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Summary
We have studied 19 5107 heavy chain variable region gene (V�11)-encoded monoclonal antibodies
from NZBWF1 mice. These studies show that a single V� gene can encode both antibodies to
foreign antigens (anti-phosphorylcholine) and to self antigens (anti-double-stranded DNA) in
the same animal . All of the anti-DNA antibodies contain many somatic mutations compared
with the relevant germline genes . Since the anti-DNA antibodies were extensively somatically
mutated and had undergone isotype switching, the response seems to be T cell dependent. While
some ofthe antibodies appear to be the products ofan antigen-driven and antigen-selected response,
a number of characteristics of the antibodies suggest that forces other than antigen are contributing
to the stimulation and selection of this response.

The serum of patients with SLE contain IgG antibodies
that bind strongly to double-stranded DNA (dsDNA) 1

(1) and contribute to the glomerulonephritis that is a major
cause of death in this disease (2) . The potential for inves-
tigating the origins of these antibodies is greatly facilitated
by the availability oflupus-prone strains ofmice such as (NZB
x NZW)F1 (NZBWFI) (3) . Before the onset of detectable
pathology, NZBWF1 mice produce IgM antibodies that . react
with DNA (4) . These antibodies are usually ofrelatively low
affinity and their Vregion genes have not undergone significant
somatic mutation (5, 6) . Since such antibodies are not as-
sociated with major pathology, they are thought to be non-
pathogenic. In contrast, older autoimmune mice that have
developed proteinuria and pathological changes in their kidneys
have IgG anti-dsDNA antibodies in their blood and at the
sites of tissue damage (3) . An understanding of the molec-
ular origins of these pathogenic autoantibodies could pro-
vide some understanding of why autoimmune lupus-prone
strains ofmice develop such antibodies . Inparticular, it would
be useful to determine whether the germline genes that en-
code autoantibodies in autoimmune animals are different from
the homologous genes in nonautoimmune mice (7), whether
the same germline genes also encode antibodies against envi-

'Abbreviations used in this paper. dsDNA, double stranded DNA; FW,
framework; (NZB x NZW)Fi, NZBWFI; PC, phosphorylcholine ; R,
replacement ; S, silent; ss, single stranded DNA; V� , heavy chain variable
region gene,

ronment and self antigens, and whether the autoantibodies
are specifically elicited by foreign or self antigens or are the
product of a general polyclonal activation of all B cells (8) .
An experimental approach to these questions was suggested

by our finding that a single amino acid substitution in the
S107 antiphosphorylcholine antibody converted it from an
antibody that protects mice from Streptococcuspneumoniae (9)
to a potentially pathogenic anti-dsDNA antibody (10) . This
in vitro paradigm seemed likely to be relevant to in vivo events
since others had shown that S107-like anti-DNA antibodies
were present in NZBWF1 and MRL/lpr mice (11, 12) . Since
the V�S107 germline family consists of only four highly ho-
mologous members (13), we were able to clone and sequence
all of the members of this family from both NZB and NZW
mice (14, 15) . We also generated and sequenced five IgG anti-
dsDNA antibodies encoded by the V,,Sl07 family from
an autoimmune NZBWF1 mouse and showed that they
were encoded by the V�11 member of the VHS107 germline
family (14) .
Here we report the sequences and DNA binding proper-

ties of 14 additional antibodies from that same animal and
three antibodies from another animal. These new sequences
provide a better perspective of the V�11-encoded anti-DNA
response. While the characteristics of some ofthese antibodies
indicate that they are products of an antigen-driven and
antigen-selected response, the sequences ofothers suggest that
there are additional forces influencing the autoimmune re-
sponse.
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Materials and Methods
4-mo-old female NZBWF1 mice were immunized intraperi-

toneally with 100 jug of PC-KLH in saline and boosted with the
same antigen at 6 mo of age . Fusions were done using polyeth-
ylene glycol and the NSO myeloma cell line as a fusion partner
as described previously (16, 17) . Hybridomas that expressed a
member of the V�S107 family were detected by RNA dot blot hy-
bridization (18) and then cloned twice in soft agar before charac-
terization (19) .

The different V�S107 family mAbs were tested by ELISA for
binding to phosphorylcholine, cardiolipin, and influenza hemag-
glutinin using standard techniques (20-22) . The ELISA for DNA
binding (23) was done using polyvinyl round-bottomed plates (Dy-
natech Laboratories, Inc ., Alexandria, VA) which were coated with
100 pl of poly-L-lysine (10 lAg/ml) and incubated for 2 h at 37°C
or overnight at 4°C . Afterwards, the solution was flicked out and
the plates rinsed with distilled water. DNA was diluted in 1x SSC
and plates were coated with 100 pl/well and incubated overnight
at 4°C . The next day the plates were washed three times with PBS-
tween and blocked with 1% BSA-PBS. For dsDNA ELISAs, calf
thymus DNA filtered through nitrocellulose to remove single-
stranded regions ofDNA was used at a concentration of 5 iLg/ml
or bacteriophage X DNA was used at 2.5 hg/ml . Commercially
prepared single-stranded DNA (ssDNA) (Sigma Chemical Co., St .
Louis, MO) was also used at 2 .5 Icg/ml . The NZBWF1 mAbs were
also tested for binding to dsDNA using immunofluorescence on
the microorganism Crithidia lucilae (24) using a commercially (Clin-
ical Sciences, Whippany, NJ) prepared Crithidia slide and rhoda-
mine F(ab')z rabbit anti-mouse K chain antibody. Isoelectric
focusing was done as described (25) . Briefly, samples in 8 M urea
were focused on a 4.5% polyacrylamide gel containing ampholines
(LKB Instruments, Gaithersburg, MD) with a range ofpH 3.0-10.0
and analyzed by Western blot (26) .
The heavy and light chain variable regions of the S107 V�

family-encoded anti-DNA hybridomas were sequenced by dide-
oxynucleotide sequencing directly from the mRNA template as
described by Geliebter (27) using end-labeled synthetic oligonucleo-
tides as primers .
Vx Germline Cloning.

	

Genomic DNA extracted from the livers
of NZB and NZW mice was partially digested with the restriction
endonuclease Mbol and ligated into EMBL3 (28) . The library was
screened with a 300-bp probe derived from cloned BALB/c S107B
germline DNA (29) . Positive plaques were purified and rescreened
with an oligonucleotide probe (5' GTGCATGTAACTTACACT3')
specific for a 6-bp deletion that distinguishes the VK light chain
consensus sequence of the group 2 (Table 1) antibodies from the
BALB/c VK S107B germline and the group 3 VK sequences. One
clone was amplified by the PCR, using primers containing unique
restriction sites that facilitated forced subcloning of the amplified
fragment into M13 (30, 31) . Sequencing was done by the dide-
oxynucleotide chain-termination method using 2'-deoxyadenosine
5'-a-[31S] thiol triphosphate and M13 vectors (31) .

Results
The conversion of S107 from a protective antibody to an

autoantibody indicated that the V�1 germline gene, which
encodes S107, could also encode anti-dsDNA antibodies (10) .
The only difference between S107 and its DNA binding U4
mutant is a glutamic acid to alanine substitution at residue
35 of the heavy chain variable region (20) . Crystallographic
studies of another V�1 encoded PC-binding antibody (32)
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and computer modeling of the 5107 binding site (33) have
demonstrated that glu 35 is a contact residue for the choline
rather than the phosphate moiety of the phosphorylcholine
(PC) molecule. This suggested that the glu to ala substitu-
tion might continue to allow binding to other phosphorylated
molecules such as DNA. Our sequencing of the NZB and
NZW germ line V �11 genes showed that they encode a
serine at residue 35 and that V�11 was the germline gene
for the one S107-like NZBWF1 antibody that had been
reported (11, 34) . Thus the germ line V�I1 is similar to the
DNA binding mutant of V� 1 and can encode DNA binding
proteins. The V�11 gene also encodes antibodies to influenza,
PC, and oxazalone in nonautoimmune strains ofmice (35-40) .

Taken together, these findings suggested that an examina-
tion of the antibodies encoded by the V�S107 gene family
in autoimmune mice might provide useful information on
the molecular origins of anti-DNA antibodies and their rela-
tionship to the response to foreign antigens. We therefore
immunized young NZBWF1 mice with PC-KLH and showed
that their immune response was dominated by T15 (5107)
antibodies that use the same genetic elements (V� 1, DFL
16.1, J H 1, V�22, and J,,5) as the nonautoimmune BALB/c
mice (reference 15 and Table 1) . When such PC-immunized
NZBWF1 mice had developed IgG anti-dsDNA antibodies,
they were boosted with PC-KLH and their spleen cells were
fused 3-4 d later. The fusions from two animals (N4 and
N14) were screened by RNA dot blot (18) and 19 hybrids
(Groups 1-7) expressing members of the V�S107 family were
sequenced and examined for their ability to bind various an-
tigens . Based on the sequence of the four members of the
VHS107 germline genes from both NZB and NZW mice
(14, 15, and our unpublished results), we were able to deter-
mine that all 19 of these antibodies were derived from V� 11
germline genes (Table 1 and Fig . 2) .

Antigen Binding.

	

The 19 V�11-encoded mAbs were ex-
amined for their ability to bind dsDNA and dDNA using
a solid phase ELISA . Four patterns of DNA binding were
observed and are illustrated in Fig . 1 and summarized in Table
1, where the antibodies are grouped into families that utilize
the same genetic elements and share the samejunctional and
N sequences (see below) . In Fig. 1, N4-18 is an IgG2a anti-
body from a family of nine antibodies (Table 1, group 2),
all of which bind dsDNA more strongly than dDNA. Since
anti-DNA binding can be detected with <2 jug of N4-18,
its binding is comparable with that ofthe anti-dsDNA anti-
bodies that have been reported by others (41, 42) .
N4-3 (Table 1, group 4) reacts with dDNA and weakly,

if at all, with dsDNA (Fig . 1) . N14-4 is an IgG2a antibody
from the second (N14) mouse (Table 1, group 1) and it binds
more strongly to dDNA than to dsDNA. Even though N4-
26 is also an IgG2a antibody that is encoded by the V�11
gene, it does not bind dsDNA or dDNA (Fig. 1) .

Genetic Elements.

	

Bysequencing the heavy chain V regions
of the 19 antibodies in groups 1-7 (Table 1), we discovered
that they contain base changes that distinguish the V �11
germline gene from the V�1, V� 3, and V�13 members of the
5107 family in both NZB and NZW mice (43) . The anti-
bodies could be divided into groups based on their utiliza-



The specificity and variable region gene usage of the MZBWFI hybridomas . Group 1 hybridomas are from the N14 fusion, group 2-7 hybridomas
are from the N4 fusion, and group 8 hybridomas are from the N8 fusion . Hybridoma supernatants are tested for reactivity with PC and DNA.
The assignment of heavy chain variable region gene usage is based on the sequences of the relevant NZB and NZW germline genes. The D and
J elements are based on sequence homology to BALB/c elements . The VK subgroups are based on the classification of Kabat et al . (46) and for the
subgroups listed, are identical to the group numbers assigned by Potter (61) . The D, J., and Jr segments were compared to BALB/c germline se-
quences (46) . D42 and 6G6 are two V�11-encoded antibodies taken from the literature (11,36); their specificity is also shown.

tion of the various germline elements that form the mature
V regions (Table 1) . Furthermore, examination of the junc-
tional areas in the third CDR of the heavy chain V regions,
including potential N regions, and of shared somatic muta-
tions in the V regions, indicates that each of the groups in
Table 1 represent the progeny of a single B cell (35, 44, 45) .
For example, the heavy chains of all three antibodies from
the N14 fusion (Table 1, group 1) use the FL16.1 D region
and JH3, differ from the germline V�11 region by replace-
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The binding of representative antibodies to dsDNA and
ssDNA. Direct binding was measured by ELISA using culture superna-
tants. The supernatants were all adjusted to 50 Wg/ml and then serially
diluted . All four antibodies are IgG2a and encoded by the V�11 heavy
chain gene.
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ment substitutions at residues 31, 44, 52A, and 93 (Fig . 2),
and have a nongermline-encodedfunctional arginine in CDR3
of the heavy gene . However, they each differ from the others
by one or two base changes (Fig. 2) . Their light chains are
encoded by a Vx8-like gene and Jx2 and differ from the
VxG15 sequence (kindly provided by Dr. P.J . Gearhart, Johns
Hopkins Medical School) by six to seven bases (Fig . 3 and
Table 1) . The Vx differences shared by the three light chains
could be polymorphisms since we do not know the germline
sequence of the relevant Vx gene in NZB or NZW mice.
When the DNA from these three hybridomas was examined
by Southern analysis with a JN region probe, all shared novel
restriction fragments that are not present in the liver of NZB
or NZW mice or in the NSO fusion partner (data not shown) .
Taken together, these findings suggest that these three anti-
bodies are all derived from a single B cell clone (35, 44, 45) .

Similar analysis of the rest of the antibodies made it pos-
sible to identify the other genetic elements that are associated
with V�11 in the N4 animals. As shown in Table 1, four
different D and three different J segments were found associated
with V�11 in the DNA binding antibodies that were
identified . Three of the four Ds were also found in the PC
binding and non-DNA non-PC binding antibodies from the
N4 animal . The fourth D region, DFL16.1, was present in
all of the PC binding antibodies encoded by the VH1 germ-
line gene from ayounger animal (Table 1, group 8) (15) . The
light chains that were found in these antibodies were also
somewhat restricted in that they all had some association with
the S107 family or the PC response. The light chains expressed
in groups 2 and 3 (Table 1), whichbind dsDNA, and in the
non-DNA binding IgG2a (group 6), were Vk genes that
closely resemble S107B. S107B is a light chain expressed in
large amounts in the S107 tumor and cell line that has a dele-

Table 1 . The Specificity and Variable Region Gene Usage of the NZBWFI Hybridomas

Group Antibody PC DNA Class VH D JH Average R/S VH VK JK

1 N14-4,6,8 +/- ss>ds IgG2a 11 FL16 .1 3 4.3/0 .3 VK8 2
2 N4 (9) - ds>ss IgG2a 11 Q52 1 6 .6/4 .2 VK4,5 5
3 N4-23,38 - ds = ss IgG2a 11 SP2.2 2 2 .0/2 .5 VK4,5 4
4 N4-3,6 - ss IgG3 11 SP2.3 2 3/0 ? 3
5 N4-24 + - IgM 11 SP2.3 2 1/0 VK19 5
6 N4-26 - - IgG2a 11 Q52 2 0 VK4,5 2
7 N4-31 - - IgM 11 Q52 2 0 VK8 4
8 N8-1,5,24 + - IgM 1 FL16.1 1 VK22 5
9 6G6 + + IgM 11 Q52 3 511 ?

10 D42 - + IgG2a 11 SP2.3 1 3/0 ? 5
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tion of two V region amino acids at the VJ junction and
does not associate with the S107 heavy chain and is therefore
not secreted (29) . The group 2 and 3 light chains are members
of the Vk4 or Vk5 families and are very similar to each other
and to S107B in BALB/c (Fig. 3) . The light chain used by
the three N14 anti-DNA antibodies (group 1) belongs to the
Vk8 subgroup and closely resembles the McPC 603 light
chain, which is found in many PC binding antibodies, espe-
cially those made in response to immunization with Proteus
morgani (47). These light chains are most homologous to
VkG15, which in combination with Jk2, forms the light
chain used by HPCG15 (38), a BALB/c anti-PC mAb en-
coded by V �11 . This is particularly interesting in light of the
ability of the group 1 antibodies to bind PC, albeit weakly.
A very similar light chain is present in the IgM (group 7)
antibody from the N4 fusion . The Vk19 like light chain that
is found in N4-24, a V�11-encoded anti-PC antibody (group
5), has to our knowledge not previouslybeen associated with
the anti-PC response. However, it does have the Tyr at res-
idue 94, Pro at residue 95, and Leu at residue 96, which are
thought to be important for PC binding (48) .

Somatic Mutations.

	

The N14 (group 1) hybridomas bind
ssDNA better than dsDNA (Fig . 1), react with Crithidia,
and also bind weakly to PC, cardiolipin, the influenza hemag-
glutinin, and protamine (data not shown) . They each have
four to six replacement substitutions in their heavy chain V
regions (Table 2) with an average frequency of 2.4% in the
CDRs and 1.0% in their framework (FW) regions. They
have a replacement (R) to silent (S) ratio in both their CDRs
and FWs that is >1.5 :1, which is found in most FWs (Table
2) (44) . Based on these criteria (35, 44, 45), the three N14
antibodies represent the progeny of single B cell that have
undergone a moderate amount of somatic mutation and could
have been driven to proliferate and selected for amplification
by antigen.

Using similar criteria, N4-23 and 38 (Table 1, group 3),
which bind dsDNA and ssDNA, also appear to be derived
from a single parental B cell (Figs. 2 and 3) . They contain
a few somatic mutations but do not have a high R/S ratio
(Table 2) . N4-3 and 6 are IgG3 antibodies that bind ssDNA
and are also related to each other by shared junctional se-
quences, light chains, and a few common and unique replace-
ments (Table 1, Figs. 2 and 3) . The C-A substitution in JH2,
which is used by N4-23, 38, 3, 6, 24, 26, and 31, is probably
a polymorphism since it is found in all NZBWF1 H chains
that use Jx2 .
The nine group 2 antibodies are the largest and most in-

teresting family from the N4 fusion . Their isotype is IgG2a
(Table 1) and several are cationic with isoelectric points be-
tween 7.2 and 8.0 (data not shown) . They vary greatly in
their binding to dsDNA (Fig. 4) and do not bind PC or car-
diolipin. All nine antibodies appear to be the progeny of a
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R/S ratios in the heavy chains ofgroups 1, 3, and 4. The ratio ofmuta-
tions that result in an amino acid replacement (R) to those that are silent
(S) mutations are tabulated for the FWs and the CDRs as defined by
Kabat et al . (46) .

single B cell based on (a) utilization of V� 11, DQ52, and J� 1
genetic elements to form the heavy chain V region ; (b) the
same apparent N sequences and a junctional recombination
site that converts the first amino acid ofJ�1 from a tyrosine
(TAC) to an asparagine (AAC) ; and (c) the use of the same
VK germline gene and JO (Table 1 and Figs. 2 and 3) . In
addition, many ofthese hybridomas share the same novel non-
productive rearrangements and those that lack these fragments
have presumably lost them due to segregation after fusion
(data not shown) .

All members of this family have many somatic mutations
in both the heavy and light chain genes (Fig. 2-4) . While
there are some shared mutations among subsets of two or
three antibodies, it is not possible to organize them in a manner
in which more than two form a branch of a family tree and
most seem to represent distinct sublineages of the parental
B cell . For example, N4-16, 10, 36, and 27 share a G-A sub-
stitution that encodes a glycine (GGT) instead of the germ-
line encoded aspartic acid (GAT) at residue 54 in CDR2. How-
ever, each ofthese antibodies has distinctive mutations shared
with other members ofgroup 2, making it difficult to deter-
mine if they are on the same branch of the family tree or
if there are many parallel mutations (49) . Similarly, N4-18,
10, and 1 all share a G-T change in the second residue ofJ
and N4-10 and 1 both have a G-A change in that same codon
(Fig. 2) . If the GT in N4-18 occurred first, then it would
be the parent ofN4-10 and 1 . However, N4-18 contains many
base changes that are not present in N4-1 or 10 . It is possible
that the parent of N4-18 was also the parent of N4-1 and
10 but this is difficult to prove. Parenthetically, if the G-A
had occurred first in N4-10 and 1, it would have created a
nonsense mutation (TAG) but the GT substitution protects
from that .

Figure 2.

	

Heavy chain variable region sequences of NZBWF1 V�11-encoded antibodies. The heavy chain variable region sequences for the 19 anti-
bodies from the N4 and N14 fusions are shown compared with the NZB and NZW V�11 germline sequences . The NZB and NZW V�I1 are identical
to each other (14, 43) . TheNand Dsequences from the hybridomas are compared with the consensus sequences derived from each group. The BALB/c
germlineJx1, J,,2, and JH3 sequences are shown for comparison . Numbering is according to Kabat et al. (46) . The symbols are as follows : (-) identity ;
(-) probable identity; (u) purine ; (y) pyrimidine; (lower case letter) silent mutation ; (upper case letter) replacement mutation ; (space) ambiguous base .

Table 2.

Group

R/S Ratios in

Antibody

Heavy Chains

CDR FW Total

1 N14-4 2/0 2/0 4/04
N14-6 2/0 2/1 4/1 5
N14-8 3/0 4/0 7/0 7

3 N4-23 1/1 1/1 2/2 4
N4-38 1/2 1/1 2/3 5

4 N4-3 3/0 0/0 3/03
N4-6 1/0 0/0 1/0 1
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Direct binding to dsDNA . The nine group 2 V�11-encoded
anti-dsDNA antibodies were tested for dsDNA binding by a direct ELISA.
Theculture supernatants were adjusted to 20pg/mlandthen serially diluted.

We also examined the switch sites of N4 hybridomas to
identify members of a single branch of the family tree. For
example, only N4-36 and 17 have identical switch recombi-
nation sites when probed with a 'yea switch site probe (data
not shown) . They also show a shared single silent mutation
at residue 58 but have no other shared mutations. This sug-
gests that they were derived from a common precursor which
switched after acquiring the shared mutation at residue 58
and then underwent subsequent divisions and acquired a
number of independent mutations all following switching.
Similar observations have been reported by others (50, 51)
and suggest that point mutations continue to arise following
switching from IgM to IgG.

Since we were unable to organize this group of nine anti-
bodies into a genealogy that contained more than two to three
members per branch, we attempted to examine their rela-

Figure 3.

	

Light chain variable region sequences of V� 11 anti-DNA antibodies . The light chain variable region sequences for 14 anti-dsDNA anti-
bodies from the N4 and N14 fusions are shown compared with the NZWcloned VK gene (top line), as well as the BALE/c S107 and VKG15 light
chains (nucleotide sequence of VKG15 kindly provided by Dr. P.J . Gearhart) . The JK segment is compared with the BALE/c germline JK2 and JK5
sequence. The symbols are as follows: (x) deleted base ; (-) identity ; (=) probable identity ; (lower case letter) silent mutation; (upper case letter) replace-
ment mutation; (space) ambiguous base.
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tionship to each other by comparing their binding to dsDNA
(Fig. 4) . N4-16, 18, 10, and 36 show easily detectable binding
to dsDNA at 1-2 wg/ml. However, they do not have many
more V region mutations than N4-17 and 19, which bind
weakly. It is worth noting that N4-17 and 19 would prob-
ably not have been identified ifwe had used antigen binding
to screen the hybridomas since even at 10 lAg/ml, which is
a reasonably high concentration of antibody for an average
hybridoma, their DNA binding is barely above the back-
ground . N4-1, 2, and 27 have the least number of somatic
mutations and require 5-101Ag/ml to give detectable binding .
Thus, the number of V� mutations is not directly propor-
tional to the binding of dsDNA.

It was possible that N4-17 and 19 had initially acquired
higher binding due to somatic mutation and that the process
of maturation continued and resulted in a decrease in their
binding. One might expect that this would be reflected in
the location of the replacement mutations in these antibodies.
However, N4-17 does not have any replacement substitution
in its heavy chain CDRs and the replacement substitutions
in the CDRs of N4-19 are not shared with any of the highest
binders suggesting that these are antibodies that never un-
derwent somatic mutation that would increase their binding
to dsDNA or a cross reactive antigen. The heavy chain CDRs
of N4-10 and N4-1 have R to S mutations that exceed the
2.9 :1 ratio which is thought to occur randomly (52), but
many of the other antibodies of this group have R/S ratios
in their heavy chains CDRs, which are less than the 1.5 :1
ratio found in the FW residues ofantibodies in general (Fig.
4) (44) .
The NZW germline Vk gene, which encodes the light

chains of these nine antibodies, was cloned by taking advan-
tage of its homology with the S107B VK gene segment (29) .
The relevant NZB and NZW genes did not differ by restric-
tion analysis and hybridization with various oligonucleotides
including one that spans the deletion (data not shown) . The
sequence of the NZW VK gene (Fig . 3) is identical to the
consensus sequence that was derived from all nine light chains
(14) . The most remarkable finding is that N4-16 and 18 have
very high R/S ratios in the FWs of their light chains (Fig.
4) . These FW changes in the light chains of N4-16 and 18
are distributed throughout the linear sequences ofthese anti-
bodies (Fig. 3) . It is interesting to note that there are many
replacement substitutions in the FW ofall of the light chains
except N4-10 .

Since we screened for the expression of VHS107 by RNA
dot blot, we also identified antibodies from the N4 animal
that did not bind DNA (Table 1) . The nonDNA binders use
the same genetic elements as the DNA binders but in different
combinations (Table 1) . N4-24 utilizes the V �11 gene, does
not bind DNA, but does bind PC . Other V�11-encoded PC-

2/1 3/3 9 1/I 6/0 e
5/3 6/2 16 I/ I 7/1 10
5/1 4/3 I3 3/0 3/1 7
3/4 5/4 16 0/I 2/I 4
2/1 3/0 6 0/I 3/0 4
5/0 0/2 7 0/I I/0 2
I/I 4/0 6 0/0 2/0 2
0/5 3/3 II 0/1 I/0 2
3/2 5/2 12 0/0 4/I 5



binding antibodies have been reported . HPCG15, a BALB/c
V�11-encoded anti-PC antibody has undergone extensive so-
matic mutation (38), while V�11 anti-PC antibodies from
other mouse strains, such as CBA/J (53) and CLA-2/Cn (37),
are germline encoded .

N4-24 shows that the same heavy chain variable region
gene can encode antibodies that react with DNA and with
a foreign antigen at the same time in a single mouse. N4-26
does not bind DNA or PC and does not have any somatic
mutations in the V�11 gene (Fig. 2) . N4-31 has a single con-
servative (Val to Ile) amino acid substitution in the third FW

Discussion
We have determined the variable region sequences of 19

antibodies expressing the 5107 V �11 germline from two
NZBWF1 mice. 16 of these antibodies bind DNA and are
the products of four different B cell clones. Based on serum
studies and screening of a number of fusions, we know that
V�11-encoded antibodies represent ti5-30% of the anti-
dsDNA antibodies made by older autoimmune NZBWF1
mice (reference 15 and our unpublished studies) . However,
by focusing our attention on V�11-encoded antibodies, we
were able to determine the sequences of the relevant germ-
line genes and to screen hybridomas for V� expression in
order to recover antibodies that might have been missed if
we had only looked for those that bound antigen . Although
the animals were immunized with PC, and many ofthe anti-
bodies used genetic elements associated with the anti-PC re-
sponse, further experiments will have to be done to deter-
mine the influence ofthe prior immunization ofthese animals
with PC-KLH and the boost with this antigen immediately
preceding the fusions.

All of the anti-DNA antibodies that we have identified
have undergone significant somatic mutation . It is not clear
whether somatic mutation is required to create pathogenic
autoantibodies . For example, Naparstek et al . (54) have shown
that a germline-encoded antibody from a nonautoimmune
mouse combined with both a foreign antigen and DNA, and
that the progeny of this antibody lost their DNA binding
as they underwent somatic mutation and affinity maturation
for the foreign antigen . No V �11 germline-encoded DNA
binding antibodies were identified in the fusions that we have
carried out . This suggests that either the germline V�11
cannot achieve sufficient affinity for dsDNA irrespective of
the N and D sequences with which it is associated or that
B cells expressing high affinity germline-encoded V�11 au-
toantibodies are suppressed . The latter is more likely since
Shafner et al . (55) have shown that V�11 germline-encoded
antibodies with strong DNA binding can be detected in
BALB/c mice whose suppressive mechanism has been blocked .
The presence of replacement substitution in the CDRs and

the ratio of R to S mutations can be used to deduce whether
a particular antibody response is driven by antigen and whether
the antigen selectively promotes the outgrowth of B cells
making higher affinity antibodies (35, 44, 45) . Some of the
antibodies that we have identified have high R/S ratios in
their CDRs suggesting that the amino acid substitutions in
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their antigen binding site has increased their ability to bind
antigen . The analysis of the nine antibodies in group 2 sug-
gests that some of the B cells in this clone are the product
of such an antigen-driven and selected response and that the
antigen is either dsDNA or crossreactive with it, i .e., the
members of this group with the lowest number of replace-
ment substitutions in their CDRs bind DNA poorly and
the highest binders have a number of replacement substitu-
tions in their binding sites . This suggests that, at least for
this B cell clone, somatic mutation is required to achieve
significant binding to DNA. In addition, these antibodies
have some of the characteristics that have been suggested by
others (34, 42, 56, 57) to promote binding to DNA. For
example, there are arginines and asparagines in the third CDR
of this group. N4-18, which is one o£ the highest binding
members of the group, has acquired an additional arginine
in that region through somatic mutation. However, at least
in the assays that we have used, the binding of N4-18 to
dsDNA is no better than that of N4-16 (Fig. 4), which does
not have that particular somatic mutation. Eilat et al. (34)
and Shlomchik et al . (56) have noted that some anti-DNA
antibodies express their D regions in unusual reading frames,
have inverted Ds, or are the product of D-D recombination .
These characteristics are not present in the V�11-encoded an-
tibodies that we have studied, confirming that some anti-
DNA antibodies can acquire strong binding without unusual
forms of D (56) .
The presence ofsomatic mutations and the IgG2a isotype

indicate that helper T cells have interacted with B cells in
order to generate the anti-DNA antibodies that we have
studied . It is more difficult to deduce the role of antigen .
However, it is worth noting that at least in one instance,
somatic mutation has led to a B cell clone that started out
producing antibodies to only ssDNA to produce an antibody
that also reacted with dsDNA (56), again suggesting a role
for dsDNA, or something highly crossreactive with it, in
driving the anti-DNA response. While the antibodies in group
1 and group 4, and some of the antibodies in group 2, have
high R/S ratios in their CDRs, most of the antibodies in
group 2 and group 3 do not have these characteristics . This
is also true of some of the anti-DNA antibodies that have
been described by others (56) .

Since we screened our fusions for V region utilization rather
than antigen binding, it is difficult to compare our results
with most of the studies in the literature where the anti-
bodies have been identified by their ability to bind antigen .
Nevertheless, genealogies resembling the group 2 antibodies
with their many independent sublineages have been observed
in responses to haptens (50, 59) . Manser (50), who also
screenedfusions for V region utilization, reported a large family
ofantibodies that were made in response to a foreign antigen
in which there were many R substitutions in the FWs of
the light chains . That particular clone is unusual, in that it
may have lost the expression of its surface Ig due to a non-
sense mutation early in its propagation, undergone a period
ofunselected mutations, then reverted to the nonsense muta-
tion and gone on to expand the clone under the influence
of antigen (50) .



In spite of these precedents in other studies, it is unusual
to find a single clone that contains antibodies like N4-17 and
N4-19, which bind weakly to antigen (59), that has progeny
with many independent sublineages, and whose antibodies
have so many R substitutions in the FW of the light chains .
It is possible that some of these changes in the FW of the
light chains have a direct effect upon the conformation of
the antigen-binding site . However, it is also possible that an-
tiidiotypic antibodies or idiotype-specific T cells (60) con-
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