1).

SV detection in a haploid genome CHM1

The performance of our algorithm can be measured by comparing
the sensitivity and specificity of our algorithm with those of other
algorithms using the same data sets. We ran our algorithm on 50×
Illuminaand46×PacBiowhole-genomesequencingdatagenerated
from a hydatidiform mole haploid genome (CHM1) (Chaisson

et al. 2015b). SVs in this genome have
been well characterized in previous stud-
ies using approaches that analyze BLASR
alignment of PacBio reads to the refer-
ence (Chaisson et al. 2015b). Moreover,
a high quality de novoWGA constructed
from PacBio reads (Berlin et al. 2015) and
further confirmed by an independent
high coverage (200×) Illumina WGA
(Steinberg et al. 2014) was available as a
reference to validate our results.

Our algorithm extracted 0.28% of
the 50× Illumina reads and 6.8% of 46×
PacBio reads. In all, 130,058 (72,354
from Union-Find, 57,704 from Infomap
decomposed from one ELCC) clusters
were formed and 114,230 (71,092 from
Union-Find, 43,138 from Infomap)
were successfully assembled into at least
one contig, which led to the detection
of 32,121 SVs, including 3007 large dele-
tions (size > 50 bp), 4587 large insertions
(size > 50 bp), 12,401 small deletions
(size≤ 50 bp), and 12,126 small inser-
tions (size≤ 50 bp) (Supplemental Table
S1). The two main steps of HySA—align-
ment, and assembly—took a total of
around 36,000 CPU hours on a high per-
formance BL465c G7 blade with AMD
6174 processors and <12 GB memory
per node. Both the CPU and memory
cost were at least an order of magnitude
lower than what were required to per-
form a de novo WGA (Chin et al. 2016).

Large deletions in CHM1

Among the 3007 large deletions we
called (referred to below as HALD), 2557
(85%) were directly validated by aligning
the variant sequences to the WGA of

Berlin et al. (2015) (Supplemental Results). A detailed look at the
calls that could not be validated by theWGAof Berlin et al. provid-
ed an estimated false discovery rate (FDR) of 7.5% (Supplemental
Results). For comparison, we generated a merged call-set (MGLD)
containing 2645 deletions discovered, respectively, by DELLY
(Rausch et al. 2012) from the 50× Illumina data and by Chaisson
et al. (2015b) from the 46× PacBio data (Supplemental Results).
Thus, the differences between HALD and MGLD can reveal the
uniqueness of our approach relative to a naive approach that
merges call-sets independently derived from a single technology
without performing hybrid assembly. In total, 1961 deletions
(74.1% of MGLD, 65.2% of HALD) were shared between these
two sets (requiring 50% reciprocal overlap). Importantly, 659
(21.9% of HALD) deletions were uniquely discovered by HySA
and were validated by the Berlin et al. assembly, indicating a shear
gain in discovery power attributable to our hybrid methodology.

We further found that these 659 deletions uniquely discov-
ered by our approach were associated with significantly fewer vari-
ant-supporting Illumina reads (7.28versus29.28,P-value = 1.382 ×
10−14, Student’s t-test) thanwere the deletions in theMGLD (Table
1).No significant differenceswere found in thenumbers of variant-

Figure 1. Diagram of HySA for SV assembly and detection. (A). Abnormally aligned Illumina reads are
extracted from a BAM file and aligned to a set of PacBio reads (light blue) generated from the same DNA
sample. The cluster of reads associated with an SV is identified using a set of bipartite-graph partitioning
algorithms. Contigs are assembled from PacBio reads in each cluster and are aligned to the reference,
from which SVs and breakpoints are identified and further confirmed by Illumina reads in the same clus-
ter. An insertion (yellow segment in the reference and yellow segments in PacBio reads) is used for illus-
tration. The Illumina reads are in red and green, corresponding to the forward and the reverse strands,
respectively. The subsequence or whole read that cannot be mapped is in gray. (B) Clustering strategy. A
bipartite graph is built from the pairwise alignment of Illumina reads to PacBio reads. One set of the nodes
corresponds to PacBio reads (top row, black open circles), and the other set corresponds to Illumina read
pairs (second row, red solid circles). An edge is added when there is a reliable alignment between an
Illumina read pair and a PacBio read. The bipartite graph is decomposed into connected components
(green and red boxes) using the Union-Find algorithm. Large components, e.g., the one in the red
box, are further decomposed into communities of expected sizes using a graph decomposition algo-
rithm called Infomap. (C) False alignments between Illumina and PacBio reads are illustrated in dashed
red box: (1) single-end alignments; (2) paired ends with abnormal insert size; and (3) paired ends
with abnormal orientation. (D) False alignments due to repetitive regions. Illumina read alignments
against a PacBio read (dotted red box) are filtered out when the depth of Illumina reads significantly ex-
ceeds the expected coverage. (E) A competitive alignment strategy that eliminates false alignments be-
tween PacBio and Illumina reads. For each Illumina read pair, a pseudo (ref) read pair is synthesized from
the reference sequence in identical positions and orientations. An alignment between an Illumina read
pair and a PacBio read is false when (1) the Illumina pair has a shorter aligned sequence against the
PacBio read than does its pseudo pair (left), or (2) the alignment of the Illumina pair has a split whereas
the pseudo pair does not (right).
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supporting PacBio reads (Supplemental Results). However, gaps in
the PacBio reads appeared at significantly different locations in the
HALD than in the MGLD (P-value < 2.2 × 10−16, two-sample
Kolmogorov-Smirnov test). Gapopeningpositions aremuch closer
to the breakpoints (mean: 18.06 bp versus 43.77 bp), more tightly
clustered (standard deviation: 19.56 bp versus 42.24 bp), and thus
easier to detect in theMGLD than in theHALD. These observations
confirmed the challenges in accurately aligning PacBio reads to the
reference. It is difficult to obtain consistent gap positions from
BLASR alignment, due likely to not only the high error rates of
PacBio reads but also the repetitive sequence context, as indicated
by the significant difference between the proportion of calls over-
lapping short tandem repeats (STRs) in the HALD and that in the
MGLD (0.86 versus 0.67, P-value < 2.2 × 10−16, χ2 test for two inde-
pendent proportions). Overall, these statistics confirmed that the
novel deletions discovered by our approachwere indeed associated
with weak signals in either Illumina or PacBio data and thus were
difficult to identify using DELLY or approaches described by
Chaisson et al. (2015b)

Our approach missed 684 deletions in MGLD, potentially
because of the challenge to extract and cluster the variant support-
ing reads. Nonetheless, the results indicate that our approach can
complement existing approaches and improve the overall discov-
ery power.

Large insertions in CHM1

Among the insertions (size > 50 bp) detected by HySA, 1165 con-
tigs contained inserted sequences longer than 500 bp. Among
them, 778 could not be aligned to the Genome Reference
Consortium GRCh37 reference assembly and were novel (nonre-
ference) insertions (Supplemental Results). Two hundred and elev-
en (211) of them could be aligned to the GRCh38 assembly,
including nine uniquely identified by our approach that were
not reported by Chaisson et al. (2015b). Among the 567 insertions
that could not be aligned to the GRCh38, 522 could be aligned to
the Berlin et al. (2015) assembly, including 20 uniquely identified
by our approach that were not reported by Chaisson et al. Thirty-
five of the remaining 45 insertions that were neither aligned to the
Berlin et al. assembly nor to the GRCh38 were also reported by
Chaisson et al., indicating their potential validity and the possibil-
ity of further improving the Berlin et al. assembly as well as the
GRCh38 assembly using our results. Only 10 (1.3%) of the novel
insertions discovered had no evidence of support from the avail-
able data.

In summary, our approach discovered 29 validated large nov-
el insertions that weremissed by Chaisson et al. This can be largely
credited to our approach, which does not rely on having accurate
alignment of PacBio reads to the reference. It is easier to target seg-
ments of novel sequences from the alignment of Illumina reads to
the reference than from the alignment of long PacBio reads due to
the accuracy of Illumina reads. Apparently, hybridizing Illumina
and PacBio reads together through the HySA algorithm has
improved the assembly of insertions over approaches that involve
error-prone reference alignments. As shown by an example of a
3-kbp novel insertion validated by GRCh38 (Supplemental Fig.
2), PacBio reads containing novel insertions could not be accu-
rately aligned to the reference. However, they could be correctly
clustered together through short Illumina read pairs (Supplemen-
tal Fig. 3), a large portion of whichwere both-end-unmapped (Sup-
plemental Fig. 2b), and those with one-end unmapped could be
used to anchor the insertion onto the reference genome.

Small indels in CHM1

We compared the small indels (≤50 bp) detected by HySA
with those detected by Pindel (Ye et al. 2009) and GATK
(Supplemental Results; Supplemental Figs. 4, 5a,b; DePristo et al.
2011). The minimum size of the indels we detected was 11 bp. A
majority (95.1% for deletions and 84.5% for insertions) of HySA
calls overlapped with those of either Pindel or GATK, and a large
portion (85.9% for deletions and 68.4% for insertions) overlapped
with the calls detected by bothmethods, showing the specificity of
the HySA calls. In addition, HySA was able to identify 2538 novel
indels that were missed by Pindel or GATK.

SV detection in a diploid genome NA12878

We further examined HySA using data from a well-studied diploid
genome, NA12878, that contains two alleles of each chromosome.
We downloaded raw Illumina (300×) and PacBio reads (31×) from
the Genome in a Bottle (GIAB) Consortium (Zook et al. 2014) and
assessed results based on the GRCh38 assembly (Supplemental
Results). In total, HySA identified 59,640 SVs, including 5801 large
deletions (>50 bp), 18,418 small deletions (≤50 bp), 9299 large
insertions (>50 bp), and 26,122 small insertions (≤50 bp)
(Supplemental Table S1). The twomain steps of HySA—alignment
andassembly—took a total of around165,000CPUhours onahigh
performance BL465c G7 blade with AMD 6174 processors and <12
GBmemory per node. The CPUhours weremuch higher than that
required for CHM1 because the majority of time was spent on per-
formingBLASRalignmentbetween the300× Illuminareadsandthe
31×PacBio reads. For adiploid genomewith50× Illumina reads and
30× PacBio reads, the total CPU hours is around 37,000 (∼4.2 yr),
roughly an order of magnitude less than what was required (∼35
yr) to performWGA of 30× PacBio reads (Pendleton et al. 2015).

The de novoWGAofNA12878 (Pendleton et al. 2015), which
used Celera Assembler (Myers et al. 2000) and FALCON for error-
corrected PacBio reads, followed by scaffolding with genome
maps produced by BioNano technology and phasing with
Illumina and PacBio reads, can be used as a reference to assess
the accuracy of SV assemblies.

Large deletions in NA12878

For large deletions, we created a curated deletion set (referred to be-
low as GD) by merging five deletion call-sets produced, respective-
ly, by (1) HySA, (2) DELLY (Rausch et al. 2012), (3) PBHoney

Table 1. Comparison of CHM1 deletions detected by single technol-
ogies with those detected by HySA

Sets (size)

Mean # IL
supporting

reads

Mean # PB
supporting

reads

Dist. to
breakpoint
(mean/SD)

MGLD
(2645)

29.28 4.68 18.06/19.56

HALD_uniq
(659)

7.28 4.86 43.77/42.24

The two sets of large deletion calls (MGLD: merged calls from DELLY
[Rausch et al. 2012] and Chaisson et al. [2015b]; HALD_uniq: calls
unique to our hybrid method) validated by the WGA of Berlin et al.
(2015) are compared in terms of (1) mean numbers of Illumina support-
ing reads, (2) mean numbers of PacBio supporting reads, and (3) dis-
tances to the reference breakpoints (mean/standard deviation).
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(English et al. 2014), (4) a customized pipeline (CP) from
Pendleton et al. (2015), and (5) svclassify (Parikh et al. 2016) and
validating each deletion at sequence resolution using the assembly
of Pendleton et al. (2015) (Supplemental Results). The svclassify
call-set was a high-confidence set obtained from Personalis and
the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2010; Mills et al. 2011), which was the result of a ma-
chine learning method that integrated signals in Illumina, PacBio,
andMoleculo reads and thus also resulted from a hybrid approach.

We plotted the receiver operating characteristic (ROC) curves
based on the comparison of each of these five sets with the GD set
(Fig. 2). For the HySA, DELLY, and svclassify sets, a series of cutoffs
were applied, respectively, to the number of supporting Illumina
reads, the number of supporting split reads, and a score that com-
bines various features fromall the technologies (Parikh et al. 2016).
By a fairly largemargin, HySA outperformedDELLY, PBHoney, CP,
and svclassify. The svclassify call-set was slightly inferior to that
obtained from HySA (specificity difference <0.1 at a sensitivity of
0.33) even though it incorporated data from additional Moleculo
long reads. In summary, the HySA approach achieved evidently
better accuracy than approaches based on single technologies
such as DELLY, PBHoney, and CP and was favorable over another
hybrid approach.

Large insertions in NA12878

Among the 1672 large (>500 bp) insertions we detected, 783 could
not be properly aligned to the GRCh38 assembly (Supplemental
Results). Among them, 642 were aligned to the assembly of
Pendleton et al. (2015) or the fosmid data of NA12878 (Kidd
et al. 2008). Only 141 (8.4%) had no supporting evidence from
the available data.

Small indels in NA12878

We compared our small indel set (≤50 bp) with the Platinum set
(Eberle et al. 2016) and theGIAB set. Interestingly, for the small in-

sertions, we observed more overlapping calls between our set and
the GIAB set than between the Platinum set and the GIAB set, al-
lowing a 30-bp or more offset in the indel positions (Fig. 3;
Supplemental Figs. 5c,d). In addition, we discovered 10,881 novel
insertions and 9930 novel deletions that were neither in the
Platinum nor in the GIAB sets. Manual inspection of our novel
calls indicated that they were likely missed due to insufficient cov-
erage or lack of alignment accuracy in a single source.

SV validation using fosmid data

We further validated these SV calls using the fosmid end sequenc-
ing data available in the 1000 Genomes Project (Supplemental
Results). We found that a larger proportion of large deletions in
the HySA set can be validated by the fosmid data, compared
with the proportions in the other sets (Supplemental Table S2;
Supplemental Results), and the low overall proportions are due
largely to the low coverage of the fosmid data. On the other
hand, more small indels in the HySA set can be validated by the
fosmid data with proportions similar to those in the other call-
sets (Supplemental Tables S3, S4; Supplemental Results), which
were already shown to have low false discovery rates (Zook et al.
2014).

Complex structural variation

The long contigs assembled by HySA can be used to discover com-
plex SVs. We focused on analyzing complex deletions with inser-
tions (Supplemental Fig. 6) at the breakpoints. Overall, we
detected 962 (Supplemental Table S5; Methods), including 22
with spacers (10 with inverted spacers), three duplications (≤70
bp), and one with both (see an example of an inverted spacer in
Supplemental Fig. 7). Of these, 11 overlapped fosmid data and
five were validated at nucleotide resolution (Supplemental
Results).

Coverage analysis

We further analyzed the sensitivity of HySA at different Illumina
and PacBio coverage. We found a likely optimal combination of
coverage would be 60× Illumina and 25× PacBio reads in order to
obtain the most cost-effective hybrid SV assembly in a diploid ge-
nome using HySA (Supplemental Results). As a reference, we also
computed the sensitivity of DELLY from the Illumina data. We
found DELLY had higher sensitivity than HySA when the PacBio
coverage was lower than 5× regardless of the Illumina coverage.
However, once PacBio coverage reached 10× or above, HySA

Figure 2. A comparison of the sensitivity and specificity for detecting
large deletions in NA12878 among five competing approaches (1)
HySA, (2) DELLY, (3) PBHoney, (4) a custom pipeline based on PacBio
data alone, and (5) svclassify.

Figure 3. Comparison of small indels detected in NA12878 by HySA
with those in the Platinum and GIAB sets. (A) Deletions with 1-bp overlap
criterion. (B) Insertionswith 1-bp overlap criterion allowing 50-bp offset on
the left and right of the insertion breakpoints.
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achieved higher sensitivity (Fig. 4). This was expected because
HySA requires at least 10× PacBio coverage to successfully assemble
heterozygous deletions in a diploid genome. Notably, with 10×
PacBio coverage and 30× Illumina coverage, HySA achieved sensi-
tivity comparable to that of DELLY at 150× Illumina coverage.
Compared to PBHoney at 30× PacBio coverage, HySA achieved
higher sensitivity at 10× PacBio and 30× Illumina coverage.
Given the current lower throughput and higher cost of PacBio
data, our approach clearly provides a more cost-effective solution
than approaches that utilize only Illumina or PacBio data but
not both.

Discussion

In this work, we developed HySA that performs targeted hybrid SV
assembly from NGS and SMS reads for SV detection. HySA com-
bines the advantages of two technologies, the accuracy of the
Illumina reads and the length of the PacBio reads, and was able
to discover novel SVs missed by algorithms that detect SVs from
a single technology, or by naively merging technology-specific
call-sets. It complements existing approaches and can be applied
to substantially enhance the discovery power of ongoing personal
genomic projects. In particular, we found HySA to be advanta-
geous in detecting SVs that have weak evidence in data generated
by one technology. Those SVs tend to occur in repeats (e.g., STRs)
or contain novel insertions (i.e., sequences absent from the refer-
ence). The FDRs of HySA appeared to be less than 10%, owing part-
ly to the combined use of orthogonal technologies. Although
HySA was developed and assessed using data produced by
Illumina and PacBio technologies, the general framework is poten-
tially applicable to data produced by other NGS and SMS technol-
ogies such as Ion Proton and Oxford Nanopore.

Dramatically different error profiles and lengths between se-
quencing reads generated by different technologies made it diffi-
cult to perform hybrid assembly using standard approaches such
as OLC and de Bruijn and string graphs. The graph-theoretic ap-
proach that we developed and assessed in this study appears to
be effective for constructing accurate hybrid SV assembly.
Focusing on SVs that are difficult to assemble by the WGA ap-
proaches highlights the computational efficiency of HySA and
its applicability in translational research.

We quantified the advantage of having both Illumina and
PacBio coverage in an assembly project and found that a combina-
tion of 25× PacBio coverage and 60× Illumina coverage is likely op-
timal for comprehensively assembling a diploid genome, as many

of the SVs uniquely identified by HySA lie in highly repetitive re-
gions that cannot be mapped confidently by Illumina alone. On
the other hand, we found that at least 10× PacBio coverage is re-
quired for HySA to perform well. This requirement appeared to re-
sult from a limitation of the Celera Assembler that we used to
perform the local assembly. New tools under developmentmay al-
leviate such limitations. For example, Canu (Koren et al. 2017) as a
fork of the Celera Assembler has been developed to assemble high-
noise single-molecule sequencing and is more capable of assembl-
ing lower coverage (<10×) PacBio data. Employing these new
assemblers inHySAmay furtherenhance thediscoveryofheteroge-
neous SVs, particularly those represented in lowcoverage (e.g., sub-
clonal SVs in bulk tumor tissue sequencing). Although the
relationship we revealed between discovery power and coverage
is specific to our algorithm, it is potentially generalizable to anydis-
covery approach that utilizes both Illumina and PacBio data.

Our work further highlights the complexity of human ge-
nomes and the limitations of current technologies and approach-
es. To obtain a perfect genome assembly and detect all the SVs,
multiple technologies and computational algorithms that are
advantageous in complementary ways should be employed.
Despite the combined use of PacBio and Illumina technologies,
our approachmay havemissed a substantial portion of SVs, partic-
ularly in highly repetitive areas of the genomes. Overcoming such
limitation will require further development of sequencing tech-
nologies, as well as hybrid approaches that leverage the unique
strengths of each technology.

Methods

Let I be a set of Illumina reads and P be a set of PacBio reads. The
overall objective is to identify for each unknown SV location x,
the subsets I , I and P, P of Illumina and PacBio reads that con-
tain x, assemble the genomic region around x using I and P, and re-
cover x. To achieve this objective, we propose a two-step solution
in which the first step (Algorithm 1 in Supplemental Results) clus-
ters the Illumina and PacBio reads by SV sequences, and the second
step (Algorithm 2 in Supplemental Results) conducts the assembly
and SV calling from the clusters. A cluster is the pair (I,P) that cor-
responds to one potential SV, as discussed above.

Detailed description of key steps in Algorithms 1 and 2

In Algorithm 1, we extract Illumina reads that are not well aligned
to the reference, including those that are discordant, unmapped,
or have at least one read clipped or containing a large gap (Fig.
1A; Supplemental Results). We then align these reads to all
PacBio reads by BLASR (Fig. 1A; Supplemental Results). Due to
the high error rate of PacBio reads, false alignment may occur be-
tween an Illumina read and a PacBio read. To reduce the number
of false alignments, we require at least 70 bp of the Illumina read
sequence to be aligned to the PacBio reads with at least 70%
identity. Moreover, Illumina reads’ paired signal is used for
selecting concordant and thus reliable alignments with the same
criteria described in Step 2 of Algorithm 1 (Fig. 1C; Supplemental
Results).

On each PacBio read, we expect a set of Illumina reads to be
aligned and piled at a certain location, where the breakpoint lies.
The piling of an excessive number of Illumina reads indicates a po-
tential repetitive region. On the other hand, a small number of
Illumina reads piling at one location indicates a potential false
alignment. We remove the alignments (Fig. 1D) involved in these
two situations by setting up a range (3,λK1), in which K1 is the

Figure 4. Coverage analysis. Sensitivities of HySA are estimated at com-
binations of 5, 10, 15, 20, 25, and 30× PacBio coverage and 30, 60, 90,
150, and 300× Illumina coverage, respectively. Sensitivity of DELLY is
also shown on the leftmost bar of each Illumina coverage.
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mean coverage of Illumina reads, and λ is a threshold set by the
user (heuristically, a reasonable value for λ is within [1, 1.2]).

In a diploid genome, PacBio reads corresponding to the refer-
ence genome can be falsely extracted by clipped Illumina reads. To
avoid extracting these PacBio reads, we synthesize pseudo (a.k.a.,
“ref”) read pairs from the reference sequence, with positions,
lengths, and orientations identical to those clipped Illumina reads.
The purpose of constructing these “ref” reads is to discern the allele
to which the PacBio read belongs. Both clipped and pseudo (ref)
reads are aligned to all PacBio reads. A pseudo (ref) read is consid-
ered to align better if (1) it matches more (>10 bp) bases than its
clipped counterpart, or (2) its alignment is continuous, whereas
the clipped counterpart is aligned with a large (>30 bp) gap (Fig.
1E). When that happens, the alignment between the Illumina
clipped read and the PacBio read is regarded as false.

We use all reliable alignments between Illumina read pairs
and PacBio reads as the edges to build the bipartite graph and apply
the Union-Find algorithm (Sedgewick and Wayne 2011) to parti-
tion the graph into connected components and further partition
the large connected components into communities by Infomap
(Fig. 1B; Supplemental Results; Rosvall and Bergstrom 2008).

In Algorithm 2, we assemble the PacBio reads in each con-
nected component or community into contigs using Celera
Assembler (Myers et al. 2000), and align the contigs to the refer-
ence using BLASR (Fig. 1A; Chaisson and Tesler 2012). The align-
ment of the contigs to the reference is ignored if either clipped
end is >500 bp. The rest of the alignments are analyzed to search
for large indel gaps (>10 bp). We require a matching flanking re-
gion >10 bp. For large gaps, BLASR tends to chop them into small
ones separated by short matching subsequences. To accurately in-
fer breakpoints for these gaps, we implement a local realignment
algorithm, pair-HMM (Durbin et al. 1998), which realigns the as-
sembled contig to the reference. The HMM has three states (‘M’

for matching, ‘I’ for insertion, and ‘D’ for deletion). Transitions
are encouraged from ‘M’ to ‘M’, ‘D’ to ‘D’, and ‘I’ to ‘I’, with tran-
sition probabilities 0.99. Other transitions are discouraged with
small transition probabilities (<0.01). Through this process, the
small indels segmented by BLASR could be concatenated in a big
one. We notice a similar procedure in MultiBreak-SV (Ritz et al.
2014) and Pendleton et al. (2015). To confirm the inferred SV,
we align the Illumina reads in the same cluster to the contig using
the customized BLASR and examine the alignment (Supplemental
Results).

Complex deletion detection

To identify complex deletions, we examine the set of contigs
whose BLASR alignment against the reference indicates a large
deletionwith≥20-bpnear-perfect flanking alignments and a series
of D and I (cumulatively ≥10 bp) but noM in the CIGAR string be-
tween the deletion breakpoints. These D’s and I’s (indels) may re-
sult from additional rearrangements (e.g., insertions) and thus
cannot be well aligned against the reference by BLASR.

For each of these deletions, we extract the portion of contig
sequence that is not well aligned (including 50-bp flanking se-
quences) and the corresponding local reference sequence (includ-
ing 70-bp flanking sequences) from the breakpoints. We realign
them using BWA-MEM (0.7.5a-r405, default parameter). If the re-
sulting alignments indicate a deletion (with at least 10 bp in length
with an inserted/unaligned sequence of at least 10 bp at the break-
point), we call this SV a complex deletion (i.e., deletion with
insertion).

We then further examine the origin of the inserted/unaligned
sequences from additional/secondary alignments returned by
BWA-MEM. If the inserted/unaligned sequence (plus maximally

10-bp flanking sequence on either end) can be mapped onto the
flanking reference sequence, it is called “duplication.” If an insert-
ed/unaligned sequence can be aligned onto the deleted sequence
on the reference, it is called a “spacer” (i.e., it separates a deletion
into two ormore constituent deletions). In all cases, the alignment
of the inserted/unaligned sequences could be in either the same or
the “inverted” orientations, compared with the alignment of their
flanking sequences (Supplemental Fig. 6).

Software availability

The developed pipeline and the scripts used in this manuscript
are available in the Supplemental Material (Supplemental
Software) and also online at https://bitbucket.org/xianfan/
hybridassemblysv/overview (with commit ID number eee31f6).

Data access

The large (≥50 bp) SVs identified in this study have been submitted
to NCBI’s dbVar (https://www.ncbi.nlm.nih.gov/dbvar) under ac-
cession number nstd140, and the small indels (<50 bp) have been
submitted to dbSNP (https://www.ncbi.nlm.nih.gov/projects/
SNP/) under batch numbers 1062737 and 1062738 (release num-
ber B151).
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