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Abstract

To use the “apparent diffusion coefficient” (Dapp) as a quantitative imaging parameter, well-

suited test fluids are essential. In this study, the previously proposed aqueous solutions of

polyvinylpyrrolidone (PVP) were examined and temperature calibrations were obtained. For

example, at a temperature of 20˚C, Dapp ranged from 1.594 (95% CI: 1.593, 1.595) μm2/ms

to 0.3326 (95% CI: 0. 3304, 0.3348) μm2/ms for PVP-concentrations ranging from 10%

(w/w) to 50% (w/w) using K30 polymer lengths. The temperature dependence of Dapp was

found to be so strong that a negligence seems not advisable. The temperature dependence

is descriptively modelled by an exponential function exp(c2 (T − 20˚C)) and the determined

c2 values are reported, which can be used for temperature calibration. For example, we find

the value 0.02952 K-1 for 30% (w/w) PVP-concentration and K30 polymer length. In general,

aqueous PVP solutions were found to be suitable to produce easily applicable and reliable

Dapp-phantoms.

Introduction

Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that

finds widespread application today [1–4]. By means of diffusion-weighting magnetic field gra-

dient pulses [5], the diffusion of water in human tissue can be measured in a spatially resolved

manner thus yielding, for example, maps of the apparent diffusion coefficient [1]. Cellular

structures restrict the diffusive motion, which allows inferring information about structural

properties of cells and tissue. This can be exploited, for example, to depict the course of white

matter tracts in the human brain by measuring anisotropic diffusion with diffusion tensor

imaging (DTI) [6] and with fiber tracking [7, 8]. More advanced methods like q-ball imaging

[9] and diffusion kurtosis imaging [10] extend the diffusion tensor approach making possible

the detection of fiber crossings and the detection of non-Gaussian diffusion properties.
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As DWI is a sensitive technique, several approaches for validation using ground truth phan-

toms have been proposed. On the one hand, phantoms mimicking anisotropic diffusion of

neuronal tissue have been proposed. These phantoms are often made using thin fibers that

make the diffusive motion of the fiber-embedding fluid anisotropic. Such phantoms have been

used for multiple different methodological developments in the fields of diffusion tensor imag-

ing [11–21], kurtosis tensor imaging [12, 22], q-ball imaging [20, 21, 23–26], tract-based spatial

statistics [27], and fiber tracking [13, 20, 28]. Besides the development of advanced DWI meth-

ods, also the quality and repeatability [16] was assessed with such phantoms as well as the com-

parability of tensor metrics in a multi-center study [29]. Moreover, phantoms consisting of

hollow fibers and capillaries have been proposed and were applied successfully (e.g. [30–34]).

Stepping back from these advanced applications, an increased interest has recently sparked

in finding good isotropic diffusion phantoms. While water has been used in a majority of cases

[35–40], it has some drawback such as a low viscosity, which may result in non-negligible fluid

convection, or a diffusion coefficient that is much higher than that of typical human tissues

and lesions. Consequently, a number of further test fluids has been proposed such as cyclohex-

ane [41, 42], dioxane [41], DMSO [41], pentanol [41], sucrose [43], ethylene Glycol [44], cyclo-

hexane [45], cycloheptane [42, 45], cyclooctane [42, 45], n-octane to n-hexadecane [41, 42],

ethanol [42], n-propanol [42], n-butanol [42], and aqueous solutions of polyvinylpyrrolidone

(PVP) [46–50]. Applications included quality control examinations and investigations of pre-

cision and accuracy [35, 45, 51, 52], evaluations of gradient performance [44], sequence evalu-

ation [46].

One issue with all test fluids is that their diffusion properties depend on their temperature.

One possibility is to fix the temperature, for example, by putting the test fluid in ice water thus

maintaining a constant temperature of 0˚C [38, 39, 51]. The other approach is to correct the

measured diffusion coefficients to a reference temperature using calibration curves [35, 36, 41,

42, 44, 45]. As PVP solutions have many favorable properties, which comprise a concentra-

tion-adjustable water diffusion coefficient and an increased viscosity of the fluid, the aim of

this work was to provide the calibration curves for two common PVP polymer chain lengths

for typical bore temperature of clinical whole body MR scanners.

Material and methods

Phantom

Nine plastic tubes (volume 50 ml) were filled with aqueous solutions of polyvinylpyrrolidone

(PVP) (AppliChem GmbH, Darmstadt, Germany, K30 with 44–55 kg/mol and K90 with

1,000–1,500 kg/mol) with concentrations cPVP of 10, 20, 30, 40, and 50% for K30 and 10, 20,

and 30% for K90 (w/w). Concentrations of K90 of 40% and 50% were not used, since these

concentrations resulted in fluids of high viscosity with trapped air bubbles. The tubes were

immersed in a water-filled closed bin, which was placed in a surrounding water bath (Fig 1) to

fill the used receive coil to a maximal extent. The temperature was recorded using a fiber opti-

cal thermometer (Luxtron FOT Lab Kit, LumaSense Technologies, CA, USA) in intervals of

approximately 1 s at three positions: In the central water-filled tube, in the bin and in the sur-

rounding water bath (see red crosses in Fig 1). The temperature of the central water-filled

probe was used; the other two probes were used for an additional verification. Moreover, the

recorded temperature was averaged over the scan time of each measurement sequence. The

vendor provided accuracy is ±0.5˚C within 50˚C of the calibration temperature, ±0.2˚C within

20˚C of calibration temperature, and ±0.1˚C at calibration temperature. The phantom was cal-

ibrated with a one-point temperature calibration using an ice-water bath before each measure-

ment series. Verification exams of the Luxtron thermometer revealed a temperature offset of
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approximately +0.9˚C (see supplemental material S1 File). The recorded temperature values

were thus corrected by subtracting this offset.

MRI experiments

MRI experiments were performed on a 1.5 T scanner (Magnetom Aera, Siemens Healthcare,

Erlangen, Germany) using a 20-channel head-coil and on a 3.0 T scanner (Magnetom Prisma

fit, Siemens Healthcare, Erlangen, Germany) using a 64-channel head coil. A diffusion-

weighted echo planar imaging sequence was used and data was acquired with two parameters

sets:

1. High resolution parameter set: repetition time TR = 5000 ms, echo time TE = 144 ms,

readout bandwidth = 1000 Hz/px, field of view = 200 x 200 mm2, 20 slices, voxel size = 1 x 1

x 5 mm3, parallel imaging with GRAPPA and acceleration factor of 2, three orthogonal,

monopolar diffusion weightings, strength of diffusion weighting b = 0, 100, 200, 300, 400,

500, 600, and 700 s/mm2 acquired with 1 average (b = 0 s/mm2), 2 averages (b = 100 to

500 s/mm2), or three averages (b = 600 and 700 s/mm2), magnitude images were averaged,

the vendor-provided image filter was set to “strong” to suppress Gibbs ringing. Acquisition

time was 5:52 min.

2. Low resolution parameter set: Identical parameters as for the high resolution parameter set

except for: TE = 86 ms, voxel size = 2 x 2 x 5 mm3.

The tubes were oriented perpendicular to the main magnetic field, i.e. along the anterior-

posterior direction, and the image plane was coronal, i.e. perpendicular to the tubes. High and

low resolution datasets were acquired alternatingly. A low duty cycle sequence of 8:22 min was

inserted between them to avoid potential heating of the gradient system.

Four data acquisition series were run at each scanner. Two times, the phantom was warmed

up to about 30˚ and was let to cool down. Two times, the phantom was cooled to about 14˚C

and was let to warm up. Each of the series was acquired in an overnight scan lasting about 10

Fig 1. (single column). Sketch of the phantom. Tubes with different PVP solutions were contained in a

water-filled bin, which was itself immersed in a water bath. Temperature was recorded at three positions (red

crosses).

https://doi.org/10.1371/journal.pone.0179276.g001
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to 12 hours. One temperature recording file of a 3.0 T run was corrupted so that this run was

excluded from the analysis.

Data evaluation

Apparent diffusion coefficients (Dapp) were computed for each voxel using the equation

SðbÞ ¼ S0expð� bDappÞ; ð1Þ

where S(b) is the signal intensity in dependence of the b-value with the free fit parameters S0

and Dapp [5, 6]. Mean Dapp-values were computed for manually drawn volumes of interest

(VOIs). The circular cross section was specified on the images within the tubes with a safety

margin of roughly 3 mm to the tube boundary (see Fig 2). In slice direction, the VOIs encom-

passed 5 or 6 adjacent slices. VOIs were drawn such that regions of increased distortions at the

edges of the tubes were spared. The diffusion weighted maps were inspected visually to avoid

regions with other potential artifacts.

The dependency of Dapp on the temperature T was descriptively modelled by the equation

Dapp ¼ c1 � expðc2 � ðT � T0ÞÞ: ð2Þ

Here, c1 is the apparent diffusion coefficients at T0 = 20˚C and c2 describes the temperature

dependence. Eqs 1 and 2 were fitted using the Levenberg-Marquardt algorithm thus determin-

ing Dapp and S0 (not used in further calculation) in Eq 1, and c1 and c2 in Eq 2. 95% confidence

intervals were computed.

The dependence of c2 on cPVP was modelled by means of a linear fit according to the equa-

tion

c2 ¼ ac2 þ bc2 � cPVP ð3Þ

The coefficients ac2 and bc2 were determined by means of a linear least square fit using the

values determined for c2 with fitting weights equal to the inverse of the 95% confidence inter-

vals. Additionally, aiming at a further increase of accuracy, the value for c2 at cPVP = 0 from

Mill et al. [53] was included in the fit with a fitting weight equal to the average weight of the

other data points.

An estimate of the signal to noise ratio (SNR) was obtained by dividing the signal in the

PVP solution by the signal in a region of interest outside the phantom. One has to note that

this estimate has to be considered being far from accurate, in part due to the use of parallel

imaging.

Results

An image slice of the phantom is shown in Fig 2 for one high and one low resolution image

set acquired at 1.5 T. Images acquired with b = 0 s/mm2 (Fig 2a and 2d), with b = 700 s/mm2

(Fig 2b and 2e), and maps of Dapp (Fig 2c and 2f) are shown. A negative correlation between

PVP concentration and Dapp is observed in the Dapp-maps. In the b = 700 s/mm2 images,

higher PVP concentrations are reflected by a reduced signal drop. The estimated SNR ranged

from 40 to 140 in the b = 0 images.

Fig 3 shows the dependency of Dapp on the temperature T for K30 and for K90. Fits of

Eq (2) are shown as black lines and are generally in good accordance with the measured data.

The data of the seven displayed acquisition runs are generally also in good agreement, but few

outlier runs are present, e.g. for water and for K30 with cPVP = 50%. Tables 1 and 2 provide the

fitted parameters c1 and c2. The differences of the fit-parameters between the two K-values at
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one specific temperature are rather low. Parameters c1 and c2 that were determined only with

the 1.5T scanner, or with the 3.0T scanner, are provided as supplemental material S2 File.

Fig 4 shows c2 in dependence of cPVP. The straight lines represent Eq (3), i.e. a linear inter-

polation. The coefficients are ac2 = 0.0244 K-1 and bc2 = 1.7011�10−4 K-1/%(w/w) for K30 and

ac2 = 0.0246 K-1 and bc2 = 9.772�10−5 K-1/%(w/w) for K90. The data points do not lie perfectly

Fig 2. (double column): Images of the used phantom. a,b,c) High resolution images. d,e,f) Low resolution images. a,d) Signal images

without diffusion weighting, i.e. with b = 0 s/mm2. b,e) Signal image with b = 700 s/mm2. Signal images are min-max normalized. c,f) Dapp-

maps of the phantom in units of μm2/ms. Cross sections of the volumes of interest are marked in blue in a and d.

https://doi.org/10.1371/journal.pone.0179276.g002
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Fig 3. (single column): Dependence of apparent diffusion coefficient Dapp on temperature for K30 and

K90. Markers represent measured values and lines represent fits according to Eq 2.

https://doi.org/10.1371/journal.pone.0179276.g003
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on the interpolating straight line. If the assumption that the relation between c2 and cPVP is lin-

ear is correct, then the linear interpolation presumably averages out experimental errors and

hence it would be more advisable to use the c2 values predicted by the interpolation. These val-

ues are stated in Table 3.

Discussion

The here provided data can be used to calibrate measurements to the sample temperature.

Measurements without temperature calibration or temperature fixation seem not advisable,

because the observed temperature dependency appears too strong to be acceptable.

For the case of water, the obtained coefficients c1 and c2 are in good keeping with published

values. For example, using our measured c1 and c2 in Table 1 for free water, one obtains diffu-

sion coefficients estimated at temperatures 15˚C, 25˚C, and 35˚ of 1.819 μm2/ms, 2.322 μm2/

ms, and 2.963 μm2/ms. This matches, for example, closely to the values published by Mills,

which are 1.777 μm2/ms, 2.299 μm2/ms and 2.919 μm2/ms [53]. Pullens et al. and Pierpaoli

et al. published values for K30 at 21˚C and at 22˚C, but used the unit weight per volume (w/v).

At 30% w/v, Pullens et al. obtained a Dapp of approximately 0.852 μm2/ms at 21˚C, and Pier-

paoli et al. obtained approximately 0.955 μm2/ms at 22˚C. Our values for c1 and c2 predict

0.960 μm2/ms at 21˚C and 0.983 μm2/ms at 22˚C taking into account the difference between

(w/w) and (w/v) by means of linear interpolation and using calibration curves that we obtained

(K30: cPVP(w/v) = 1.0955cPVP(w/w). K90: cPVP(w/v) = 1.0535cPVP(w/w)): We found that 30% (w/v)

corresponds to 27.4% (w/w) for K30 (see supplemental material S2 File) and used this value

for calculation of Dapp. Thus our values are closer to those reported by Pierpaoli et al. with a

difference of about 3%. Keenan et al. have reported diffusion coefficients for different PVP

concentrations [48]. They used a slightly different polymer weight, but given the little differ-

ence of the coefficients c1 and c2 between K30 and K90 despite a vastly different typical molec-

ular weight, it seems reasonable to compare their values to our K30 values. Keenan et al. report

for 10% w/w that Dapp ranges from 1.536 μm2/ms at 17.91˚C to 1.714 μm2/ms at 22.11˚C,

Table 1. Fit parameters describing the dependency of Dapp on the temperature (see Eq (2)) for K30.

95% confidence intervals are stated in brackets.

cPVP [% (w/w)] c1 [μm2/ms] c2 [1/K]

0 2.055 (2.050, 2.059) 0.02617 (0.02583, 0.02652)

10 1.594 (1.593, 1.595) 0.02531 (0.02519, 0.02542)

20 1.197 (1.195, 1.198) 0.02749 (0.02729, 0.02769)

30 0.8388 (0.8372, 0.8403) 0.02952 (0.02921, 0.02983)

40 0.5465 (0.5447, 0.5482) 0.03247 (0.03194, 0.03299)

50 0.3326 (0.3304, 0.3348) 0.03303 (0.03197, 0.03409)

0 (Data by Mills, determined using

T = 15, 25, and 35˚C)

2.02 (1.864, 2.176) 0.02466 (0.01777, 0.03155)

https://doi.org/10.1371/journal.pone.0179276.t001

Table 2. Fit parameters describing the dependency of Dapp on the temperature (see Eq (2)) for K90.

95% confidence intervals are stated in brackets.

cPVP [% (w/w)] c1 [μm2/ms] c2 [1/K]

10 1.599 (1.596, 1.601) 0.02453 (0.02428, 0.02479)

20 1.183 (1.181, 1.185) 0.02536 (0.0251, 0.02563)

30 0.8112 (0.8096, 0.8128) 0.02893 (0.02861, 0.02925)

https://doi.org/10.1371/journal.pone.0179276.t002
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while we find corresponding values of 1.509 μm2/ms to 1.684 μm2/ms. At 40% (w/w), Keenan

et al. report that Dapp ranges from 0.557 μm2/ms at 17.91˚C to 0.640 μm2/ms at 22.11˚C, while

we find corresponding values of 0.512 μm2/ms to 0.584 μm2/ms. Thus at lower concentrations,

a good agreement is observed, but at larger concentrations, the deviation becomes as large as

10%. One explanation might be that PVP is hygroscopic (maximal water content of 5% accord-

ing to vendor). Thus the weight of the powder can depend on its water content. Potentially,

this must be accounted for when using PVP solutions as a DWI reference standard. Interest-

ingly, however, the ratio between Dapp values at the largest and the smallest temperature is

0.640/0.557�1.149 for Keenan et al.’s values and 0.584/0.512�1.141 for our values indicating

that the c2-based calibration by Eq (2) would be in good keeping with what one would expect

using Keenan et al.’s values.

Fig 4. (single column): Temperature calibration coefficient c2 in dependence of PVP concentration for

K30 and K90. Error bars denote 95% confidence intervals. The straight lines represent linear fits with weights

inversely proportional to the width of the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0179276.g004

Table 3. Recommended temperature calibration coefficient c2 in K-1.

cPVP [% (w/w)] K30 K90

0 0.0244 0.0246

10 0.0261 0.0256

20 0.0278 0.0266

30 0.0295 0.0275

40 0.0312

50 0.0329

https://doi.org/10.1371/journal.pone.0179276.t003
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In comparison to other proposed test fluids, aqueous solutions of PVP have several advan-

tages: First, multiple image ghosts arising from chemical shifts are not observed in the echo

planar data, which would be the case, e.g., using other proposed test fluids as ethanol or n-

propanol [42]. Second, the water diffusivity can be adjusted specifically to desired values by

changing the PVP concentration, which is not possible, e.g. using cyclo-alkanes [41, 42, 45].

Third, one measures water protons and not protons bound to other molecules as for most of

the other test fluids. As the Larmor frequency of the water protons in the PVP solution is close

to the water frequency in pure water, fat suppression techniques can be tested conveniently

when adding a fat containing volume to the phantom. This would be difficult, e.g., using etha-

nol. Fourth, unlike ethanol and alkanes, aqueous PVP solutions are not flammable. Fifth, PVP

has a mono-exponential signal decay with respect to b and, sixth, it is independent of diffusion

time [49]. Seventh, PVP solutions have a higher viscosity than pure water, which prevents

fluid convection and hence increases measurement accuracy and precision. Very high PVP

concentrations are, however, hard to work with, which might explain the outliers observed for

cPVP = 50%. Moreover, high PVP concentrations are more likely to contain air pockets. In par-

ticular, the K90 solutions with cPVP = 30% appear to us to be potentially outside the trustable

range due their very high viscosity and thus difficult handling. One drawback of PVP solutions

is their susceptibility to mold and bacteria growth, which they have in common with many

gels [54]. This can, however, be overcome by adding preservatives like sodium azide [47, 49].

One further property of increased PVP concentrations is the reduced T1 time [48, 55].

A recently proposed alternative test fluid is decamethylcyclopentasiloxane [56]. It shares

some of the advantageous properties of PVP, such as non-toxicity, a single chemical shift line

and mono-exponential signal decay. Its diffusion coefficient is smaller by roughly a factor of

10 compared to water, which can be an advantage in applications involving strong diffusion

weightings. A drawback is that the diffusion coefficient cannot be adjusted as for aqueous PVP

solutions by changing PVP concentration. Moreover it has a different chemical shift than

water protons making it potentially difficult to assess fat saturation techniques.

A drawback of the current study is that the calibration curves were obtained with systems

that have, of course, their own systematic errors. This was partly overcome by using two sys-

tems and several acquisition series. However, in order to perform a temperature calibration,

one does not necessarily have to rely on the absolute Dapp values being correct. Only the rela-

tive change with temperature, i.e. c2, must be known.

A further limitation is that the test tubes did only cover a limited space. Thus one must rely

on the assumption that the measured Dapp value shows little spatial variation and that ringing

artifacts can be neglected (see supplemental material S4 File for an assessment of Gibbs ring-

ing). Moreover, the rather complicated structure of the measurement setup is not ideal to

acquire echo planar images. A more suitable setup addressing these two issues would have

been the consecutive measurement of the different PVP solutions in spherical bins; but owing

to the arising large demands on acquisition time, the more practical approach of combing all

PVP solutions in a single phantom was used in this work. Another limitation and source of

uncertainty is the lack of a rigorous temperature control, e.g. by a heat controlled water bath,

which makes necessary the assumption that the temperature in the central bin equals the tem-

perature of all bins.

Besides the applications mentioned in the introduction, the use of test fluids in a study may

allow the investigator to come to a more quantitative experiment, which is beneficial in many

regards, e.g. it is beneficial for the application of radiomics or machine learning techniques

[57–59], in multi-center studies, for quantitative measures in standardized examinations, and

for the definition of cut-off values.
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In conclusion, reference curves were presented that can be used to calibrate Dapp measure-

ments using aqueous PVP solutions at different sample temperatures. This shall enable a more

widespread use of PVP solutions as test fluids in phantoms in diffusion weighted imaging

experiments.
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