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Abstract: The recently discovered novel coronavirus, SARS-CoV-2 (COVID-19 virus), has brought
the whole world to standstill with critical challenges, affecting both health and economic sectors
worldwide. Although initially, this pandemic was associated with causing severe pulmonary and
respiratory disorders, recent case studies reported the association of cerebrovascular-neurological
dysfunction in COVID-19 patients, which is also life-threatening. Several SARS-CoV-2 positive case
studies have been reported where there are mild or no symptoms of this virus. However, a selection
of patients are suffering from large artery ischemic strokes. Although the pathophysiology of the
SARS-CoV-2 virus affecting the cerebrovascular system has not been elucidated yet, researchers
have identified several pathogenic mechanisms, including a role for the ACE2 receptor. Therefore,
it is extremely crucial to identify the risk factors related to the progression and adverse outcome of
cerebrovascular-neurological dysfunction in COVID-19 patients. Since many articles have reported
the effect of smoking (tobacco and cannabis) and vaping in cerebrovascular and neurological systems,
and considering that smokers are more prone to viral and bacterial infection compared to non-smokers,
it is high time to explore the probable correlation of smoking in COVID-19 patients. Herein, we have
reviewed the possible role of smoking and vaping on cerebrovascular and neurological dysfunction
in COVID-19 patients, along with potential pathogenic mechanisms associated with it.

Keywords: SARS-CoV-2; COVID-19; cerebrovascular; neurological; smoking; CNS; blood-brain
barrier

1. Introduction

Coronavirus disease 2019 or COVID-19 is an infectious disease caused by a recently discovered
form of coronavirus known as severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) [1,2].
The outbreak of this virus first appeared in Wuhan city of Hubei province in China in December 2019 [3].
On March 11, 2020, it was declared as a pandemic by the World Health Organization (WHO) [4]. As of
May 28th 2020, a total number of 5,792,874 coronavirus cases, including 357,479 deaths, have been
reported all over the world [5]. This virus is spreading among all populations so rapidly that, in just
three months, the USA has become the epicenter, having 1,745,803 confirmed cases, including 102,107
deaths. The number of confirmed cases seems to indicate a steady increment over time and these
numbers can be forecasted using several mathematical models available for COVID-19 [5–8].

Coronaviruses belong to the subfamily Coronavirinae (family Coronaviridae; order
Nidovirales), containing four genera named, Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and
Deltacoronavirus [9]. SARS-CoV-2 is a Betacoronavirus closely related to other human pathogenic
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coronaviruses SARS-CoV and MERS-CoV that also emerged in the 21st century [10]. SARS-CoV-2
is an enveloped and non-segmented single-stranded positive-sense RNA virus having crown like
spikes on the outer surface. The diameter and length of SARS-CoV-2 are about 65–125 nm and
29.9 kb respectively [11,12]. Structure of SARS-CoV-2 consists of 4 major proteins namely, spike (S)
glycoprotein, envelope (E) glycoprotein, membrane (M) glycoprotein, and nucleocapsid (N) protein,
as well as several non-structural and accessory proteins (see Figure 1). Among all the proteins, the
spike (S) protein plays a key role in viral attachment, fusion, entry, and transmission. This S protein is
responsible for the entry of SARS-CoV-2 into the host cell by attaching with angiotensin converting
enzyme 2 (ACE2), which acts as a receptor and is present in different organs of the body [13,14].
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Figure 1. Illustrative view of the SARC-CoV-2 virus structural components and known modality of 
viral entry into the cells. The scheme also provides a summary panel of the potential health impact 
on the human body specific to lung and the CNS. (ACE2: Angiotensin converting enzyme 2, ER: 
Endoplasmic reticulum) 

Additionally, COVID-19 patients suffer from coagulopathy and prothrombin time prolongation, 
which may contribute to secondary cerebral hemorrhage, although, as of today, no secondary 
cerebral hemorrhage has been reported in COVID-19 patients [49]. Moreover, an increased level of 
D-dimer has been found in COVID-19 patients, which may result in thrombotic vascular events 
[49,73]. As SARS-CoV-2 has been found in cerebrospinal fluid, it is crucial to evaluate the protective 
role of the BBB in preventing the virus from getting access to neural tissues [67]. This is of crucial 
importance since comorbid pathologies (such as those promoted by chronic smoking and vaping 
[28,31,74,75]) that negatively impact the integrity and function of the BBB may facilitate the virus 
entry into the CNS. 

Another important mechanism behind the cerebrovascular and neurological symptoms in 
COVID-19 patients could be an immune injury. It has been found that viral infection may damage 
the nervous system by altering the immune responses [76]. A CoV infection-mediated severe 
pneumonia could promote systemic inflammatory response syndrome (SIRS). Studies suggested that 
immune damage could be prevented by early anti-inflammatory intervention and could also decrease 
the risk of nervous system injury [61,77]. Both SARS and COVID-19 have been found to cause 
multiple organ failure-mediated fatalities through virus-induced SIRS or SIRS-like immune disorders 
[62,78]. 

Cytokines play a pivotal role in regulating immunological and inflammatory function of the 
body [79]. Additional studies confirmed the release of high level of inflammatory factors, such as 

Figure 1. Illustrative view of the SARC-CoV-2 virus structural components and known modality of
viral entry into the cells. The scheme also provides a summary panel of the potential health impact
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Endoplasmic reticulum)

COVID-19 is easily transmitted through saliva droplets or discharge from the nose of an infected
person when he/she sneezes or coughs [15,16]. While most of the infected patients will show mild
to moderate respiratory distress/illness and recover with or without requiring special treatments,
the death toll number is shockingly high compared to other types of coronaviruses, SARS-CoV and
MERS-CoV. The symptoms include fever, dry cough, shortness of breath, sore throat, tiredness, and
aches and pains [2]. The Centers for Disease Control and Prevention (CDC) have identified some
severe symptoms which require emergency medical attention including, but not limited to, persistent
pain or pressure in the chest, trouble breathing, inability to wake or stay awake, new confusion, and
bluish lips or face [17]. Although COVID-19 primarily affects the respiratory system, recent reports
have revealed some neurological and cerebrovascular symptoms associated with the disease, including



Int. J. Mol. Sci. 2020, 21, 3916 3 of 18

headache, disturbed consciousness, paresthesia [1], and, most recently, stroke [18]. Additionally, brain
tissue edema and partial neuronal degeneration, as well as viral encephalitis attacking the central
nervous system (CNS) have also been reported [19,20]. Therefore, it seems that COVID-19 can promote
harm of the cerebrovascular system and the CNS of infected patients.

Smoking (cigarettes and cannabis) and vaping are significant public health concerns in the USA
and around the globe. Ample studies have found that smoking is associated with different diseases
affecting different organs of the body, many of which are fatal. Smoking is considered a risk factor
for developing and progression of cancers and major forms of respiratory distress, including chronic
obstructive pulmonary disease (COPD), pulmonary fibrosis etc. [21]. It has been reported that smoking
is responsible for the development of squamous metaplasia in large airways, hypersecretion of mucus
and hyperplasia in smooth muscle, along with increased small airway fibrosis and thickening of the
airway wall which ultimately results in narrowing and destruction of the airway, accompanied by
bronchitis. Patients may also suffer from airflow limitation due to emphysematous lung destruction [22].
Smoking is also considered a significant pro-immunogenic mix of substances impacting the immune
responses and promoting the onset of autoimmune disorders (such as rheumatoid arthritis and systemic
lupus) in genetically-susceptible individuals. Smoking severely impacts the vascular system promoting
the onset of neurological diseases as well as fatal cardiovascular diseases [23]. By comparison with
non-smokers, smokers are more prone to respiratory illness, including colds, increased rates of
influenza, bacterial pneumonia, and tuberculosis [24]. Smoking causes damage to the lungs which, in
turn, makes the patients more vulnerable to viral and bacterial pulmonary infections as well. Tobacco
smoke causes structural changes, including peri-bronchiolar inflammation and fibrosis, enhanced
mucosal permeability, impaired mucociliary clearance, changes in pathogen adherence, and disruption
of the respiratory epithelium, which ultimately dysregulate immune defenses of respiratory system.
Moreover, smoking is related to a wide range of alterations in cellular and humoral immune system
function [25].

In comparison to non-smokers, smokers have an increased risk of developing influenza [25]
and this infection can even exacerbate the comorbidities that are common in these populations [26].
It has also been reported that, after influenza infection, smokers are at higher risk of hospitalization
compared to non-smokers [27]. Tobacco smoke not only plays a crucial role in developing respiratory
distress but is also associated with an increased risk of cerebrovascular and neurological diseases, like
stroke, Alzheimer’s disease, multiple sclerosis, and vascular dementia by disrupting the blood-brain
barrier (BBB), inducing oxidative stress, inflammation, and the alteration of immune responses [28–31].
Noticeably, the negative effect of smoking on the progression of COVID-19 infection has been reported
in recent case studies and reports [32–35]. As smoking increases the risk and susceptibility of
SARS-CoV-2 infection, increasing the progression of COVID-19, and leading to severe respiratory
distress and cardiovascular disease, this review article aims to determine plausible comorbid CNS and
cerebrovascular roles of smoking and vaping in COVID-19 patients.

2. CoV Infection and CNS

Previous studies reported the disruption of the structure and function of the CNS due to viral
infection resulting in severe encephalitis, toxic encephalopathy, and severe acute demyelinating
lesions [1,36]. Some neurotropic viruses can cause infections of macrophages, microglia, and astrocytes
by invading nervous tissues [37,38]. It is evident from previous studies that respiratory-related
infections act as a critical factor for developing the acute cerebrovascular disease [39,40] Moreover, the
influenza virus has been found to exacerbate ischemic brain injury through initiating cytokine cascade,
thus increasing the probability of tissue-type plasminogen activator mediated cerebral hemorrhage [41].

SARS-CoV was found to cause different neurological diseases, including encephalitis,
polyneuropathy, and large artery ischemic stroke [42]. Subsequently, the occurrence of cerebral
edema and meningeal vasodilation along with the presence of the SARS-CoV genome sequence were
identified in the brain of several SARS cases from autopsy studies [1,43]. Moreover, monocyte and
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lymphocyte penetration in the vessel wall, ischemic changes of neurons, and nerve fiber demyelination
were also detected in autopsies of brain samples of the infected patients [43,44].

MERS-CoV, another coronavirus, causes Middle East Respiratory Syndrome or MERS and is known
as neuroinvasive. It has been found from different studies that MERS-CoV is also responsible for causing
different neurological complications, including insanity, seizures, ischemic stroke, paralysis, disturbed
consciousness, Guillain-Barre syndrome, and other poisoning or infectious neuropathy [45,46].

3. Neurological and Cerebrovascular Manifestations of COVID-19

SARS-CoV-2, the responsible virus for COVID-19, is 79.5% genetically similar to SARS-CoV and
96% similar to bat coronavirus [47]. The sequence homology of SARS-CoV-2 also showed a 50%
similarity to MERS-CoV virus [48]. Although the primary symptoms of COVID-19 include fever, dry
cough, and fatigue in most of the patients [33], some COVID-19 patients exhibited sole neurological
symptoms including headache, dizziness, languidness, unstable walking, malaise, cerebral hemorrhage,
and infarction without showing any of the typical COVID-19 symptoms [49]. Additional studies have
also reported a sudden loss of smell or taste in some COVID-19 patients as well [50,51].

A current study comprising 214 patients demonstrated that 36.45% of patients of the total cohort
showed neurological symptoms, including acute cerebrovascular disease, impairment of consciousness,
and skeletal muscle motor function disability; 18.7% of total admitted patients had these severe
neurological manifestations and required admission to the intensive care unit [49,52]. Other case
studies (shown in Table 1) also reported that acute cerebrovascular and neurological symptoms,
including headache, dizziness, impaired consciousness, olfactory disorders, have been found in
COVID-19 patients. Table 1 summarizes recent case studies related to COVID-19 and neurological
dysfunction. However, one of the limitations of the case studies is that the analysis of cerebrospinal
fluid (CSF) and electroencephalography (EEG) was not performed to confirm the presence of the virus
in the CSF [53].

Another recent report has also shown COVID-19 to causes sudden stroke in patients aged between
30 and 40 years old. Although these COVID-19 infected patients had mild or no symptoms of
COVID-19, abnormal blood clotting in large arteries has been reported, which ultimately resulted in
severe stroke [18].

Another important finding is the detection of the genome sequence of SARS-CoV-2 in cerebrospinal
fluid, which opens up a direction towards the damage of CNS in COVID-19 patients causing viral
encephalitis [1]. Moreover, some of the COVID-19 patients were found to suffer from viremia and
hypoxia [59], which play a crucial role in developing toxic encephalopathy. The occurrence of headache,
disturbance in consciousness, other neurological dysfunction is close to 40% of COVID-19 patients [60],
and the concurrent detection of brain tissue edema seems to suggest the existence of a possible link
between COVID-19 and infectious, toxic encephalopathy [19]. However, extensive studies need to
be conducted to validate this hypothesis further. Additionally, it has been reported that SARS-CoV-2
can initiate a cytokine storm mechanism, which may lead to a range of infectious and non-infectious
diseases, including pancreatitis, acute cerebrovascular disease, and multiple organ dysfunction [61–63].
Critically-infected patients also showed a high level of D dimer and severe reduction in platelets, which
may make the patients more vulnerable to acute cerebrovascular dysfunction [60,64]. Additionally, it
has been speculated that COVID-19 positive patients are vulnerable to other types of pathogenic bacteria,
which can damage the integrity of the blood-brain barrier (BBB). Subsequently, this secondary infection
may lead to headaches, vomiting, loss of vision, and limb convulsions in COVID-19 patients [1].

Focusing on current case studies and research on COVID-19 patients, it is evident that COVID-19
could be associated with neurological and cerebrovascular dysfunction, which can be life-threatening
as well.
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Table 1. Case studies on neurological and cerebrovascular symptoms in COVID-19 patients.

Study Type Time Study Design Outcome and Symptoms Reference

Retrospective
case series

13 January to 31
March

N = 274,
admitted patients

Headache (11.31%),
Dizziness (7.66%) [54]

Retrospective
case series

16 January 2020 to
29 February 2020

N = 221,
admitted patients

Acute ischemic stroke (5%),
CVST (0.5%), cerebral

hemorrhage (0.5%)
[55]

Retrospective
case series

16 January 2020 to
19 February 2020

N = 214,
admitted patients

Nervous system symptoms
(36.4%) including CNS

symptoms (24.8%):
(Headache (13.1%), dizziness

(16.8%), impaired consciousness
(7.5%), acute cerebrovascular
disease (2.8%), ataxia (0.5%),

epilepsy (0.5%))

[52]

Retrospective
case series

1 January to 28
January, 2020

N = 138 admitted
patients Headache (7%), dizziness (9%) [56]

Retrospective
case series

1 January to 20
January, 2020

N = 99, admitted
patients Headache (8%), confusion (9%) [57]

Cross-sectional
survey 19 March, 2020 N = 59, admitted

patients

Headache (3.4%)
Taste or olfactory disorder

(33.9%),
Taste and olfactory disorder

(18.6%)

[50]

Retrospective
case series

late December
2019- 26 Jan 2020

N = 52, admitted
patients (critically

ill adults)
Headache (6%) [58]

Prospective
case series By 2 January 2020 N = 41, admitted

patients Headache (8%) in 38 patients [33]

Case study 23 March to 7 April N = 5 Large-vessel stroke (100%) [18]

4. Pathophysiology of COVID-19 Related Cerebrovascular and Neurological Dysfunction

Although the underlying mechanism behind cerebrovascular and neurological dysfunction
in COVID-19 patients has not been elucidated yet, several potential mechanisms could be
non-exclusively responsible for the identified comorbidities. One of the critical targets of SARS-CoV-2
is Angiotensin-converting enzyme 2 (ACE2) [49], which is present in different organs including lung,
heart, kidney, testis as well neurons and glial cells of the brain [13,65–67]. ACE2 plays a pivotal
role in the regulation of blood pressure as well as anti-atherosclerosis mechanisms [68]. It has been
demonstrated from various studies that different types of CoV and influenza viruses may elevate blood
pressure and increase the potential risk of cerebral hemorrhage by binding to ACE2. A recent study
has also reported that SARS-CoV-2 enters into the host cell through the interaction of SARS-CoV-2 coat
protein SPIKE or (S protein) with ACE2 present on the host cell resulting in the internalization of the
virus [69–71]. The expression of ACE2 is found to be low in hypertensive patients, which increases the
chance of hemorrhagic occurrence. Since SARS-CoV-2 decreases the ACE2 expression [72] it can be
speculated that the SARS-CoV-2 infected patients are at high risk of hemorrhagic stroke (see Figure 1).

Additionally, COVID-19 patients suffer from coagulopathy and prothrombin time prolongation,
which may contribute to secondary cerebral hemorrhage, although, as of today, no secondary cerebral
hemorrhage has been reported in COVID-19 patients [49]. Moreover, an increased level of D-dimer
has been found in COVID-19 patients, which may result in thrombotic vascular events [49,73]. As
SARS-CoV-2 has been found in cerebrospinal fluid, it is crucial to evaluate the protective role of the
BBB in preventing the virus from getting access to neural tissues [67]. This is of crucial importance
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since comorbid pathologies (such as those promoted by chronic smoking and vaping [28,31,74,75]) that
negatively impact the integrity and function of the BBB may facilitate the virus entry into the CNS.

Another important mechanism behind the cerebrovascular and neurological symptoms in
COVID-19 patients could be an immune injury. It has been found that viral infection may damage the
nervous system by altering the immune responses [76]. A CoV infection-mediated severe pneumonia
could promote systemic inflammatory response syndrome (SIRS). Studies suggested that immune
damage could be prevented by early anti-inflammatory intervention and could also decrease the risk
of nervous system injury [61,77]. Both SARS and COVID-19 have been found to cause multiple organ
failure-mediated fatalities through virus-induced SIRS or SIRS-like immune disorders [62,78].

Cytokines play a pivotal role in regulating immunological and inflammatory function of the
body [79]. Additional studies confirmed the release of high level of inflammatory factors, such as
interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-15 (IL-15), and tumor necrosis factor-α (TNF-α)
from primary glial cells infected with CoV [80]. Recently, Wan et al. reported the correlation of IL-6
with the severity of COVID-19 symptoms [81]. IL-6 may act as a potential biomarker of SARS-CoV-2
as IL-6 level has been found to be increased in COVID-19 patients [79] As CoV infection can infect
macrophages, microglia, and astrocytes in the CNS inducing pro-inflammatory conditions [82] and
activation of immune cells, it is crucial to find the probable correlation between COVID-19 and
neurological damage through immune injury.

Moreover, the proliferation of viruses in the lung tissue may lead to an impaired exchange of
alveolar gas, thus triggering hypoxia in CNS. This hypoxia causes anaerobic metabolism in brain cells,
which accumulates acid causing cerebral vasodilation, brain cells swelling, interstitial edema, blockage
of cerebral blood flow, and headache because of ischemia and congestion [83]. Untreated hypoxia
may induce acute cerebrovascular disease encompassing acute ischemic stroke in high-risk COVID-19
patients [1]. As COVID-19 patients often suffer from fatal silent hypoxia, it requires substantial
examination and consideration [84]. Additionally, ACE2 also plays a role in controlling inflammatory
and atherosclerosis responses of vessels [85]. Thus, COVID-19 may promote atherosclerosis formation,
which ultimately may result in brain ischemic stroke by affecting brain microcapillaries.

A neurotrophic virus can also enter the CNS through neuronal pathways such as the olfactory
neuron transport system. Studies reported that, in the early stage of infection or nasal vaccination, CoV
could reach the brain through the olfactory tract, thus causing inflammation and demyelination [1,86,87].
Therefore, it is evident that CoV viruses can invade the brain by neuronal pathways, and this mechanism
should also be investigated in the case of SARS-CoV-2.

5. Smoking, COVID-19, and Cerebrovascular-Neurological Diseases

Tobacco smoking is responsible for a wide range of diseases affecting different organs of the body,
including cerebrovascular, cardiovascular, pulmonary systems, and this can be life-threatening as
well [88]. These diseases include, but are not limited to, lung cancer, chronic obstructive pulmonary
disease (COPD), cardiovascular diseases, stroke, and decreased immune function [89]. Yearly, tobacco
smoking (TS) kills around 6 million people in the world, and more than 0.48 million people in the
USA alone [90]. Although the main addictive component of TS is nicotine, it also contains more than
4700 toxic compounds encompassing carcinogens, mutagens, stable and unstable free radicals as well
as reactive oxygen species (ROS). Different studies demonstrated the association between tobacco
smoke and cerebrovascular-neurological dysfunction, including ischemic stroke, Alzheimer’s diseases,
multiple sclerosis, abnormal brain development, and vascular dementia [28,90–92]. The mechanisms
behind the toxic effects of smoking include, but are not limited to, inflammation, oxidative stress,
atherosclerosis, disruption of the BBB, and hyperactive immune response [29,30].

The BBB plays a pivotal role in maintaining brain homeostasis and acts as a strong shield to
prevent the entrance of the potentially harmful substances from system blood circulating into the brain
parenchyma. Moreover, it protects the brain by limiting the body’s peripheral immune defense system
from entering inside the brain parenchyma [74]. Therefore, disruption of BBB integrity may expose the
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brain temporarily to potential hazardous components (both exogenous and endogenous) circulating
in the blood, which may affect neuronal activities both in the CNS and the periphery [74,93]. Loss
of BBB viability may, in turn, increase the risk for secondary brain damage and may progress the
pathogenesis of a variety of CNS diseases such as epilepsy, silent cerebral infarction, hemorrhagic
and non-hemorrhagic stroke, small vessel ischemic disease, and traumatic brain injury [74,94–97].
Different studies reported that TS causes endothelial dysfunction and damages the vascular system.
TS acts as an inflammatory agent causing oxidative stress, which may be responsible for impairment of
BBB [98–101]. Even at low concentrations, TS induces strong vascular pro-inflammatory responses.
These encompass the upregulation of endothelial pro-inflammatory genes, pro-inflammatory cytokines
such as Interleukin -1β (IL-1β), TNF-α, upregulation, and activation of matrix metalloproteinase-2 and
-9 (MMP-2, MMP-9), and monocyte differentiation into macrophages [31,74]. MMP-2 and MMP-9 affect
BBB integrity by degrading basal laminal components and facilitating immune cell trafficking into the
brain [102]. All of these pathogenic events promote BBB dysfunction and breakdown, which increases
the risk of cerebrovascular disease, including stroke and other neurological disorders [31,74]. Howkins
et al. reported the downregulation of zonula occludentes-1 (ZO-1; a tight junction—TJ—accessory
protein linking the TJs to the cellular actin cytoskeleton) at the BBB by nicotine, causing increased
BBB permeability [103]. Additionally, other scientific studies demonstrated the a7nAChR mediated
alteration of the function of BBB Na+ K+ 2Cl- co-transporter by nicotine [104–106]. TS is also associated
with the progression of atherosclerosis and angiogenesis [90]. Signal transducer and activator of
transcription-3 (STAT-3) is an angiogenesis modulator that acts by IL-6/STAT-3 signaling mechanism
and can be upregulated by TS [107]. TS may also upregulate Apo-lipoprotein E genes, which regulate
the metabolism of lipoprotein and is related to increased cholesterol level [90]. This later can further
elevate the risk of ischemic stroke and atherosclerosis. Serum Amyloid A1 (SAA1) gene expression can
also be upregulated by TS, which may subsequently increase the BBB permeability [108,109].

Furthermore, tobacco smoke also generates a high amount of superoxide, hydrogen peroxide,
hydroxyl radical, and peroxynitrite, which exposes endothelial cells to highly reactive oxygen species
(ROS), leading to oxidative stress (OS) damage [110]. OS ultimately results in lipoperoxidation of
polyunsaturated fatty acids in membrane lipids, protein oxidation (backbone fragmentation), DNA
breakdown [111–113], mutations of the nuclear protein p53, carcinogen-mediated DNA damage, RNA
oxidation, mitochondrial depolarization, dysregulation of iron transporters and detoxifying enzymes,
and apoptosis [28,114]. These pathological effects may further impair the cerebrovascular integrity
and function, along with other factors or infectious agents that affect BBB [28,74,75,100,101].

Smokers are more vulnerable to bacterial and viral inflammatory neuropathologies compared
to non-smokers [88] and have been shown to promote cerebral vasodilation along with reduced BBB
integrity. Therefore, it is not surprising that chronic smokers are more susceptible to CNS disorders
and, overall, neuronal damage caused by infection [115,116]. It has also been shown that the post-deep
brain stimulation neuronal infection rate is higher in smoking patients compared to the non-smoking
patients [117]. These observed detrimental effects in smokers could be caused by several mechanisms
like increased inflammation and ROS, which leads to leaky BBB, and increased expression of receptors
that promote virus invasion into the brain parenchyma. Recently, Brake et al. reported that smoking
can upregulate the ACE2 receptor [24], which acts as a binding site for the S protein of SARS-CoV,
coronavirus NL63, and SARS-CoV-2. This is the first immunohistochemical human lung evidence for
ACE2 receptor expression in smokers and patients with COPD which identified the increased level of
ACE2 expression in resected lung tissue from patients with COPD and healthy lung function smokers
while entirely absent in healthy non-smoking individuals. As COPD patients showed significantly
higher levels of ACE2, suggesting that COPD further exaggerates ACE2 and potential SARS-CoV-2
adhesion site [24]. Another recent study demonstrated the dose-dependent upregulation of ACE2
in a subset of epithelial cells lining the respiratory tract which includes goblet cells, club cells, and
alveolar type 2 cells by cigarette smoke. This study also suggested that, smokers are more likely to
develop SARS-CoV-2 infection compared to non-smokers [118]. Moreover, a recent in vitro study has
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shown that SARS-CoV-2 can infect engineered human blood vessels organoids, and this interaction can
be inhibited by human recombinant soluble ACE2 (hrsACE2) antibody, thus highlighting a possible
venue to treat COVID-19 [119].

In addition to lung, kidney, heart, and intestine, this receptor is also expressed in endothelial
cells, glial cells, and neurons, which could increase the risk and progression of COVID-19 [120,121].
Thus the cerebral involvement of COVID-19 can result from the dissemination of the virus into the
systemic circulation from the infected organ, which has been reported in other SARS-CoV affected
patients [122]. Impaired BBB due to chronic smoking may facilitate the entry of the SARS-CoV-2 virus
into brain parenchyma. Later, this invading virus can interact with neuronal and glial ACE2 receptors
and start a viral proliferation cycle, which ultimately causes neuronal damage as previously observed
in SARS-CoV [122]. Therefore, it can be reasonably speculated that smoking may enhance the risk for
COVID-19 by upregulating the ACE2 [24] and promoting the loss of BBB integrity and viability (see
Figure 2).
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Figure 2. Illustrative panel summarizing the SARS-CoV-2 entry into the human body and the potential
impact of comorbid smoking and/or vaping on the harmful effects of the viral infection to the CNS.
Pre-existing conditions that impairs the viability and function of the BBB (such as those associated
with chronic smoking and/or vaping) may facilitate viral entry into the brain, thus increasing the risk
of onset and severity of CNS disorders. (ROS: Reactive Oxygen Species, TS: Tobacco Smoke, e-cig:
electronic cigarette, BBB: Blood Brain Barrier, WBC: White Blood Cell, CNS: Central Nervous System)

In addition to ACE2, another crucial pro-coagulant factor, von Willebrand factor (VWF), is
upregulated in COVID-19 patients [123,124]. On top of that, previous epidemiological studies have
shown that smoking increases the circulatory level of VWF. VWF is a glycoprotein and exclusively
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synthesized by endothelial cells and megakaryocytes. Functionally, VWF is responsible for carrying
factor VIII in blood circulation and also mediates initial platelet adhesion to the subendothelium through
glycoprotein Ib-IX complex after inflammation and injury [125]. In addition to VWF upregulation,
smoking has been recently shown to promote the downregulation of thrombomodulin [75,126].
Thrombomodulin acts as an anticoagulant factor by binding to thrombin and use its enzymatic
activities to degrade factor V, thus blocking the prothrombinase complex. The ultimate effect is a
significant alteration of the blood homeostasis with a significant propensity toward blood coagulation
and an increase in the risk of ischemic disorders like stroke [127,128]. Additionally, microthrombi were
found in the circulation of several organs in COVID-19 patients, which has been claimed to be generated
due to the dissemination of intravascular coagulation (DIC) [129–131]. Thus, it is highly likely that
these microthrombi can also reside inside the microvascular system of the CNS and ultimately results
in neurological complications. As smoking can increase the level of VWF and decrease the level of
thrombomodulin, there could be a correlation between smoking and stroke occurrence in COVID-19
patients. However, extensive well-designed and controlled animal experiments are required to confirm
this hypothesis.

Additionally, a recent study has suggested that smoking may promote cellular uptake of SARS
CoV-2 virus through α7nAChR signaling mechanism. As α7nAChR is present both in neuronal and
non-neuronal cells, therefore it can be said that, smoking may play a vital role in pathophysiology of
SARS-CoV-2 and may affect different organs of the body including brain [132].

6. Vaping (E-Cigarette), COVID-19, and Cerebrovascular-Neurological Diseases

At the present time, electronic cigarettes, or e-cigarettes, have become extremely popular among
youth on the pretense to be a safe alternative to tobacco smoke. It delivers nicotine by heating a vape
liquid containing nicotine, flavoring agents, and different solvents into an aerosol [133]. The aerosol
contains different harmful components including (but not limited) flavoring agents, humectants (such as
glycerin and propylene glycol), contaminants (such as heavy metals), and harmful solvent byproducts
(including formaldehyde and acrolein) in addition to tobacco specific nitrosamines [133,134]. All
these substances can harm the cerebrovascular systems and the BBB in a way not too dissimilar from
TS [133,134]. In fact, Kaisar et al. recently reported that chronic e-cigarette smoking is responsible
for disrupting the BBB integrity and promote vascular inflammation. Moreover, it may facilitate the
onset of stroke and worsen the condition of post-ischemic brain injury [75]. Another recent study
also reported that e-cigarette vaping may decrease neuronal glucose utilization, which could result in
increased risk for ischemic brain injury and stroke [135]. Recently, McAlinden et al. suggested that,
nicotine-based e-cigarettes or vaping may contribute to the upregulation of ACE2 which may also play
an important role in progression and outcome of COVID-19 [136].

7. Cannabis, COVID-19, and Cerebrovascular-Neurological Diseases

Cannabis, or marijuana, is the most widely abused recreational drug around the world, which is
associated with cerebrovascular and neurological diseases such as stroke, structural and functional
changes in the brain, cognitive and behavioral disorders [137]. Compared to TS and e-cigarette,
smoking cannabis can also generate ROS and ∆-9-tetrahydrocannabinol (THC), the main component
of cannabis which promotes OS as well as inflammation that may result in the onset of ischemic
stroke [138,139]. Other possible mechanisms behind cerebrovascular-neurological dysfunction related
to cannabis smoking include among others cerebral vasoconstriction, cerebral artery luminal stenosis,
cerebral auto-dysregulation, and angiopathy [140–143]. A recent report demonstrated that smoking
cannabis could deteriorate the condition of COVID-19 patients through airway inflammation [144].
Although no case has been reported on cerebrovascular dysfunction in COVID-19 patients and smoking
cannabis yet, cannabis could be a risk factor for developing neurological disorders in COVID-19
patients due to its detrimental effect on the cerebrovascular system.
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8. Conclusions

The COVID-19 pandemic has taken a tremendous hit on the individuals and family lives all
around the world within a short period. This has left health care providers and researchers unprepared
and with a plethora of questions to be answered. For instance, who are more vulnerable to this
infection? What are the risk factors associated with the severity of this infection? How to tackle the
severity and widespread of this kind of infection in the future?

Most importantly, what are the organs that could get affected by SARS-CoV-2 infection as we
need to take care of the current as well as recovered patients in the future. From the above-mentioned
case reports, it can be speculated that this virus can affect the CNS along with the lung, heart, and
gastrointestinal system. These case reports show the presence of neurological disorders in as high as
36.4% COVID-19 patients [52]. Yet, the mechanism of CNS invasion by COVID-19 is unknown. One of
the probable hypotheses is that it can reach the brain through the olfactory nerve system present in
the nasal cavity [145]. However, the presence of SARS-COV, a family member of Coronavirus, in the
CSF suggested an alternative mechanism of CNS invasion for this class of viruses [146]. Since the BBB
protects the brain parenchyma from viral and bacterial infection, damage to this biological barrier
could also lead to the accumulation of deadly viruses like SARS-CoV-2 in the CNS. Several studies,
including in our lab, have shown the detrimental effect of tobacco and e-cigarette smoking on BBB
integrity. Thus, it can be speculated that smoking could lead to the increased severity of SARS-CoV-2
infection by affecting the viability and integrity of the BBB while promoting the expression levels of
ACE2 (the responsible mediator of SARS-CoV-2 cell invasion and proliferation) in endothelial cells,
glia, and neurons. Furthermore, increased blood circulatory level of VWF and decrease levels of
thrombomodulin promoted by smoking and vaping can dysregulate the blood homeostasis promoting
blood coagulation and the formation of unwanted blood clot which severely increases the risk of stroke
and cardiovascular disorders. At this stage, it is clear that additional studies will be necessary to validate
these hypotheses, including further analyses of autopsy samples from smoking and non-smoking
COVID-19 patients or conducting in vivo studies. K18-hACE2 transgenic mouse developed by McCray
et al. for SARS-CoV studies along with tobacco smoke exposure rodent models could be useful available
animal models for studying pathogenesis of SARS-CoV-2 and evaluating the impact of smoking and
vaping on cerebrovascular and neurological dysfunction in COVID-19 patients [147,148].
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CNS Central nervous system
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DIC Dissemination of intravascular coagulation
e-cig Electronic cigarette
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IL-15 Interleukin-15
MERS Middle East Respiratory Syndrome
MMP-2 Matrix metalloproteinase-2
MMP-9 Matrix metalloproteinase-9
OS Oxidative stress
ROS Reactive oxygen species
SARS Severe acute respiratory syndrome-related coronavirus
SIRS Systemic inflammatory response syndrome
STAT-3 Signal Transducer and Activator of Transcription-3
TBI Traumatic brain injury
THC ∆-9-tetrahydrocannabinol
TNF-α Tumor necrosis factor-α
TJ Tight junction
TS Tobacco smoking
VWF Von Willebrand factor
WBC White blood cell
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