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ABSTRACT
Background To assess the additive value of dual- energy 
CT (DECT) over single- energy CT (SECT) to radiomics- 
based response prediction in patients with metastatic 
melanoma preceding immunotherapy.
Material and methods A total of 140 consecutive 
patients with melanoma (58 female, 63±16 years) for 
whom baseline DECT tumor load assessment revealed 
stage IV and who were subsequently treated with 
immunotherapy were included. Best response was 
determined using the clinical reports (81 responders: 
27 complete response, 45 partial response, 9 stable 
disease). Individual lesion response was classified 
manually analogous to RECIST 1.1 through 1291 follow- 
up examinations on a total of 776 lesions (6.7±7.2 per 
patient). The patients were sorted chronologically into a 
study and a validation cohort (each n=70). The baseline 
DECT was examined using specialized tumor segmentation 
prototype software, and radiomic features were analyzed 
for response predictors. Significant features were selected 
using univariate statistics with Bonferroni correction and 
multiple logistic regression. The area under the receiver 
operating characteristic curve of the best subset was 
computed (AUROC). For each combination (SECT/DECT and 
patient response/lesion response), an individual random 
forest classifier with 10- fold internal cross- validation was 
trained on the study cohort and tested on the validation 
cohort to confirm the predictive performance.
Results We performed manual RECIST 1.1 response 
analysis on a total of 6533 lesions. Multivariate statistics 
selected significant features for patient response in 
SECT (min. brightness, R²=0.112, padj. ≤0.001) and 
DECT (textural coarseness, R²=0.121, padj. ≤0.001), as 
well as lesion response in SECT (mean absolute voxel 
intensity deviation, R²=0.115, padj. ≤0.001) and DECT 
(iodine uptake metrics, R²≥0.12, padj. ≤0.001). Applying 
the machine learning models to the validation cohort 
confirmed the additive predictive power of DECT (patient 
response AUROC SECT=0.5, DECT=0.75; lesion response 
AUROC SECT=0.61, DECT=0.85; p<0.001).
Conclusion The new method of DECT- specific radiomic 
analysis provides a significant additive value over SECT 

radiomics approaches for response prediction in patients 
with metastatic melanoma preceding immunotherapy, 
especially on a lesion- based level. As mixed tumor 
response is not uncommon in metastatic melanoma, this 
lends a powerful tool for clinical decision- making and 
may potentially be an essential step toward individualized 
medicine.

INTRODUCTION
Melanoma is a highly aggressive cutaneous 
tumor which accounts for up to 80% of all 
skin cancer- related deaths worldwide, making 
it the most lethal skin malignancy.1 It affects 
mainly fair- skinned people at median age 
that ranges from 57 to 62 years; however, it 
is reported to be one of the most common 
primary malignancies in women under 30 
years.2 There has been a rising incidence 
of melanoma cases worldwide in the last 
decades, giving a reason for great concern and 
continuous clinical research.3 In the localized 
stage, melanoma is treatable with surgery and 
has a reasonably high 5- year survival rate of 
up to 98%.4 Unfortunately, melanoma tends 
to metastasize, and surgical approaches are 
often no longer sufficient.5 Furthermore, 
patients with metastatic disease have a poor 
prognosis with 5- year survival under radiation 
and conventional chemotherapy ranging 
from 10% to 50%.6 In the last decade, novel 
immunotherapy approaches have signifi-
cantly extended overall survival (OS) rates 
in metastatic melanoma.7 Unfortunately, 
though, heterogeneous response to immuno-
therapy is not uncommon, with some lesions 
in one patient showing good responsiveness 
while others may even be further progres-
sive.8 The high mortality in the advanced 
stages and costs due to the complexity of 
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treatment and continued diagnostics further add to the 
burden the tumor places on public healthcare.9 This has 
sparked many research projects worldwide to evaluate 
predictive biomarkers in patients with metastatic mela-
noma.10–12 In medical imaging, dual- energy CT (DECT) 
has been shown to outperform single- energy CT (SECT) 
because its superior exploitation of spectral information 
for diagnostic purposes may improve the visualization of 
biological processes.13 More recently, the growing field 
of radiomic analysis, a process of turning medical images 
into mineable data, has opened up new approaches to 
identify predictive biomarkers.14 15 To the best of our 
knowledge, there have not been any attempts to predict 
responsiveness in patients with metastatic melanoma 
using the new method of dual- energy specific radiomic 
analysis.

Therefore, the scope of our study was to assess the addi-
tive value of DECT over SECT to radiomic- based response 
prediction in patients with metastatic melanoma under-
going immunotherapy. We hypothesize, that the inherent 
material decomposition capabilities of DECT can provide 
important additional information by visualizing physio-
logical biomarkers.

METHODS
Study population and therapy scheme
From January 1, 2015 to October 1, 2019, we consecu-
tively included patients with the initial diagnosis of 
melanoma, for whom a whole- body DECT tumor load 
assessment revealed tumor stage IV and who were subse-
quently treated with immune checkpoint inhibitors (anti- 
CTLA- 4 [cytotoxic T- lymphocyte- associated Protein], 
anti- PD1 [programmed cell death protein 1], or combi-
nation anti- CTLA- 4/anti- PD1). From the patient’s clin-
ical reports, we collected their mutation status (v- Raf 
murine sarcoma viral oncogene homolog B [BRAF], 
proto- oncogene c- KIT [cKIT], neuroblastoma RAS viral 
(v- ras) oncogene homolog [NRAS]) and lactate dehydro-
genase (LDH) and S- 100β levels at stage IV diagnosis. We 
determined progression- free survival (PFS, stage IV until 
further progression) and (OS, stage IV until death/end 
of study time frame) in concordance to the patient’s clin-
ical reports, as well as the institute’s tumor board reviews.

Image acquisition and reconstruction parameters
All the whole body DECT examinations that initially 
revealed stage IV melanoma were contrast- enhanced 
(Imeron 400, Bracco, Milan, Italy) and performed on 
the same third generation dual- source CT scanner 
(SOMATOM Force; Siemens Healthineers, Forchheim, 
Germany). Contrast agent (patients’ bodyweight in 
kg +15 = contrast agent in mL), as well as a subsequent 
saline flush (40 mL), were administered through a periph-
eral vein cannula by a double syringe power injector 
(Medrad; Bayer, Leverkusen, Germany) at a flowrate of 
2 mL/s. Image acquisition took place in a portal venous 
phase (90 s after the application). Attenuation- based tube 

current modulation (CARE Dose4D, reference mAs 190) 
was activated for the examination. Tube voltage was set to 
100/Sn150 (tube A 100 kV, tube B tin- filtered 150 kV). 
Collimation was set to 0.6×192/128 mm, pitch was 0.6, and 
gantry rotation time 0.5 s. The composite CT images were 
reconstructed in a medium soft kernel (Bf40d) with a slice 
thickness of 3 mm. The five DE specific image subtypes 
(tube A and B, Mixed, VNC, Iodine) were reconstructed 
employing a quantitative kernel without overshoots 
(Qr40d) at 3 mm slice thickness with iodine- enabled iter-
ative beam hardening correction to allow for accurate 
three- material decomposition. DECT image acquisition 
produces a composite image (40% tube A / 60% tube 
B) that visually closely resembles SECT images at 120 kV. 
As opposed to SECT imaging that allows for visual inter-
pretation only, the material decomposition properties of 
DECT can furthermore be used to quantify iodine and fat 
concentration (‘VNC’ and ‘Iodine’ images).16

Tumor load assessment and classification of response
Initial tumor load and response under immunotherapy 
were assessed according to the response evaluation 
criteria in solid tumours, ver. 1.1 (RECIST 1.1)17 using 
the commercially available software solution Mint.
Lesion (Mint Medical, 69121, Heidelberg, Germany). 
Each included patient received quarterly whole- body 
CT (WBCT) follow- up staging examinations to evaluate 
tumor response under immunotherapy. For tumor load 
assessment and response classification, we included every 
follow- up from January 1, 2015 to January 1, 2021 and 
focused on best response in the given time frame to 
account for long- term responsiveness.

The patient response was determined in concordance 
to the patient’s clinical reports and the institutional tumor 
board reviews. To facilitate comparison, we classified 
patients with complete response (CR), partial response 
(PR), and stable disease (SD) as ‘responder patients’, 
while patients with progressive disease (PD) were classi-
fied as ‘non- responder patients’.

For lesion response, we assessed each lesion indi-
vidually analogous to RECIST 1.1. Lesions with CR 
(disappearence), PR (≥30% shrinkage compared with 
baseline long axis diameter), and SD (no sufficient change 
compared with smallest long axis diameter (‘nadir’)) 
were classified as ‘responder lesions’, and lesions with PD 
(≥20% increase compared with nadir) as ‘non- responder 
lesions’. Figure 1 is a flow chart of the patient and lesion 
classification for radiomic analysis.

Computation and extraction of radiomic features
After classification of responsiveness, the initial DECT 
scans that had revealed stage IV melanoma were exported 
into a specialized tumor segmentation prototype software 
(eXamine V.2.0.50636.0, Siemens Healthineers, Forch-
heim, Germany). Each lesion was assessed again using 
semi- automatic volume- of- interest (VOI) segmentation. 
For these VOIs, the software computed regular radiomic 
features from the composite image and DE- specific 
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Figure 1 Flow chart of patient and lesion classification for comparisons and radiomic analysis.
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features for each of the 5 DE image subtypes (tube A, 
tube B, Mixed, VNC, Iodine) (see figure 1).

Statistical analysis, machine learning training and application
Statistical analysis of patient data and creation of graphs 
was performed using GraphPad Prism V.9.0.2 for Windows 
(GraphPad Software, San Diego, California USA). For 
statistical analysis of the extracted DECT features, a 
machine learning capable prototype software (Radiomics 
V.1.2.1, Siemens Healthineers, Forchheim, Germany) was 
used, that is based on the open- source python package 
‘PyRadiomics’.18 19 The discriminative performance of 
individual features was analyzed using univariate statistics 
with determination coefficient (R²), mutual information 
(MI), and Bonferroni correction for multiple compari-
sons. A corrected p<0.05 was considered statistically signif-
icant. Multiple logistic regression was used to analyze the 
performance of radiomic feature combinations. From the 
statistically significant features, redundant and irrelevant 
features were excluded using a minimum redundancy 
maximum relevance algorithm. A stepwise forward selec-
tion of the remaining features was used to identify the 
best subset in accordance to the Akaike information crite-
rion (AIC). The Bayesian information criterion (BIC) 
and the area under the receiver operating characteristic 
curve (AUROC) for the best subset were computed. 
AUROC ranges from 0.5 to 0.6 were considered as indic-
ative for at most coincidental classification accuracy, from 
0.6 to 0.7 for poor, from 0.7 to 0.8 for fair, from 0.8 to 0.9 
for good, and from 0.9 to 1.0 for excellent classification 
accuracy. Odds Ratio (OR) with 95% CIs were computed 
to describe the likelihood of patients and lesions with the 
selected subsets to be responders/non- responders.

To confirm the best subset’s predictive performance, a 
random forest classifier was trained using a 10- fold cross- 
validation with 100 trees and the split quality measure 
of the Gini impurity as a quality criterion. The machine 
learning model was applied to the validation cohort for 
verification. We computed sensitivity, specificity, posi-
tive and negative predictive value, and overall accuracy 
of prediction from the model performance report. The 
AUROC of the prediction was computed to compare 
patient and lesion response prediction.

RESULTS
Study population, tumor load and survival data, response
From January 1, 2015 to October 1, 2019, we included 
140 consecutive patients (61 female, 63±16 years) with 
melanoma for whom a DECT tumor load assessment 
revealed stage IV and who were subsequently treated with 
immunotherapy (first half study cohort, second half vali-
dation cohort). Both cohorts accounted for 774 lesions 
(5.5±6.0 per patient). We assessed 1291 WBCT (9.2±6.1 
per patient) and performed manual response analysis 
analogous to RECIST 1.1 on 6533 lesions (46.7.4±63.0 
per patient). See table 1 for further details about our 
study population.
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Radiomic analysis
Exemplary segmented responder and non- responder 
lesions and feature analysis in two different patients are 
shown in figure 2.

Statistical patient response prediction (study cohort)
Patient response
Based on radiomic features available in SECT, the 
minimum brightness of all lesions (‘original_firstorder_
Minimum’) was selected by univariate analysis for multi-
variate statistics (AUROC=0.67, MI=0.077, R²=0.112, 
padj. ≤0.001). Multiple logistic regression showed a 
significant contribution of the selected feature towards 
patient response classification (p<0.001, adj. R²=0.109, 

AIC=531.3, BIC=539.3, AUROC=0.67). Patients with 
higher minimum brightness levels were 2.01 times as 
likely (OR=2.01, 95% CI 1.63- 2.48, p≤0.001) of being non- 
responders than those with lower averaged minimum 
brightness levels.

For patient response with DECT radiomics, univariate 
analysis selected a feature derived from the high energy 
dataset (tube B) that describes the coarseness of struc-
tural textures (‘wavelet- HLH- glrlm_LongRunEmphasis’) 
of all segmented lesions (AUROC=0.71, MI=0.064, 
R²=0.121, padj. ≤0.001). Multivariate statistics confirmed 
this selection and showed the feature to be a significant 
contributor to patient response classification (p<0.001, 

Figure 2 Segmentation and feature analysis in the prototype software.
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adj. R²=0.118, AIC=527.3, BIC=553.2, AUROC=0.70). 
Overall, patients where all lesions had a higher structural 
heterogeneity were 1.7 times (OR=1.7, 95% CI 2.66- 3.59, 
p≤0.001) less likely of being non- responders than patients 
with higher lesion homogeneity.

Lesion response
For individual lesion response based on SECT radiomics, 
univariate analysis selected a feature (‘original_firstorder_
MeanAbsoluteDeviation’) that describes the mean 
distance of all voxel intensity values from the mean value 
of the image array (AUROC=0.67, MI=0.088, R²=0.115, 
padj. ≤0.001). Multiple logistic regression again confirmed 
this features contribution to lesion response classifica-
tion (p<0.001, adj. R²=0.113, AIC=495.8, BIC=503.6, 
AUROC=0.67). Lesions with higher voxel brightness 
homogeneity were 2.6 times more likely (OR=2.6, 95% CI 
1.83- 3.57, p≤0.001) of non- response than such with 
higher mean deviance levels.

For lesion response based on additional DECT radio-
mics, univariate statistics revealed a total of 10 features to 
be relevant (AUROC ≥0.77, MI≥0.1 R²≥0.12, padj. ≤0.001). 
The ensuing step- forward selection in multivariate 
analysis selected a best subset comprised of three dual- 
energy specific features (MeanIodine, IodineConcentra-
tionTotal, MeanMixed) to have the greatest contribution 
to lesion response classification (p<0.001, adj. R²=0.382, 
AIC=392.4, BIC=408.3, AUROC=0.88). Overall, indi-
vidual lesions with this radiomics signature were 3.3 times 
more likely (OR=3.3, 95% CI 2.7- 4.3, p≤0.001) of non- 
response than such lesions without the radiomics signa-
ture. Figure 3 visualizes the most prominently selected 
features in univariate and multivariate statistics. The blue 

background marks the difference between the respective 
means of responders and non- responders.

Machine learning training (study cohort)
In 10- fold internal cross- validation, the model based 
on the best subset available in SECT (minimum bright-
ness) had only coincidental classification capabilities 
(AUROC=0.51) with a sensitivity of 61.17% (95% CI 
54.14% to 67.89%) and a specificity of 50.53% (95% CI 
43.19% to 57.84%). The model trained on the best DECT 
radiomics subset for patient response (textural coarse-
ness) also showed only coincidental classification capabil-
ities in 10- fold internal cross- validation (AUROC=0.55) 
with a sensitivity of 64.08% (95% CI 57.12% to 70.63%) 
and a specificity of 50.53% (95% CI 43.19% to 57.84%).

For individual lesion response, the model based on 
the best SECT subset (mean absolute voxel brightness 
deviation) performed poorly (AUROC=0.61) in 10- fold 
internal cross- validation. The model’s sensitivity was 
65.95% (95% CI 58.63% to 72.74%), and the specificity 
was 59.46% (95% CI 52.01% to 66.06%). The model 
trained on DECT radiomics (iodine uptake metrics), on 
the other hand, performed good in 10- fold internal cross- 
validation (AUROC=0.81) with a sensitivity of 66.67% 
(95% CI 59.69% to 73.14%) and a specificity of 78.46% 
(95% CI 72.02% to 84.01%).

Machine learning application (validation cohort)
Machine learning application and predictive perfor-
mance calculation in the validation cohort based on the 
best radiomic subsets showed coincidental accuracy at 
most for patient response classification by SECT radio-
mics (AUROC=0.50). With fair response prediction 

Figure 3 Selected features in univariate and multivariate statistics.
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capabilities (AUROC=0.75), DECT radiomics performed 
significantly better on a patient- based level (p<0.001). 
The best SECT radiomics subset for lesion response had 
poor predictive capabilities (AUROC=0.61). With a good 
predictive accuracy (AUROC=0.85), the model for indi-
vidual lesion response trained on DECT radiomics, again 
performed significantly better in prediction (p<0.001). 
See figure 4 for further details and metrics.

DISCUSSION/CONCLUSION
Immune checkpoint inhibitors have revolutionized the 
realm of melanoma treatment and prolonged PFS and 
OS.7 However, mixed response to immunotherapy is not 
uncommon, with some lesions showing complete respon-
siveness, while others remain stable or are even further 
progressive under therapy.8 In this study, we identified 
dual- energy specific radiomic features linked to higher 
likelihoods of immunotherapy responsiveness on a 
patient- based level and a lesion- based level.

Figure 4 Machine learning application validation cohort AUROC and metrics. AUROC, area under the receiver operating 
characteristic curve; DECT, dual- energy CT; SECT, single- energy CT.
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Several attempts have been made so far to identify 
predictors for therapy response in patients with metastatic 
melanoma. Hamberg et al evaluated serum LDH and the 
tumor marker S- 100β for their predictive performance, 
particularly the latter showing great promise.20 As for CT 
imaging, several studies proposed using diameter change 
in a 3- month follow- up window.21 22 While these are 
important metrics, our scope was to identify predictors 
visible in baseline DECT for patient and lesion response. 
This is of particular interest for medical research, as meta-
static melanoma in the setting of immunotherapy may 
show different response patterns that may even compli-
cate classical tumor burden evaluation strategies.23

Radiomic signatures have shown great potential for 
response prediction in solid tumors. Trebeschi et al 
reported associations between radiomic features and 
immunotherapy response in patients with metastatic non- 
small- cell lung cancer and melanoma.24 In their study, 
however, response prediction of individual melanoma 
metastases was challenging. As an approach to tackle this 
problem, Sun et al proposed a radiomic signature for CD8+ 
tumor infiltration as a response predictor with promising 
results.25 Likewise, Ligero et al were able to accurately 
distinguish response versus non- response in patients with 
several different primary tumor types (including mela-
noma) at a sensitivity of ≥73% and a specificity of ≥55%0.26 
However, the number of patients with melanoma in their 
cohort was relatively small (n=9). Furthermore, Ligero et 
al analyzed radiomic features derived from SECT. While 
machine learning in our study was only capable of coin-
cidental patient response prediction in SECT, training a 
model on DECT radiomics showed a clear benefit. Lesion 
response prediction performed only little better in SECT 
than patient response prediction. Using a machine 
learning model trained on DECT radiomics, though, had 
significantly improved lesion response prediction. DECT 
allows for iodine and fat differentiation by the material 
decomposition principle, adding important clinical data 
to otherwise only visually evaluable CT images.16 Doda 
Khera et al reported DECT radiomics to possess a precise 
differentiation capability of normal liver tissue vs steatosis 
or cirrhosis.27 Bae et al showed textural features from 
iodine overlay maps to correlate with tumor aggressive-
ness in patients with lung adenocarcinoma.28 Concor-
dantly, Choe et al demonstrated textural features derived 
from iodine overlay maps to reflect perfusion levels asso-
ciated with higher hazard ratios in patients with resect-
able lung cancer.29 To the best of our knowledge, the 
novel method of dual- energy radiomic analysis has never 
been investigated for melanoma response prediction in 
WBCT. Considering mixed responses under immuno-
therapy, this approach can be a powerful additional tool 
for oncological decision making. A highly specific lesion 
response prediction might, after all, help with the early 
identification of metastases that require different ther-
apeutic methods. As El Naqa et al suggested, radiomic 
features are highly dependent on image acquisition and 
reconstruction parameters, emphasizing the need for 

standardized CT protocols.30 When considering these 
essential caveats, training machine learning models using 
the novel method of DECT radiomics can potentially 
be an important step towards individualized treatment 
response assessment.

Limitations
This study has several limitations. First, the design of this 
study was retrospective, which in our case limited inclu-
sion. Furthermore, in this study, only baseline lesions were 
used for radiomic analysis. However, patients with CR of 
the baseline lesions might still have been categorized as 
non- responders due to newly emerging lesions under 
therapy. A larger patient collective with a cleaner distinc-
tion of subgroups might have improved the discrimina-
tory power of dual- energy radiomics even more. Second, 
although our model’s response prediction was reasonably 
accurate, image data analysis lends a rather descriptive 
approach to yet not fully understood contexts. Previous 
studies have pointed out a significant correlation between 
iodine uptake in lung cancer and markers for metabo-
lism.29 31 In circulating melanoma cell subpopulations, on 
the other hand, cellular heterogeneity was found to be a 
significant response predictor.32 Consecutively, this study 
raises the question if therapy response correlates with 
the overall metabolic activity of lesions or if lesions with 
higher iodine uptake are comprised of a higher number 
of active cells, which, therefore, have a higher likelihood 
of cellular heterogeneity. Our study lacked the necessary 
histopathological validation to illuminate this poten-
tial relationship. Third, our results are based on iodine 
uptake in a portal venous phase, which may be influenced 
by several factors like the patient’s age, sex, body weight, 
and cardiac function. Furthermore, radiomic features are 
highly dependent on image acquisition and reconstruc-
tion. We used a high- end third generation dual- source 
scanner that is not readily available at every clinical site. 
Our results may, therefore, not necessarily be accurately 
reproducible with other setups.

Conclusion
Machine learning models trained using the novel method 
of DECT- specific radiomics provide a significant addi-
tive value over SECT radiomics approaches for response 
prediction in patients with metastatic melanoma 
preceding immunotherapy, especially on a lesion- based 
level. As mixed tumor response is not uncommon in 
metastatic melanoma, this lends a powerful tool for clin-
ical decision- making and may potentially be an essential 
step towards individualized medicine.
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