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Abstract

Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with
empirical data in a specific environmental context is a current challenge in computational biology. Recent work has
demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway
maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either
fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to
model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated
experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network
(obtained from literature or interactome databases) into a computable model that describes graded values of protein
activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein
activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important
purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing
capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release
phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing
curated literature to context-specific biochemical data. This process generates a computable model yielding successful
prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by
intuition alone.
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Introduction

Signaling networks regulate cell phenotypic responses to

stimuli present in the extracellular environment [1]. High

throughput ‘‘interactome’’ data provide critical information on

the composition of these networks [2,3,4], but understanding

their operation as signal processing systems is strongly advanced

by direct interface with dedicated experimental data representing

measured responses of biochemical species in the network

(proteins, mRNA, miRNA, etc.) to stimulation by environmental

cues in the presence or absence of perturbation [5,6,7,8].

Immediate early responses are dominated by protein post-

translational modifications (we focus here on phosphorylation),

assembly of multi-protein complexes, and changes in protein

stability and localization. Such responses are typically highly

context dependent, varying with cell type and biological

environment. A critical question for the field is how large scale

measurements of these responses can be combined with a signed,

directed protein signaling network (PSN) to better understand the

operation of complex biochemical systems [9].

PSNs are typically deduced by manual or automated annotation

of the literature (e.g. [10]) or directly from high-throughput

experimental data (e.g. [11,12,13]) using a variety of computational

techniques. PSNs are represented as node-edge graphs [14], and

although they provide high-level insight into the composition and

topology of regulatory networks [15,16,17,18,19,20], as currently

constituted PSNs are not readily ‘computable’ in that they cannot

be used to calculate activation states of the key proteins in a

pathway given a set of input cues, nor can quantitative

relationships between pathways be determined. This restricts the

utility of PSNs for explicit prediction of responses and makes it

difficult to compare network representations to functional

experimental data. A chief motivation of our current work is to

determine how information encoded in a PSN can be made

computable and compared to experimental data from a specific

cell type, resulting in a context-specific network model.
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Logic-based models (e.g. [21,22,23,24,25,26]; reviewed in

[27,28]) offer one means for converting interaction maps into

computable models. We have previously used Boolean logic (BL)

to convert a literature-derived signed, directed PSN (comprising

for this purpose a ‘prior knowledge network’ [PKN]) into a

computable model that could be compared to experimental data

consisting largely of the phospho-states of signal transduction

proteins in the presence of different ligands and drugs [29]. This

approach allowed us to determine which links in the PKN were

supported by the data, and generated models that were useful in

making predictions about network topology [29] and drug targets

[30]. However, Boolean logic has a significant limitation, since real

biochemical interactions rarely have simple on-off characteristics

assumed by Boolean logic. Thus, we require a means to encode

graded responses and typical sigmoidal biological relationships in a

logic-based framework.

One way to accomplish this is to apply traditional fuzzy logic

[FL], as demonstrated previously in modeling continuous input-

output relationships to encode a complex signaling network

[31,32]. In the realm of control theory, FL modeling is an

established technique for predicting the outputs of complex

industrial processes when the influences of inputs cannot be

characterized precisely [33,34,35]. A central feature of FL is that it

accounts for graded values of process states using a virtually

unlimited repertoire of relationships between model species or

components. However, for past application to biochemical

signaling networks, the flexibility of conventional FL modeling

necessitated that the network topology be fixed prior to either

manual [31] or computational [32] parameter fitting, rendering a

formal training of network topology to experimental data

infeasible.

In this paper we develop and employ a new approach to fuzzy

logic modeling of biological networks that we term ‘constrained

fuzzy logic’ [cFL] for descriptive purposes. A key feature of cFL

modeling is that it limits the repertoire of relationships between

model species, enabling the formal training of a PKN to

experimental data and resulting in a quantitative network model.

To maximize broad dissemination across the computational

biology community, we implement cFL in an exisiting software

tool CellNetOptimizer v2.0 (CellNOpt), significantly extended to

accommodate the further requirements of cFL while maintaining

the BL analytic approach (freely available at http://www.ebi.ac.

uk/saezrodriguez/software.html). We demonstrate the value of the

CellNOpt-cFL method by elucidating new information from a

recently published experimental dataset describing phospho-

protein signaling in HepG2 cells exposed to a set of inflammatory

cytokines [36]. We show that a cFL model can be trained against a

dataset and then validated by successful a priori prediction of test

data absent from the training data. We also establish the benefits

of cFL relative to BL in three key areas: (a) generation of new

biological understanding; (b) quantitative prediction of signaling

nodes; and (c) modeling quantitative relationships between

signaling and cytokine release nodes. Particular examples of

validated biological predictions include: (i) TGFa-induced partial

activation of the JNK pathway and (ii) IL6-induced partial

activation of multiple unexpected downstream species via the

MEK pathway. Our work demonstrates the technical feasibility of

cFL in modeling real biological data and generating new biological

insights concerning the operation of canonical signaling networks

in specific cellular contexts.

Results

Constraining fuzzy logic
Fuzzy logic is a highly flexible methodology to transform

linguistic observations into quantitative specification of how the

output of a gate depends on the values of the inputs [33,37,38,39].

For example, in the simplest, ‘Sugeno’ form of fuzzy logic, one

specifies the following: ‘membership functions’ designating a

variable number of discrete categories (‘‘low, medium, high’, etc.)

as well as what quantitative value of a particular input belongs either

wholly or partially to these categories; ‘rules’ designating the logical

relationships between the gate inputs and outputs; AND and OR

‘methods’ designating the mathematical execution of each logical

relationship; ‘weights’ designating the credence given any rule; and

‘defuzzification’ designating a scheme for determining a final output

value from the evaluation of multiple rules [40]. This flexibility is

important in industrial process control [41], which aims to use

uncertain and subjective linguistic terms to predict how a controller

should modulate a process variable to achieve the desired output.

However, our goal is to train models on quantitative biological

data that are inevitably incomplete in the sense that (i)

measurements are not obtained under all possible conditions and

(ii) available data are not sufficient to constrain both the topology

and quantitative parameters of the underlying networks. Accord-

ingly, we sought to develop a fuzzy logic system that minimizes the

number of parameters to avoid over-fitting and simplifies the logic

structure to facilitate model interpretability. Because we aim to

represent relationships among proteins in enzymatic cascades,

mathematical relationships should be biologically relevant. We

therefore use a simple Sugeno fuzzy logic gate with a defined form

(see Text S1) based on transfer functions (mathematical functions

describing the relationship between input and output node values)

that approximate the Hill functions of classical enzymology.

Our ‘constrained’ fuzzy logic (cFL) framework uses a simplified

fuzzy logic gate that is best described by the mathematical

representation in Figure 1. The value of an output node of a one-

input positive interaction is evaluated using a transfer function. In

this paper ‘input-output’ refers to the nodes of a specific cFL logic

gate, where ‘nodes’ are molecular species. We use the terms

‘model inputs’ and ‘model outputs’ to denote the overall

relationship between model inputs such as ligand stimulation of

cells and the collective output of the network (protein modifica-

tions or phenotypic states in our application). The transfer

function underlying cFL gates is a normalized Hill function with

two parameters: (1) the Hill coefficient, n, which determines the

Author Summary

Over the past few years, many methods have been
developed to construct large-scale networks from the
literature or databases of genetic and physical interactions.
With the advent of high-throughput biochemical methods,
it is also possible to measure the states and activities of
many proteins in these biochemical networks under
different conditions of cellular stimulation and perturba-
tion. Here we use constrained fuzzy logic to systematically
compare interaction networks to experimental data. This
systematic comparison elucidates interactions that were
theoretically possible but not actually operating in the
biological system of interest, as well as data that was not
described by interactions in the prior knowledge network,
pointing to a need to increase our knowledge in specific
parts of the network. Furthermore, the result of this
comparison is a trained, quantitative model that can be
used to make a priori quantitative predictions about how
the cellular protein network will respond in conditions not
initially tested.

Constrained Fuzzy Logic Network Analysis
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sharpness of the sigmoidal transition between high and low output

node values and (2) the sensitivity parameter, k, which determines

the midpoint of the function (corresponding to the EC50 value in a

dose-response curve, Figure 1a). A negative interaction is

represented similarly, except that the transfer function is

subtracted from one, effectively inverting it (Figure 1b). Varying

these parameters allows us to create a range of input-output

transfer functions including linear, sigmoidal and step-like

(Figure 1a). Moreover, this transfer function is biologically

relevant: protein-protein interactions and enzymatic reactions

can be described by Hill function formulations to a good

approximation [42,43,44].

Figure 1. Construction of gates with constrained fuzzy logic (cFL). When node C depends only on node A, a normalized Hill function is used
to calculate value of node C, ‘c’, given value of node A, ‘a’, where n is Hill coefficient and k is the sensitivity parameter specifying the EC50 for each
gate. Several representative normalized Hill functions are shown for activating (a) and inhibiting (b) cFL gates. When C has more than one input (A
and B, in this case), either an AND (c) or OR (d) gate must be used to model the interaction. In the case of the AND gate, the minimum possible value
of c calculated from the transfer functions is used as the output node value. One possible response surface for levels of C given different levels of A
and B with two transfer functions is demonstrated (c). For evaluation of an OR gate, the maximum value of c is used as the output node value, with
the corresponding response surface (d).
doi:10.1371/journal.pcbi.1001099.g001
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In some cases, use of a normalized function is too restrictive for

practical application. For example, if model inputs are purely binary

(values of either zero or one), the output of a normalized function

would also be zero or one, making it impossible for a cFL gate to

achieve intermediate states of activation. Accordingly, our cFL

method allows for alternative transfer functions. For example,

although the method is not limited to binary model inputs, the

ligand inputs of our current work are binary (either present or not). If

we used normalized transfer functions to relate these model inputs to

downstream outputs, all model species would also be either zero or

one. Thus, for these transfer functions, we used a constant multiplied

by the binary ligand input value (see Materials & Methods).

If more than one input node influences an output node, this

relationship is categorized as either an ‘‘AND’’ or ‘‘OR’’

interaction. An AND gate is used when both input nodes must

be active to activate the output node, whereas an OR gate is used

when either input node must be active. Mathematically, we

represent AND behavior by evaluating each input-output transfer

function and selecting the minimal possible output node value (i.e.,

applying the ‘‘min’’ operator, Figure 1c) whereas we select the

maximal value (‘‘max’’ operator; Figure 1d) to evaluate an OR

gate. Finally, if both AND and OR gates are used to relate input

nodes to an output node, our formalism evaluates all AND gates

prior to OR gates. This order of operations corresponds to the

disjunctive normal or sum of products form [45].

Use of cFL to understand experimental data in the
context of a prior knowledge network: CellNOpt-cFL

The process of training a cFL network (CellNOpt-cFL) has two

starting requirements. The first is a prior knowledge network

(‘PKN’; Figure 2, box A). A PKN depicts interactions among the

nodes as a signed, directed graph (such as a PSN) and can be

obtained directly from the literature. Alternatively, a large number

of commercial (e.g., Ingenuity Systems: www.ingenuity.com;

GeneGo: www.genego.com) or academic (e.g., Pathway Commons:

www.pathwaycommons.org, reviewed in [46]) pathway databases

as well as integrative tools (e.g. [47,48]) can be utilized to construct

a PKN. The second requirement is a dataset describing

experimental measurements characterizing node activities follow-

ing stimulation of and/or perturbations in upstream nodes (ligand

and inhibitor treatment in our example; Figure 2, box B).

CellNOpt-cFL is then used to systematically and quantitatively

compare the hypothesized PKN to the experimental dataset.

In practice, available experimental data is usually insufficient to

fully constrain both the parameters and topology of the cFL

models, and CellNOpt-cFL recovers many models that describe

the data equally well. Due to this typical absence of firm structural

and parametric identifiability [29,49,50], we examine families of

models that fit the data equally well rather than attempting to

identify a single global best fit. Specifically, we examine

interactions in the PKN that were either retained or consistently

removed by training. We also use individual models to predict

input-output characteristics. This treatment allows us to calculate

both an average prediction as well as a standard deviation, which

we show below can be useful for discrediting inaccurate

predictions.

Our method comprises three main stages (Figure 2): first,

structure processing converts a PKN into a cFL model; second,

model training trains the model to experimental data; and third,

model reduction and refinement simplifies trained models. To

illustrate CellNOpt-cFL, we examine a simple toy problem of

training a PKN of the phospho-protein signaling network response

to TGFa and TNFa (Figure 2a.i) to in silico data of activation of

several downstream kinases in response to these ligands in the

presence or absence of PI3K or MEK inhibition (Figure 2a.ii).

PKN processing
In the first step, we streamline the network to contain only

measured and perturbed nodes as well as any other nodes

necessary to preserve logical consistency between those that were

measured or perturbed ([29]; Figure 2, Step 1), resulting in a

compressed PKN (Figure 2 box C). In our example, many nodes that

were in the original PKN were neither measured nor perturbed

experimentally. Because these nodes could be removed without

causing logical inconsistencies, they were not explicitly included in

the compressed network (Figure 2b).

In the second step, we expand the network into the multiple

logical relationships (combinations of AND and OR gates) that

can relate output nodes to their input nodes (Figure 2, Step 2). For

example, our toy PKN was expanded to include all possible two-

input AND gates governing the response of nodes with more than

one possible input node (Figure 2c).

Model training
In the third step, we train the cFL models to the data (Figure 2,

Step 3). We start by limiting the possible parameter combinations

to a subset of discrete parameter values that specify seven allowed

transfer functions as well as the possibility that the input does not

affect the output node (i.e. the cFL gate is not present). A discrete

genetic algorithm determines transfer functions and a network

topology that fit the data well by minimizing the mean squared

error (MSE, defined in Materials & Methods) with respect to the

experimental data.

Due to the stochastic nature of genetic algorithms, multiple

optimization runs return models with slightly different topologies

and transfer function parameters that result in a range of MSEs.

Models with an MSE significantly higher than the best models are

simply eliminated from further consideration. Models with similar

MSEs but different topology and parameters result from the

insufficiency of the data to constrain the model such that each model

fits the data well albeit with slightly different features. We consider

each individual in this group as a viable model, and all are included

for subsequent analysis. Thus, after multiple independent optimi-

zation runs using the discrete genetic algorithm to train the

expanded PKN against the data, a family of models with transfer

functions chosen from a discrete number of possibilities is obtained.

For each of these models, we generate unprocessed models

(Figure 2, box F) by removing all cFL gates that are logically

redundant with other cFL gates (e.g., in the gate ‘‘(B AND C) OR

B activate D’’, the AND gate is logically redundant with the ‘‘B

activates D’’ gate). These gates are removed because they increase

model complexity by using multiple logic gates to encode a

relationship that can be specified by a simpler gate.

In our toy example, a family of twenty unprocessed models was

obtained by training the expanded map (Figure 2c) to in silico data

(Figure 2a.ii.) using the discrete genetic algorithm. The unprocessed

models from different optimization runs had similar topologies

with the exception of the gate describing the relationship of MEK

to its input nodes: TGFa and Akt (Figure 2d, brown and green

dashed gates). Sixteen of the unprocessed models described the

activation of MEK as depending only on TGFa (brown, dashed

gate) whereas four described activation using the AND NOT gate

(green, dashed gate).

Model reduction and refinement
In the model reduction and refinement stage (Steps 4–6), we

determine which gates can be removed altogether as well as AND

Constrained Fuzzy Logic Network Analysis
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gates that can be replaced with one-input cFL gates without

significantly affecting the MSE. We implemented the non-

exhaustive heuristic search procedure described below on each

unprocessed model and illustrate its application to our toy example

(Figure 3).

In the fourth step, we remove or replace all gates for which the

alteration does not increase the MSE of the unprocessed model over

some threshold, which we term the ‘reduction threshold’. We use a

range of reduction thresholds such that each unprocessed model

results in several models, one for each reduction threshold used.

Following this step, the resultant models are considered reduced

models.

In the fifth step, we fix the model topology to that obtained

during Step 4 and treat the transfer function parameters in each

reduced model (Figure 2, Step 5) as continuous parameters rather

than the discrete set of transfer function parameters required for

use of the discrete genetic algorithm. We use a Sequential

Quadratic Programming method (Text S1) to refine the model

parameters and further improve the fit of the models to the

experimental data. The resulting models are termed reduced-refined

models, which have a range of MSEs depending on the reduction

threshold used (Figure 3a).

In the sixth and final step, we specify a reduced-refined model to

represent each unprocessed model (Figure 2, Step 6). For each

unprocessed model, we choose the reduced-refined model that has the

fewest number of fitted transfer function parameters without

increasing the MSE above a defined ‘selection threshold.’ The

selection threshold is chosen by comparing the average number of

parameters in the family of models to the average MSE of the

models (Figure 3b). The net result is a set of reduced-refined-filtered

models (hereafter referred to as filtered models, Figure 2, Box G).

In our toy example, the filtered models have identical topology

and in no case does Akt inhibit MEK activation (Figure 2e). This

topology is, in fact, the topology from which the in silico data was

derived. The ability of cFL to fit intermediate values made it

possible to recover the correct model topology, whereas BL did not

identify the correct model, and a gate linking TGFa to PI3K was

consistently missing (Figure 2e, dashed arrow). Specifically, BL was

unable to return the correct topology because nodes downstream

of PI3K (Akt and JNK) were partially activated (0.32 and 0.19,

respectively) under conditions of TGFa stimulation, and a BL

model that included the TGFa to PI3K gate had a higher error

(MSE = 0.56) than a model that omitted the interaction (MSE =

0.07). In contrast, the improved ability of cFL to model graded

activities made it possible to recover the true network topology.

Adjusting the complexity of CellNOpt-cFL model training
While the expansion step (Figure 2, step 2) captures the many

possible combinations of AND and OR logic relationships

between nodes, it also increases the complexity of the network,

resulting in an increase in the size of the optimization problem.

Depending on the biological network of interest, some or most of

these AND gates might not be biologically relevant. For example,

it is unlikely that six receptors must be active in order to activate

another species, as would be the case for a six-input AND gate

(instead, it is more likely to be a OR gate). A profusion of AND

gates also makes the resultant networks difficult to interpret

because most AND gates are in only a few models whereas the

majority of models contain single-input and OR gates. Thus, the

AND gates can effectively appear as system ‘‘noise’’, interfering

with visual assessment as well as computational analysis of the

model topologies. Because of these potential complications, the

expansion step can be limited to include only AND gates with a

few inputs, depending on the complexity one would like to capture

with the trained network models.

In the current paper, we have limited the search in the discrete

genetic algorithm to a set of seven transfer functions. Use of more

or fewer transfer functions is possible, but we found that seven

transfer functions allowed us to represent a variety of input-output

relationships without unduly increasing problem complexity to the

point that the discrete genetic algorithm no longer consistently

returned models that fit the data well (see Materials & Methods).

Applying CellNOpt-cFL to protein signaling data from
HepG2 cells

To test the ability of cFL modeling to analyze real biological

data, we modeled a set of measurements describing the response of

the HepG2 hepatocellular carcinoma cell line to various pro-

survival, pro-death, or inflammatory cytokines in the presence or

absence of specific small molecule kinase inhibitors. This dataset

was used to construct a recent BL model [29]. Here we ran an

independent analysis using the cFL approach and compare the

results to the BL previously reported. The dataset comprises

Figure 2. CellNOpt–cFL workflow and application to toy model. Right side: Workflow (Boxes A through G and Steps 1–6). The methodology
requires a dataset that describes some species in the prior knowledge network (PKN; Box A). Based on the experimental design of the dataset (Box B),
the map is compressed to contain only nodes measured (blue nodes), perturbed (green stimulated nodes and orange inhibited nodes), or necessary
to maintain logical consistency between nodes (Step 1). The resultant compressed network (Box C) is then expanded to contain multiple possible
logic descriptions of gates connecting more than one input node to a single output node (Step 2). The resultant expanded network (Box D) is trained
to the data values (Box E) using several independent runs of a discrete genetic algorithm to minimize MSE (Step 3). Each independent run results in
an unprocessed cFL model represented with a grey triangle. This results in a family of unprocessed cFL models (Box F). The result of each independent
optimization run is now represented with a different colored triangle. Each individual unprocessed model is reduced with several reduction thresholds
(Step 4), resulting in several reduced models (different triangles shadings). The parameters of each reduced model are then refined (Step 5), resulting
in reduced-refined models (triangles outlined in black). Finally, one model is chosen to represent each original unprocessed model using a selection
threshold (Step 6), resulting in a family of filtered models (Box G). Left side: Application to a toy model (panels a to e). A PKN was hypothesized from the
Ingenuity Systems database (www.ingenuity.com) (a.i.) and compared to an in silico dataset generated by a simulation of a cFL model with known
topology and parameters (a.ii.). The PKN contains 15 molecular species represented as nodes that are believed to positively (arrows) or negatively
(blunt arrows) affect others species. These intermediate nodes summarize the possible paths between experimentally stimulated ligands (green) and
measured (blue) or inhibited (orange) species. The model was compressed (b) as described in [29] and then expanded (c) to contain all possible two-
input AND gates. The expanded network was trained to the in silico dataset with twenty independent runs of the discrete genetic algorithm. The
topologies of the resultant models (d) were identical except in the case of the gate describing activation of MEK, with sixteen models modeling this
interaction with an activating gate (brown, dashed gate) and four models using an AND-NOT gate (green, dashed gate). The TNFa R JNK cFL gate
was removed from all unprocessed models, reflecting that this interaction was inconsistent with the in silico data. The reduction process (Figure 3)
showed that the AND-NOT gate could be described more simply without significantly affecting the MSE, resulting in a family of filtered models (e). We
have labeled each gate with the sensitivity of the gate (defined in Materials & Methods), where sensitivity is scaled between zero and one and a
higher sensitivity indicates that the output node is more active at lower input node values. All maps and the graphs of cFL models were generated by
a CellNOpt routine using the graphviz visualization engine (www.graphviz.org) followed by manual annotation in Adobe Illustrator.
doi:10.1371/journal.pcbi.1001099.g002
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measurement of phosphorylation states as markers of activation of

15 intracellular proteins before and 30 minutes after stimulation

by one of six cytokines in the presence or absence of seven specific

small molecule kinase inhibitors (Figure 4a, Figure S1). The

measurements were normalized to continuous values between zero

and one using a routine implemented in the MATLAB toolbox

DataRail [51], as previously described ([29], see Text S1).

The HepG2 dataset was trained to several related PKNs which

are enumerated in Table 1 and Figure S2. These PKNs were

derived, with various extensions, from the Ingenuity Systems

database (www.ingenuity.com) with manual addition of literature

data about IRS1 that was obviously missing [29]. The first PKN,

termed PKN0 was identical the one used previously for BL

modeling [29]. In the course of our analysis, we found it necessary

to search the literature for interactions missing in PKN0 but

supported by the data, resulting in several PKNs (Table 1).

Furthermore, we limited the manner in which the PKNs were

expanded in two ways: (1) expansion into all possible two-input

AND gates or (2) expansion into a two-input AND gate only when

one input was inhibitory. In the second case, the expansion of

inhibitory gates was necessary because, in logic terms, an

inhibitory gate indicates that the output node is active when the

input node is not active. In biological networks, this is true if the

output node is constitutively active, which was not observed in the

normalized HepG2 data. Thus, in order to accurately model the

inhibitory effect, it had to occur in conjunction with activation by

some other input node, which is captured by an AND gate. If a

PKN was processed with both types of expansion, we include a

superscript to differentiate between the two cases – i.e., PKN1a for

the expansion of all gates and PKN1i for the expansion of only the

inhibitory case.

CellNOpt-cFL training of PKN0
PKN0 was expanded to include all possible two-input AND

gates and trained to the HepG2 dataset with CellNOpt-cFL

(Figure S2). The 90 unprocessed cFL models obtained after training

showed that PKN0 exhibited a poor fit to IL1a-induced protein

phosphorylation (Figure S3), a result we had also observed with BL

analysis [29], confirming that the poor fit of BL was due to errors

in the topology of PKN0 and not the inability of Boolean logic to

fit intermediate values.

An inspection of systematic model/data disparity (Figure S3)

immediately indicated that the models did not fit IL1a-induced

phosphorylation of IRS1, MEK and several species known to be

modulated by the MEK pathway. In PKN0, no paths between

IL1a and MEK or IRS1 were present. Based on careful reading of

the literature, we added two links to PKN0: a TRAF6 R MEK

link [52], and an ERK R IRS1 link [53]. These links had been

inferred by the BL framework [29] and were supported by further

literature evidence. To add a link that provided a path between

IL1a and MEK in the absence of BL inference results, for

simplicity one should first consider links from species that IL1a is

already known to activate. In this case, TRAF6 is the most

upstream species which experimental evidence suggests can

activate MEK [52]. In the case of IRS1 signal activation, the

specific phosphorylation site measured should be considered. Our

data included measurements of phospho-S636/639, and S636 is a

known phosphorylation site of ERK2 [53].

A novel finding from CellNOpt-cFL analysis of the HepG2 data

was that IL6 treatment led to phosphorylation of several

downstream proteins. Similarly to the links just considered,

PKN0 included no paths between IL6 stimulation and these

downstream proteins, resulting in an inability to fit this pattern of

phosphorylation. Importantly, however, BL analysis would not

have recognized this partial activation due to its inability to fit

intermediate values (as illustrated in our earlier toy example).

Because IL6 was observed to partially activate Akt in the data and

Figure 3. Reduction of trained cFL models. The unprocessed
models resulting from twenty independent runs of the discrete genetic
algorithm to train the expanded network to an in silico dataset were
reduced using several reductions thresholds and subsequently refined.
The behavior of three representative models is shown (a). To develop a
criterion for our model selection, we note that each individual model
exhibits a drastic increase in refined MSE when reduced at some
reduction threshold. For our toy model, the MSEs of some reduced-
refined models increase significantly (DMSE of 7.7x1023) at a reduction
threshold of greater than 561023 (a., magenta line), whereas the MSEs
of others only increase at a reduction threshold greater than 761023 (a.,
green line). This increase in MSE of 7.761023 is deemed significant
because it corresponds to the models no longer fitting the in silico data
of Akt and JNK under TGFa stimulation (the remaining data are still well
fit). For each unprocessed model, we refer to the reduction threshold
above which a significant increase in MSE is observed as the ‘filter point’
of the model. Each individual model has a filter point that is determined
based on the amount that the reduced-refined model’s MSE is allowed
to increase. We term this allowable increase in MSE the ‘selection
threshold’. For example, one model of our toy example (black line)
could be described as having a filter point of 161023 or 561023,
depending on the amount of increase in MSE allowed by the selection
threshold. To choose a selection threshold, we compare the average
increase in final MSE to the average decrease in the number of
parameters in the resultant filtered family of models (b) and note that, at
a selection threshold of 7.761023, the average MSE increases while at a
selection threshold of 561024, average number of parameters
decreases. Thus, a selection threshold of 561024 to 7.661023 results
in the models at the ‘‘filter points’’ noted in (a).
doi:10.1371/journal.pcbi.1001099.g003

Constrained Fuzzy Logic Network Analysis

PLoS Computational Biology | www.ploscompbiol.org 7 March 2011 | Volume 7 | Issue 3 | e1001099



known mechanisms exist for this activation [54], we added a

prospective IL6R R PI3K link to the PKN, thus providing an

extended PKN (PKN1) that we use below for subsequent

CellNOpt-cFL analysis.

CellNOpt-cFL training of PKN1
PKN1 was expanded to include all possible two-input AND

gates (PKN1a) for a total of 170 discrete parameters corresponding

to 105 logic gates. The resultant network was trained to the

HepG2 data. Reduction of the PKN1a–derived models indicated

that almost all AND gates could be removed or replaced by single-

input gates. Since the AND gates appeared to add unnecessary

complexity to the cFL models, we also expanded PKN1 to only

include AND gates if an input node was inhibitory (PKN1i;

Table 1), resulting in only 60 discrete parameters corresponding to

56 logic gates. We then compared the PKN1a- and PKN1i-derived

cFL models.

The comparison of these two PKN-derived model families

revealed a clear tradeoff between model fit and complexity. The

more complex PKN1a-derived models were able to fit the data

slightly better than the PKN1i-derived models (average unprocessed

model MSE of 0.03260.002 compared to 0.03560.002,

p,0.001). However, the more complex PKN1a-derived models

contained many more parameters than the PKN1i-derived models

both before and after optimization (170 compared to 60 discrete

parameters before optimization and an average of 72.864.9

Figure 4. Initial analysis of cFL models trained to HepG2 dataset. (a) Experimental design of a dataset describing the measured signaling
response of the HepG2 cell line to six ligand stimulations in the presence or absence of inhibition of seven species. CellNOpt-cFL was used to train the
PKNs (Figure S2) to this dataet. (b) The fraction of edges indicated were randomly removed from (solid line) or added to (dashed line) PKN1i to result
in at least 90 altered PKNs, which were subsequently trained to the HepG2 data. The average MSEs of the altered PKNs indicates that removal of
edges reduced the ability of the trained models to fit the data (solid line). Because CellNOpt-cFL does not add links to the model, this result is as
expected. The addition of edges to the PKN did not reduce the ability of the trained models to fit the data (dashed line) since edges that were
inconsistent with the data could be removed during the training process (Figure S6). (c) Results of ten-fold cross-validation in which the data was
randomly divided into ten subsets and the optimization procedure performed to obtain a family of at least 57 models from training data comprising
nine of the ten subsets; the remaining subset was considered a test set. We thus obtained ten families of trained models, one family from the use of
each subset as a test set. The fit of these families of models to their respective training and test sets was then plotted as a function of the selection
threshold. As expected, on average the ability of the trained models to fit the test sets was slightly worse than, but comparable to, the ability to fit the
training sets, suggesting that the models were predictive. The difference between MSEs of the test versus training sets did not change as a function
of the selection threshold, suggesting that the models were not overfit, even at very low selection thresholds. (d) A comparison of the average final
MSE with the average final number of parameters was used to determine a range of selection thresholds (161023 – 161022) where the family of
models has a slightly lower average number of parameters without greatly increasing the MSE.
doi:10.1371/journal.pcbi.1001099.g004
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compared to 66.663.9 continuous parameters after optimization

(p,0.001); Figure S4). The simpler PKN1i-derived models used

fewer initial and final parameters to arrive at a fit to the data only

9% worse than PKN1a-derived models. Since the 9% deviation is

in the range of error in the normalized data (error estimated to be

10% by comparing similar stimulation conditions), we focused

subsequent analysis on the simpler PKN1i-derived models. For

completeness, we include the results of PKN1a-derived models as

supplemental information (Figure S5).

Statistical significance of cFL models trained to PKN1i

To determine the statistical significance of our results, we

compared the family of 243 unprocessed models with unprocessed

models obtained from either training PKN1i to randomized data

or training a randomized PKN1i to the data (Table S1). Data was

randomized by pairwise exchange of all data values while network

topologies were randomized either by generation of an entirely

random topology or by random pairwise exchange of gate inputs,

gate outputs, or nodes’ inputs [29]. When compared to the results

of all types of randomization, models trained to the real data and

PKN1 were highly significant (P-value ,0.001, Table S1),

indicating that the family of trained cFL models fit the data better

than expected by random chance.

To probe the dependence of the CellNOpt-cFL training process

on the quality of the PKN used, we randomly added links to or

removed links from the PKN and trained the resultant PKN to the

data. As expected, the models derived from PKNs with links

randomly removed had a poorer fit to data than those derived

from the complete PKN1i (Figure 4b, solid line). Conversely, when

links were randomly added to the PKN, cFL-CellNOpt effectively

removed the links (Figure S6), resulting in models with similar

goodness of fit as models derived from PKN1i (Figure 4b, dashed

line). We thus conclude that an incomplete PKN degrades the

ability of CellNOpt-cFL to fit the data whereas models derived

from a PKN with extraneous links retain this ability.

As an initial investigation of model predictive capacity and a

check for over-fitting, we performed a ten-fold cross-validation by

randomly dividing the HepG2 data into ten subsets and, for each

subset, reserving one as a test set while training with the remaining

nine data subsets. The similar fits of the training and test data

provided evidence that the family of models obtained from this

procedure were predictive, and the difference in test and training

MSEs did not depend on selection threshold, a measure of model

size, suggesting that the models were not over-fit (Figure 4c).

Analysis of this cross-validation result combined with a plot of

average filtered model size and fit (MSE) as a function of selection

threshold (Figure 4d) suggested that a selection threshold in the

range 161023 – 161022 would result in a family of models that

contain slightly fewer number of parameters than lower thresholds

(Figure 4d, dashed line) while retaining the ability to fit the data

well (Figure 4d, solid line). We used a threshold of 5.061023 for

the remainder of our analysis unless otherwise noted.

Finally, we obtain a family of 243 filtered models for further

analysis (Figure 5). By taking note of which cFL gates are removed

during the CellNOpt-cFL training and reduction processes, one

can generate hypotheses regarding these gates. Table 2 summa-

rizes a set of biological hypotheses readily suggested by our cFL

model topologies.

Validated biological hypothesis 1: Crosstalk from TGFa to
the JNK pathway

Analysis of error between the family of cFL models and

experimental data (Figure S7) highlighted consistent error in

TGFa-induced partial activation of c-Jun. Both PKN0 and PKN1

allowed for TGFa-induced activation of c-Jun by the JNK

pathway via crosstalk from Ras or PI3K to MAP3K1. In the BL

methodology, this crosstalk was removed due to the inability to fit

partial activation, and no BL model allowed for activation of c-Jun

after TGFa stimulation. However, we found that a subset of cFL

models accounted for this c-Jun partial activation by including

crosstalk between Ras or PI3K and MAP3K1. These models also

partially activated JNK after TGFa stimulation, a feature that was

inconsistent with the training data (Figure S8). Thus, these models

predict that JNK was actually phosphorylated under conditions of

TGFa stimulation, but our measurements did not detect it.

To test this prediction directly, we undertook de novo

measurement of JNK and c-Jun phosphorylation following

stimulation with different doses of TGFa (Figure 6a). These new

data show that JNK does indeed become phosphorylated upon

stimulation of HepG2 cells with TGFa. Thus, the cFL models

containing crosstalk from Ras or PI3K to MAP3K1 were the

correct models. Combined with Table 2, this analysis highlighted

Table 1. Prior knowledge networks trained to HepG2 dataset.

PKN0 PKN1 PKN2 PKN3

Model ID PKN0 PKN1a PKN1i A B C D PKN3

Model Basis Ingenuity Database

ERK R IRS1 [53] X X X X X X X

TRAF6 R MEK [52] X X X X X X X

Assay R PI3K X X X X X

IL6R RPI3K [54] X X X X

IL6R R Ras [54] X X X

Protein Signals R Cytokine Release X

Gates expanded into all possible
2-input AND gates (Step 2)

All All Only Inhibitory Only Inhib. Only Inhib. Only Inhib. Only Inhib Only Inhib.

PKN0: Initial PKN shown to be insufficient for fitting HepG2 data.
PKN1: Extended PKN used to compare two expansion limitations; PKN1i was used for the majority of subsequent analysis.
PKN2: PKNs used to determine mechanism of IL6-induced protein phosphorylation.
PKN3: PKN further extended to model cytokine release.
doi:10.1371/journal.pcbi.1001099.t001
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Figure 5. Structure of family of cFL models resulting from training PKN1i to HepG2 dataset. Topologies of the family of filtered cFL
models trained to the HepG2 dataset. Unprocessed cFL models can be found in Figure S6 and fit of the filtered models to the data in Figure S7. Nodes
represent proteins that were either ligand stimulations (green), inhibited (orange), measured by a phospho-specific bead-based antibody assay (blue),
or could not be removed without introducing potential logical inconsistency (white). The grey/black intensity scale of the gates corresponds to the
proportion of individual models within the family that include that gate. Thus, links colored black were present in all models whereas links colored
grey were present in a fraction of the models. Where visually feasible, cFL gates are labeled with a numerical value that corresponds to a quantitative
sensitivity of the input-output relationship. Sensitivity is calculated as described in the Materials & Methods. The larger this value, the lower the level
of the input nodes’ activity required for generating significant output node activity (i.e. a gate with a high sensitivity indicates that the output node is
sensitive to a low value of its input node). The uncertainties in these values arise from the various best-fit EC50 for each individual model. The graph of
the cFL models was generated by a CellNOpt routine using the graphviz visualization engine (www.graphviz.org) followed by manual annotation in
Adobe Illustrator.
doi:10.1371/journal.pcbi.1001099.g005

Table 2. Biological hypotheses about signaling network operation suggested by gates removed during CellNOpt-cFL analysis.

Hypothesis Evidence in cFL Models Evidence in data

Akt R Ikk crosstalk is inconsistent
with the data.

Akt R Ikk gate is not present in unprocessed models
(Figure S6)

Phosphorylation of Akt and Ikb are not positively correlated
(correlation coefficient of 20.24).

Crosstalk from the growth and
survival pathways (MEK/ERK and
PI3K/Akt) to the inflammatory
pathways (Nfkb, JNK, and p38) is
not necessary to fit the data well.

Akt R Ikk gate is not present in unprocessed
models and frequencies of other relevant crosstalk
gates (Ras R MAP3K1 and PI3K R MAP3K1) are low
in unprocessed models and decrease in filtered models.

Crosstalk from the MEK/ERK pathway
is not necessary to describe Hsp27
phosphorylation.

MEK R Hsp27 gate is not present in unprocessed models. Phosphorylation of MEK and Hsp27 is not strongly
correlated (correlation coefficient of 0.43) but
phosphorylation of JNK and Hsp27 is strongly correlated
(correlation coefficient of 0.91)

HistH3 data is not well described
by PKN1.

Frequency of MSK1/2 R HistH3 gate is low in unprocessed
models and decreases in filtered models and models do
not fit HistH3 data well (Figure S7)

Phosphorylation of HistH3 and neither MEK nor p38 are
strongly correlated (correlation coefficients of 0.55 and 0.47,
respectively)

LPS does not activate the measured
signaling nodes.

Frequency of LPS R TRAF6 gate is low in unprocessed
models and decreases in filtered models.

The only protein that is consistently phosphorylated under
LPS stimulation is Akt

doi:10.1371/journal.pcbi.1001099.t002
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the partial activation of the JNK pathway after TGFa stimulation

as a singular instance of crosstalk from a pro-growth ligand to an

inflammatory pathway. In support of the significance of our

finding here, we note that TGFa-induced JNK activation has been

shown to be important for hepatic regeneration [55] and

stimulation of DNA synthesis [56] in primary rat hepatocytes.

Validated biological hypothesis 2: Mechanism of IL6-
induced protein phosphorylation

As previously mentioned, PKN0 was unable to fit IL6-induced

protein phosphorylation (a feature of the data unappreciated by

the BL methodology). Because Akt was observed to be partially

phosphorylated under these conditions and we found literature

evidence for a prospective IL6R R PI3K link, we added the link

to PKN1. However, the media-only condition also induced partial

phosphorylation of Akt. Discovery of the partial activation of Akt

in the media-only control led us to consider that perhaps the IL6-

induced phosphorylation of Akt was simply an assay artifact. Thus,

we inserted an Assay R PI3K link into the PKN. This ‘‘Assay’’

node represents cell stress arising from changing environmental

conditions during the assay (media change, etc.); it is postulated to

activate PI3K because only Akt is consistently active in the

untreated control. Having accounted for the potential that IL6-

induced partial phosphorylation of Akt was an artifact, we

undertook a series of computational experiments to determine

the mechanism of IL6-induced phosphorylation of downstream

proteins.

Upon exposure to IL6, SHP2 has been reported to bind to

gp130, a subunit of the IL6 receptor complex. SHP2 is then

phosphorylated in a JAK1-dependent manner. This phosphory-

lation can lead to PI3K/Akt pathway activation through

interactions with Gab-1 or IRS1 or Ras/MEK/ERK pathway

activation through Grb2 or Gab1 [54]. Thus, our computational

experiments were designed to infer which pathway (PI3K/Akt or

Ras/MEK/ERK) was mediating the IL6-induced protein phos-

phorylation. Four families of 150 filtered models were examined, all

of which were obtained after training a new PKN to the

normalized HepG2 dataset (Table 3, PKN2A – PKN2D). The

inability of PKN2A-derived cFL models with only the Assay R
PI3K link to fit well the IL6-induced protein phosphorylation data

suggested that some other link was necessary to fit this data. In our

trained networks, the IL6R R PI3K link was present in only a

fraction of the relevant trained models (PKN2B and PKN2C), but

the IL6R R Ras link was present in more than 90% of relevant

trained models (PKN2C and PKN2D). Additionally, models with

IL6R R Ras links were better able to fit the IL6-induced protein

phosphorylation. Consequently, our cFL results supported the

hypothesis that IL6R activates downstream proteins through the

Ras/Raf pathway. This hypothesis is supported by an independent

dataset [29], where the IL6-induced protein phosphorylation

response was more robust than in the training data (Figures S1 and

S9). Inhibition of MEK either alone or in combination with other

inhibitors resulted in ablation of downstream protein activation

whereas inhibition of PI3K did not (Figure 6b). Thus, we infer that

IL6-induced protein phosphorylation was not an assay artifact and

was instead mediated by the Ras/Raf pathway.

Predicting node-to-node transfer functions
CFL relates nodes in a network with transfer functions that

describe quantitative input-output relationships between protein

species represented as network nodes. To investigate the ability of

the cFL models to predict these transfer functions, we simulated

the PKN1i-derived, filtered cFL models to determine the activation

state of a specified node under many theoretical combinations of

Figure 6. Validation of cFL crosstalk predictions. (a) Analysis of
systematic error as well as the topologies of the family of trained cFL
models (Figure 5) indicated that c-Jun was partially activated after TGFa
stimulation. Models with crosstalk from Ras or PI3K to Map3K1
predicted that JNK was partially activated under these experimental
conditions even though it was not partially activated in the dataset. We
tested whether JNK was actually partially activated under these
conditions by stimulating HepG2 cells with TGFa and measuring levels
of phosphorylated JNK and c-Jun by a bead-based antibody assay after
30 minutes. Fold increase in measured phosphorylation over un-
stimulated control for c-Jun (black) and JNK (red) is shown. Where
available, biological replicates are indicated with filled circles. Solid lines
indicate the averages of the replicates. This experiment indicates that
JNK was partially phosphorylated under TGFa stimulation and the cFL
models with crosstalk from Ras or PI3K to MAP3K1 were correct. (b) CFL
analysis of the topologies and fit of the HepG2 training dataset to
several PKNs suggested that IL6 activated downstream nodes through
the Ras/MEK pathway (Table 3). To test this prediction, a validation
dataset was examined [36]. This validation dataset showed that the
activation of nodes other than STAT3 that responded robustly to IL6
stimulation was ablated by pretreatment with a small molecule MEK
inhibitor but not other inhibitors, demonstrating that the Ras/Raf/MEK
pathway mediates this crosstalk.
doi:10.1371/journal.pcbi.1001099.g006

Constrained Fuzzy Logic Network Analysis

PLoS Computational Biology | www.ploscompbiol.org 11 March 2011 | Volume 7 | Issue 3 | e1001099



its input nodes. We then plotted the model predictions of

quantitative input-output relationships. As one instance, Figure 7

shows the predicted average and standard deviation of the

quantitative values of CREB phosphorylation as a function of

the activation of upstream nodes, p38 and MEK1/2. The resulting

plots indicated that we were able to predict the activation response

of CREB to the entire range of p38 and MEK1/2 although

training set measurements were limited to a few values of these

nodes (Figure 7, black circles).

We tested this prediction using a set of data with combinations

of ligands and inhibitors not present in the training data ([29],

Figure S9). Roughly 20% of the test conditions were also present

in the training data set, allowing us to control for differences

between both data sets. When we compared this dataset to the

predicted transfer functions, we observed that most of the data fell

within one standard deviation of the predicted value (Figure 7,

green diamonds) with exception of overestimation under condi-

tions of TGFa stimulation. This overestimation is expected, as a

comparison of common conditions between the training and test

dataset indicated that the normalized experimental values of

CREB in the validation dataset were 3864% lower than that in

the training set.

This result demonstrates the ability of the trained cFL models to

predict the quantitative relationship between nodes in the network.

We also found that the family of cFL models was able to fit the

phospho-protein signaling response in the validation dataset well,

which we demonstrate as supplementary information (Figure S9).

Predictive capability of a cFL model family
We performed a series of nineteen cross-validation experiments

to further investigate the ability of our methodology to predict the

signaling response under conditions that were not represented in

the training data. For each experiment, we used training data from

which we had removed the phosphorylation data of a specific

protein signal, s, under a single ligand stimulation condition and all

inhibitor treatments. Nineteen signal/stimulation combinations

were chosen to be test sets according to two criteria: (1) s is at least

partially activated under the stimulation condition of interest and

(2) s is at least partially activated under some other stimulation

condition (Table S2). These criteria ensured that the remaining

training data contained some information regarding the activation

of s but it did not contain information regarding the activation of s

under the stimulation condition of interest. This procedure is a

more stringent test for predictive capability than a random cross-

validation procedure because training sets from which random

data is removed might retain other data with the same information

as the removed data (e.g., based on the network topology, Akt

phosphorylation in the absence of MEK inhibition is the same as

Akt phosphorylation with MEK inhibition, so removing only one

of these data points is not a stringent test of predictive capacity).

We examined the ability of models trained on reduced training

sets (n.45 for each case) to predict phosphorylation of the test

protein signals. Because we used each individual in the family of

models to predict the test signal, we could determine if the models

were constrained in their predictions by examining the coefficient

of variance (CV; standard deviation divided by mean) of the

prediction. If the CV was high, the models were not constrained to

a specific prediction (i.e. the prediction was imprecise), and the

average prediction should be discounted. Thus, for these cross-

validation results, we compared the precision (CV) and accuracy

(MSE) of the models’ predictions, where precise and accurate

predictions exhibited both a low CV and low MSE (Figure 8a).

We found that the families of models trained on these reduced

training sets were able to precisely predict phosphorylation of the

test protein signals in twelve of the nineteen cases (Figure 8b and c,

green field). In six of the test sets, the models did not agree,

although their average prediction was reasonably accurate

(Figure 8b and c, yellow field). We observed no test sets for which

the training sets agreed about an inaccurate prediction (Figure 8b,

orange field). In one case (prediction of Ikb signaling under TNFa
stimulation), the predicted phosphorylation state was highly

inaccurate (MSE .0.20). However, this prediction was also very

imprecise (CV .0.25), indicating that the average prediction was

unreliable (Figure 8b, blue field). Thus, by taking the precision of

the models’ predictions into account, we were able to discredit an

inaccurate prediction. This result underscores the importance of

considering consensus among the family of models rather than

examining the results of only one cFL model.

Using cFL models to relate phospho-protein signaling to
cell phenotypic response

The ability to quantitatively model protein signal activation with

cFL offers the prospect of predicting phenotypic response upon

exposure to stimuli and inhibitors. To investigate the ability of cFL

to model phenotypic data, we turned to data describing cytokine

release three hours after stimulation under the same conditions as

the phosphorylation data [36]. As a first approach, we linked the

output of our family of cFL models to a partial least squares

regression model [6] obtained by regressing normalized data of

release of five cytokines (IL1b, IL4, G-CSF, IFNc, and SDF1a) to

the normalized protein phosphorylation measurements (see Text

S1).

The cFL models linked to a PLSR model were able to model

phenotypic response with an accuracy of R2 = 0.79, near that of

the PLSR model (R2 = 0.81; see Figures S10). However, we found

that the correlation indicated by regression coefficients did not

lead to easily interpretable insights about phenotype because

proteins in the same pathway were also highly correlated with each

other.

To obtain a more interpretable model, we utilized a second

approach where we included nodes specifying cytokine release in

the PKN and linked them to a few protein signaling nodes. These

nodes were chosen based on principle component analysis: if

protein signals in a pathway clustered together in principle

component space, the signal most downstream in the pathway was

linked to cytokine release. Based on this analysis, the following

protein signaling nodes were linked to each cytokine release node:

MEK1/2, CREB, GSK3, c-Jun, Hsp27, Ikb, and STAT3

(Table 1, PKN3). We then trained a family of cFL models to

the normalized dataset comprised of cytokine release at three

hours and protein signaling at thirty minutes.

Table 3. Results of cFL training of various prior knowledge
networks for the investigation of IL6 crosstalk.

PKN
Assay to
PI3K?

IL6R to
PI3K?

IL6R to
Ras? MSEIL6

PKN1i - 100% - 0.04060.004

PKN2A 100% - - 0.05260.004

PKN2B 97% 56% - 0.04660.008

PKN2C 99% 40% 95% 0.02860.004

PKN2D 99% - 98% 0.02860.004

doi:10.1371/journal.pcbi.1001099.t003
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Figure 7. Transfer functions predicted by trained cFL models. The output value of the CREB node was predicted by computationally
simulating each individual model in the family of cFL models with 441 combinations of p38 and MEK1/2. Three-dimensional plots were generated in
MATLAB showing the average prediction (opaque surface) as well as the average prediction plus or minus the standard deviation of the predicted
value (semi-transparent surfaces). The training data (black circles) and validation data (green diamonds) are also plotted. The 3-D plots have been
rotated to highlight the influence of either (a) p38 or (b) MEK1/2. The predicted transfer functions agree with the validation data reasonably well
except for the overestimation of CREB activation for conditions with TGFa stimulation as one of the ligands.
doi:10.1371/journal.pcbi.1001099.g007
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The resultant models were able to fit the cytokine release data

reasonably well (R2 = 0.78 for the average predicted by a subset of

best-fitting models, Figure S11). Furthermore, the low frequency of

several gates in the resultant family of cFL models (Figure S12, Table

S3) indicated that, although the promoters of several of the modeled

cytokines contained binding sites of transcription factors are known to

be modulated by the MEK1/2, GSK3, and CREB pathways (Table

S4), activation of these nodes did not predict cytokine release. Thus,

we altered our previous PKN by removing the links between these

protein signaling and cytokine release nodes and trained it to the data.

The resultant family of cFL models (Figure 9) indicated that STAT3

activation explained cytokine release after IL6 stimulation and other

signals (Ikb, c-Jun, and Hsp27) explained cytokine release three hours

after TNFa or IL1a stimulation.

Discussion

In this paper, we have described cFL for formal training of a prior

knowledge network obtained from a protein signaling network map to

experimental data and demonstrated that the ability of cFL to fit

intermediate activities was crucial for understanding key features of a

biological network. We validated two important biological insights

concerning network operation in the HepG2 cells under inflamma-

tory cytokine and growth factor treatment: (i) identification of c-Jun as

a downstream locus of crosstalk between growth factor and

inflammatory cytokine treatments and (ii) the Ras/Raf/MEK

pathway as an avenue for activation of key downstream proteins

following exposure of cells to IL6. Both of these insights were

dependent on the ability of our cFL models to fit partial protein

activation and were thus not appreciated by BL modeling.

We note that the ability of cFL to model intermediate activity

data comes at the cost of increased model complexity. This

complexity calls into question the identifiability of a cFL model (i.e.

ability of the CellNOpt-cFL training process to train both

parameters and topology given limited data). To address this

concern, we considered families of models where each individual

model predicted signaling states and the resulting predictions had

an average and standard deviation. The standard deviation

provided a metric for discrediting predictions for which the

models were not constrained. With regard to topology, we

considered how often a gate was present in the trained cFL

models. This allowed us to determine hypothesized links (those

present in the PKN) that were either inconsistent with the data

(cFL gates removed from unprocessed models) or only marginally

important for fitting the data (cFL gates removed from filtered

models). Thus, the consideration of consensus and variation in an

ensemble of models allowed us to account for the non-

identifiability of any individual model.

We also illustrated the use of CellNOpt-cFL to (i) predict

quantitative phenotypic response data with the same quality as a

regression-based approach and (ii) increase the biological under-

standing of a phenotypic response by generating hypotheses

regarding protein signaling pathways that led to cytokine release.

Transcriptional and/or non-transcriptional mechanisms could

underlie the biological link between the signaling network

activation and cytokine release profiles. We investigated predicted

and known transcription factor binding sites in the promoters of

relevant genes (Table S4), finding that several transcription factors

hypothesized by CellNOpt-cFL to drive cytokine release (STAT3

and NFkB) could, in concert with IRF1, potentially lead to the

production and secretion of the observed cytokines. Our

subsequent test of this notion by qRT-PCR measurement,

however, yielded a negative result; expression of the HepG2-

secreted proteins were not significantly up-regulated by IL6

stimulation (data not shown). Thus, it appears more likely that

non-transcriptional mechanisms, such as exocytosis of secretory

vesicles [57,58] or proteolytic cleavage of pro-forms at the cell

plasma membrane [59,60], was responsible for the cytokine release

observations. The persistent development and application of

CellNOpt-cFL and complementary methods ([6,7,36] and Melas,

et al., submitted) should continue to deepen our understanding of

how signaling networks inform phenotypic responses.

We have shown that CellNOpt-cFL is useful for systematically

and quantitatively comparing experimental datasets to a PKN that

Figure 8. Accuracy vs. precision of cross-validation experiments. (a) Model predictions can be assessed based on both how well the family of
models agree on a prediction (precision) as well as their accuracy. If a prediction is imprecise (i.e. the models do not agree), the models are not
constrained to any single prediction. Thus, precision can be used to discredit predictions. Predictions can be both precise and accurate (green field),
imprecise but accurate on average (yellow field), imprecise and inaccurate (blue field), or precise but inaccurate (orange field). Predictions that are
precise and accurate (green field) are preferred. (b) The importance of considering the precision of a prediction amongst a family of models was
demonstrated by a cross-validation study in which a signal under a single ligand stimulation condition in the presence or absence of any inhibitor
was removed from the training data set. The mean coefficient of variance (CV) as a function of the error in the prediction (MSE) is plotted for all tests.
One prediction was highly inaccurate. However, it was also imprecise (blue field), whereas no predictions were precise and inaccurate (orange field),
demonstrating that taking the precision of a prediction into account can help to discredit inaccurate predictions. (c) The grey-boxed subset of (b)
highlights the test sets that were precisely and accurately predicted by the family of cFL models.
doi:10.1371/journal.pcbi.1001099.g008
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summarizes decades of dedicated biochemical studies. However,

our aim in this work is not to argue for exclusive use of cFL

modeling instead of BL or other modeling approaches, but rather

to delineate key advantages of cFL modeling for addressing data

with intermediate activity values. Training with CellNOpt-cFL is a

more difficult optimization problem that is not efficiently solved

for networks much larger than those in this work. The BL

optimization problem scales as 2w, where w is the number of gates

in the processed PKN, whereas the CellNOpt-cFL optimization

problem scales as (1+a)h, where a is the number of transfer

functions in the set chosen by the genetic algorithm ((1+a)$2;

(1+a) = 8 as formulated here) and h is the number of possible input-

output transfer functions in the network (h$w). Additionally, as

was the case with the reformulation of the BL optimization

problem with Integer Linear Programming [30], we acknowledge

that there may be more efficient, rigorous ways to solve the

optimization problem presented by CellNOpt-cFL.

When training a prior knowledge network to data, we often

encountered the need to add links to the prior knowledge network

in order to fully describe the data. In this study, this was done

manually simply by searching the literature. In the absence of such

information, one should automate the process of testing many

candidate links. A simple heuristic procedure such as the one we

employed for the BL methodology based on mismatches between

the best-fit models and data is one option [29]. Alternatively, more

complex reverse engineering techniques could be used. The

additional complexity of cFL modeling poses significant compli-

cations for the implementation of a simple heuristic or reverse

engineering technique, but future efforts should investigate best

practices for the automation of this process.

An additional prospective application of CellNOpt-cFL is to use

a trained cFL model to inform the construction of a model with a

different mathematical formalism. One intriguing possibility is that

the CellNOpt-cFL methodology might be used to determine

topologies to translate into a system of ordinary differential

equations (ODEs) with methods such as that presented in [61].

The precise relationship between cFL and ODE parameters is

unclear, but the ease of translating from one formalism to the

other might be facilitated through the use of continuous AND and

OR operators rather than the Min/Max operators utilized in this

study. As a first step, we have retrained one of our main results

(that presented in Figure 5) using the product of possible outputs to

evaluate AND gates and the sum of possible outputs to evaluate

OR gates. The models resulting from this procedure (Figure S13)

were similar to those obtained previously (Figures 4c, 5),

demonstrating the flexibility of this approach to accommodate

different AND and OR operators as well as transfer function

forms. Such flexibility should aid future attempts to translate

CellNOpt-cFL results into other mathematical formalisms.

Finally, the dataset used here was gathered for training a BL

model. This dataset was explicitly designed to maximally stimulate

or inhibit pathways through the application of saturating doses of

Figure 9. Trained cFL models linking ligand cues, phospho-protein signals, and cytokine release phenotypic responses. A dataset
describing release of five cytokines after three hours under conditions identical to those under which protein phosphorylation was measured was
combined with the phospho-protein dataset. PKN2D was further extended to include links from protein signals that occupied unique principle
component space (Text S1) to nodes of cytokine release after three hours. Training this network to the data indicated that the growth and survival
pathways were not needed to describe cytokine release. Thus, the PKN was revised to link only Stat3, NFkB, c-Jun, and Hsp27 to the cytokine release
nodes, and this PKN was trained to the experimental dataset of both cytokine release and protein phosphorylation. In contrast to the cFL models
describing only signaling activation, we found that the family of 141 cFL models fit the cytokine response data with a wider distribution of MSE. The
resultant sub-family of seven filtered cFL models that fit the data with a MSE less than the average plus one standard deviation of the family MSE is
shown. Nodes represent proteins that were either ligand stimulations (green), inhibited (orange), phosphorylation states measured (blue), cytokine
secretion measured (yellow) or could not be removed without introducing potential logical inconsistency (white). The grey/black intensity scale of
the gates corresponds to the proportion of individual models within the family that include that gate. The graph of the cFL models was generated by
a CellNOpt routine using the graphviz visualization engine (www.graphviz.org) followed by manual annotation in Adobe Illustrator.
doi:10.1371/journal.pcbi.1001099.g009
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ligand and drugs. However, cells in vivo face a much more subtle

and interesting situation in which ligands are present in

combination, often at very different levels. Because cFL can

model the graded activation of cell signaling pathways, we suspect

that CellNOpt-cFL should prove particularly useful with signaling

data collected under more physiological conditions. Our labora-

tories are currently pursuing experimental studies in this direction.

Materials and Methods

Optimization procedure
Model compression and expansion was performed with

CellNOpt as previously described [29]. The discrete genetic

algorithm in the CellNOpt BL variant was adapted so that discrete

variables specified a transfer function rather than the gate type.

Because our datasets (toy example and HepG2) only contained

saturating concentrations of ligand stimulation, the normalized

values of ligand model inputs were one or zero. In this instance,

using normalized Hill functions to model interactions downstream

of these zero or one inputs would result in all downstream nodes

also reaching levels of zero or one (a Boolean simulation). To

circumvent this issue, we represented interactions linking a ligand

input to a downstream component with linear transfer functions

with a y-intercept of zero and possible values of slope of 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, and 0.8 as well as the absence of the interaction.

All other interactions were modeled with the normalized Hill

function described in Figure 1 where the following transfer

functions were possible: gate not active, approximately linear

transfer function (n = 1.01, k = 68.5098 chosen for computation

efficiency and numerical stability), or sigmoidal transfer function

(n = 3) with an EC50 of 0.2, 0.3, 0.4, 0.5, 0.6, or 0.7 (Figure S14).

These transfer functions were chosen because the models resulting

from the training represented many different topologies while still

fitting the data well. We found that including a subset of three to

five of the aforementioned transfer functions would have also

accomplished these goals, but including ten transfer functions

resulted in a larger fraction of models that did not fit the data well.

This necessitated the addition of a step to choose a subset of well-

fitted models from the family of trained models, and this subset did

not significantly differ from the family of models obtained with

fewer possible transfer functions. Given that more transfer

functions allowed us to more accurately represent parameter

space, this result implied that the genetic algorithm was

converging to poorly-fit local minima because the search space

was too large. We therefore concluded that usage of seven transfer

functions balanced coverage of search space and ability to identify

well-fitting models.

Sensitivity of a cFL gate
Sensitivity is calculated as (1 – EC50) for cFL gates modeled with

normalized Hill functions and 0.5*slope for cFL gates modeled

with weighted linear transfer functions.

Calculation of MSE
Mean squared error was calculated with the following formula

MSE~
1

N

XNsig

i~1

XNstim

j~1

XNinhib

k~1

x
pred
i,j,k {xobs

i,j,k

� �2

where N is the total number of data points, Nsig is the number of

protein signals measured, Nstim is the number of cytokine or

growth factor stimulations, Ninhib is the number of inhibition

conditions used, and xpred
i,j,k and xobs

i,j,k are the predicted and

observed level of the ith protein signal under the jth stimulation and

kth inhibition condition, respectively. In some cases, only the MSE

of a subset of the data points is calculated for more specific error

analysis. In these instances, the previous formula holds, but signal

and/or stimulation conditions are constant and indicated with

subscripts (e.g. MSEIL6 is the MSE of all signal measurements

under all inhibition conditions and IL6 stimulation).

Measurement of protein phosphorylation and cytokine
release

Protein phosphorylation and cytokine release were measured as

described in [36]. Briefly, cells were incubated with small molecule

inhibitor before exposure to ligand. Luminex bead-based bioassays

were used to determine protein phosphorylation in cell lysate

collected immediately before and 30 minutes after ligand

exposure. Three hours after ligand exposure, supernatant was

collected and Luminex bead-based bioassay used to measure the

amount of cytokine that had been secreted.

Supporting Information

Figure S1 Experimental dataset describing HepG2 signaling

response. Each small rectangle represents phosphorylation of the

protein indicated on the left at zero and thirty minutes as

measured by Luminex bead-based bioassay. HepG2 cells were

exposed to the inhibitor indicated below the column and

stimulated with the ligand indicated above. Raw intensity (a)

and normalized (b) values are shown. Data was normalized as

previously described [29] using DataRail software [51]. Briefly,

data values below the background or above the saturation signal of

the Luminex instrument were not included in the training set (grey

fill). The absolute difference between the signal at the time of

stimulation and 30 minutes thereafter was divided by the signal at

the time stimulation and transformed using a nonlinear Hill

transformation. The resulting value was multiplied by a penalty for

low values calculated as the Langmuir-transformed ratio of the

signal value to its maximum value across all conditions. The

resulting value was the normalized value. Plots were generated by

the open-source MATLAB toolbox DataRail [51].

Found at: doi:10.1371/journal.pcbi.1001099.s001 (0.28 MB PDF)

Figure S2 Prior knowledge networks (PKNs). PKN0 derived from

Ingenuity and used in the BL methodology validation (a, map

without purple dashed arrows) was first processed to include two-

input AND gates (b) and then used with the CellNOpt-cFL

methodology to determine the cFL networks representing this

dataset. Results of this analysis led to extension of the PKN to PKN1

(a, purple dashed arrows) which was processed to include either two-

input AND gates (PKN1a, c) or only include AND gates when an

inhibitory interaction was being modeled (PKN1i, d). These

processed PKNs were then compared to the HepG2 dataset with

CellNOpt-cFL. All maps were generated with a CellNOpt routine

using the graphviz visualization engine (www.graphviz.org) followed

by manual annotation in Adobe Illustrator.

Found at: doi:10.1371/journal.pcbi.1001099.s002 (0.32 MB PDF)

Figure S3 Fit of PKN0 trained to data. PKN0 (Figure S2a) was

processed to include all two-input AND gates (Figure S2b) and

CellNOpt-cFL used to train 90 network models to the HepG2

dataset (unprocessed models are shown). The data is displayed as

described in Figure S1, with the exception that the average

simulation result is shown with a dashed blue line and the absolute

difference in measured and average simulated signal level is

indicated with a background color ranging from green (good fit) to

red (bad fit). Note that, under the IL1a and IL6 stimulation
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conditions, many signals are not fit well (as indicated by the red

and white coloring). Plots were generated by CellNOpt.

Found at: doi:10.1371/journal.pcbi.1001099.s003 (0.24 MB PDF)

Figure S4 Comparison of MSE and number of parameters of

PKN1a and PKN1i. The cumulative distribution functions of the

MSE and number of final parameters of unprocessed (a,b) and

filtered (c,d) models with or without expansion into all plausible

two-input AND gates are shown. For both the unprocessed and

filtered models, the error of the models expanded with all plausible

two-input AND gates is significantly less than those not fully

expanded (p = 4.3x10-32 from a Kolmogorov-Smirnov two-sided

test of the filtered models). However, both unprocessed and filtered

models expanded with all plausible two-input gates also contained

more parameters than those not fully expanded (p = 3.2610214

from a Kolmogorov-Smirnov two-sided test of the filtered models).

The skewing of the filtered models (d) is due to the heuristic

reduction procedure, which sometimes did not remove any

parameters from the models.

Found at: doi:10.1371/journal.pcbi.1001099.s004 (0.13 MB PDF)

Figure S5 Filtered cFL network models derived from training

PKN1 processed to include two-input AND gates (PKN1a) to

HepG2 dataset. The PKN1 (Figure S2a) was processed to include

all two-input AND gates (Figure S2c) and CellNOpt-cFL used to

train 191 network models to the HepG2 dataset. Reduction of

family of cFL models indicates that cFL AND gates can be

removed without greatly affecting the resulting refined model score

(a and b; b is a portion of the graph shown in a). The structures of

the family of cFL network models trained to the HepG2 dataset

are shown (c). Links colored black were present in all models

whereas links colored grey were present in a fraction of the models

(a darker grey indicates that the cFL gate was present in more

models). Filtered cFL network models are shown. Fit to

experimental data (d) is displayed as described in Figures S1 and

S3. Plots were generated by CellNOpt. Note that, when this

PKN1a is used to train the networks, most trained models include

the Ras R Map3k1 cFL gate. The inclusion of this link is in

contrast to the models obtained when two-input AND gates are

only included for inhibitory interactions (Figure 5, Figure S6),

where only a few models include this link. This difference is also

reflected in the fact that cFL network models processed to include

all two-input AND gates are better able to fit data describing c-Jun

activation under TGFa stimulation (d compared to Figures S7 and

S8). Graphs of cFL network models were generated a CellNOpt

routine using the graphviz visualization engine (www.graphviz.org)

followed by manual annotation in Adobe Illustrator.

Found at: doi:10.1371/journal.pcbi.1001099.s005 (0.27 MB PDF)

Figure S6 Unprocessed cFL network models derived from training

PKN1i to HepG2 dataset and investigation of influence of PKN on

trained models. a) Structures of the family of unprocessed cFL

network models obtained by training the PKN1i (Figure S2d) to

the HepG2 dataset. Links colored black were present in all models

whereas links colored grey were present in a fraction of the models

(a darker grey indicates that the cFL gate was present in more

models). These models were compared to the randomization

controls, both for the determination of a p-value of the models

(Table S1) as well as the investigation of the influence of the PKN

on the model training process (b,c). The graph of the cFL network

models was generated with a CellNOpt routine using the graphviz

visualization engine (www.graphviz.org) followed by manual

annotation in Adobe Illustrator. (b) We compared unprocessed

models derived from a PKN with edges randomly added to those

derived from the original PKN1i. After structure processing

(Figure 2 Steps 1–2), a model derived from a PKN with random

edges added might have a different number of species as well as

interactions than those derived from the original PKN. Thus, to

compare these models, we further compressed the networks to

include only interactions between the treated, measured, and

inhibited species. This treatment allowed us to directly compare

models with different intermediate species. When compared to the

original PKN1i, several edges were added which increased as a

function of edges added to the pre-processed PKN, as expected

(solid line). For the trained models, we compared edges present

frequently in the family of models trained to the original PKN1i

(i.e. those present in .25% of the models in a.) to those trained to

each randomly extended PKN (dashed line). The fraction of

different edges in the structures of the trained randomly extended

models to those trained to the original PKN1i increased slightly

with increasing number of edges added randomly. (c) Comparing

between the randomly extended PKNs and models derived from

them, connections between treated, measured, and inhibited

species that were in the randomly extended PKN but not the

original PKN were often but not always removed during the

training process. This is to be expected, as not all of the randomly

added edges would not be inconsistent with the data, and some

might allow the models to fit the data better than the original

PKN.

Found at: doi:10.1371/journal.pcbi.1001099.s006 (0.21 MB PDF)

Figure S7 Fit of cFL networks trained using the extended

PKN1i. The extended prior knowledge network (Figure S2a) was

processed to include all two-input AND gates only when an

inhibitory interaction was modeled (Figure S2d) and CellNOpt-

cFL used to train 243 network models to the HepG2 dataset. The

data is displayed as described in Figures S1 and S3. Plots were

generated by CellNOpt.

Found at: doi:10.1371/journal.pcbi.1001099.s007 (0.23 MB PDF)

Figure S8 Analysis of systematic error in c-Jun under TGFa
stimulation. Both the training and follow-up datasets indicate that

c-Jun but not JNK is phosphorylated upon TGFa stimulation. In

PKN1, the only path for c-Jun activation is by JNK activation.

The cFL networks account for this discrepancy in one of two ways:

(1) Partial activation of the JNK node (increasing error) and

amplification of this signal to further activate the c-Jun node

(decreasing error). CFL networks that followed this treatment

contained Ras R MAP3K1 or PI3K R MAP3K1 links (blue

‘‘With Crosstalk’’ case). (2) No activation of c-Jun under TGFa
stimulation, increasing error in only the c-Jun signaling node. CFL

networks that followed this treatment contained neither Ras R
MAP3K1 nor PI3K R MAP3K1 links (red ‘‘Without Crosstalk’’

case). No significant differences in ability to fit the other signals are

observed. Each of these treatments of c-Jun activation corresponds

to a different biological explanation. The first treatment

corresponds to the explanation validated by further experiments

(Figure 6a) that JNK was partially activated but our measurement

did not reflect this while the second treatment corresponds to the

explanation that an interaction we did not include in PKN1 was

causing c-Jun to be activated.

Found at: doi:10.1371/journal.pcbi.1001099.s008 (0.08 MB PDF)

Figure S9 Fit of cFL networks to follow up data. (a)

Experimental design of follow-up dataset describing the HepG2

response to combinations of ligand and inhibition treatments. (b)

Raw data was rescaled using common conditions as described in

Prill et al., in preparation. (see http://wiki.c2b2.columbia.edu/

dream/data/scripts/DREAM4/ for Challenge_3 data scaling

scripts). Briefly, a linear correlation the log-normalized signals

under common conditions of the training and validation data was

fit. Parameters of this line were used to scale the log-normalized
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validation data, which was then transformed back into the linear

range. The resulting rescaled values are shown. (c) CFL networks

were trained to the HepG2 dataset using PKN1i. The data is

displayed as described in Figures S1 and S3. The filtered models

were able to fit the validation data with an MSE of 0.07660.005.

Some of this error (,13%) was expected, as these conditions were

similar to the experimental conditions under which the main

discrepancies between the training data and models were observed

(phosphorylation of IRS1s and p70s6 under IL1a stimulation and

MEK inhibition). An additional ,25% of the error can be

accounted for by variation in the normalized data of the common

conditions of the two datasets. Plots were generated by CellNOpt

(fit to data) and the open-source MATLAB toolbox DataRail [51]

(raw data).

Found at: doi:10.1371/journal.pcbi.1001099.s009 (0.36 MB PDF)

Figure S10 Fit of PLSR model of phenotypic cytokine release

data. A three-component PLSR model fit normalized cytokine

release data well in most cases except the condition of TNFa
stimulation and Ikb inhibition. The data is displayed as described

in Figures S1 and S3. Plots were generated by CellNOpt.

Found at: doi:10.1371/journal.pcbi.1001099.s010 (0.13 MB PDF)

Figure S11 Fit of cFL models linking protein signals to

phenotypic cytokine release. Several signaling nodes (MEK1/2,

CREB, GSK3, c-Jun, Hsp27, I kb, and STAT3) were linked to

cytokine release nodes (IL1b, IL4, GCSF, IFN c, and SDF1 a) in an

extended PKN (Table 3, PKN2D) and trained to the HepG2

dataset of both protein signaling and cytokine release data. The fit of

the family of cFL models (a) was similar to other cFL models for the

signaling data but slightly worse than the PLSR model fit to cytokine

release data (Figure S10). A subset of these models had MSEs less

than one standard deviation of the mean MSE of the family of

models. Those models were deemed most reliable because they fit

the data very well. The fit of the average prediction of these models

is shown in (b). These average structure for this subset can be found

in Figure S12. The data is displayed as described in Figures S1 and

S3. Plots were generated by CellNOpt.

Found at: doi:10.1371/journal.pcbi.1001099.s011 (0.41 MB PDF)

Figure S12 Structure of filtered cFL models linking protein

signals to phenotypic cytokine release. Several signaling nodes

(MEK1/2, CREB, GSK3, c-Jun, Hsp27, Ikb, and STAT3) were

linked to cytokine release nodes (IL1b, IL4, G-CSF, IFNc and

SDF1a) in an extended prior knowledge network (Table 3,

PKN2D) and trained to the HepG2 dataset of both protein

signaling and cytokine release data. Structures of the subset of 31

filtered cFL network models with MSE less than one standard

deviation from the mean of the entire family is shown. Links

colored black were present in all models whereas links colored grey

were present in a fraction of the models (a darker grey indicates

that the cFL gate was present in more models). Graph of cFL

network models was generated by a CellNOpt routine using the

graphviz visualization engine (www.graphviz.org) followed by

manual annotation in Adobe Illustrator. Because few cFL network

models contained links between MEK1/2, CREB, and GSK3 to

cytokine release (Table S3), these links were removed from the

extended prior knowledge network and the resultant network

trained to the data. The average prediction of these models fit

similarly to those in Figure S11 and the models’ structures can be

found in Figure 9.

Found at: doi:10.1371/journal.pcbi.1001099.s012 (0.14 MB PDF)

Figure S13 Investigating the use of alternate mathematical

operators to evaluate AND and OR gates. The extended prior

knowledge network (Figure S2a) was processed to include all two-

input AND gates only when an inhibitory interaction was modeled

(Figure S2d, PKN1i) and CellNOpt-cFL used to train 149 network

models to the HepG2 dataset. However, the cFL formalism was

altered slightly so that an AND gate was evaluated using the

product operator and an OR operation evaluated with the sum

operator, where the scaling was maintained to between zero and

one by limiting the maximum value of any species to one. Note the

similarity of these results to those obtained with Min/Max

operators are used to evaluate AND and OR gates, respectively

(compare Figure 4c to part a of this figure, Figure 5 to part b, and

Figure 7 to part c). Reduction of the family of cFL models

indicates that a selection threshold of 0.005 is also appropriate in

this case. The structures of the family of cFL network models

trained to the HepG2 dataset are shown (b). Links colored black

were present in all models whereas links colored grey were present

in a fraction of the models (a darker grey indicates that the cFL

gate was present in more models). Filtered cFL network models are

shown. Fit to experimental data (c) is displayed as described in

Figures S1 and S3. Plots were generated by CellNOpt.

Found at: doi:10.1371/journal.pcbi.1001099.s013 (0.24 MB PDF)

Figure S14 Transfer functions included in the discrete genetic

algorithm optimization process. The discrete genetic algorithm

chose one of the transfer functions with the indicated parameter sets

during the optimization process to relate each input species’ value to

the output species’ value. (a) Transfer functions used to relate species

within the network. (b) Transfer functions used to relate ligand input

values to the species immediately downstream of them.

Found at: doi:10.1371/journal.pcbi.1001099.s014 (0.14 MB PDF)

Table S1 Assessing statistical significance of cFL models derived

from PKN1i. network randomization were performed. In ‘‘Swap

Heads’’ randomization, the input of each interaction was

randomly exchanged with the input of another interaction while

in ‘‘Swap Tails,’’ this process was executed for outputs of each

interaction. ‘‘Swap Inputs’’ randomization involved swapping the

inputs of all interactions with a randomly chosen output node with

the inputs of all interactions with another randomly chosen output

node. Finally, completely random networks were generated with

the same number of nodes and edges as the extended prior-

knowledge network, at least one edge per node, and no incoming

but at least one outgoing edge for each network input [29]. For the

random data case, P-Values were calculated for each model

trained to the real dataset using the Z-score of the model MSE

compared to the distribution of randomized data models’ MSEs.

For the random networks case, the distribution of MSEs was not

normal as assessed by the Jarque-Bera test at a$0.001. In this

case, P-value was calculated as the instance of random models with

score less than that of the trained model, of which no instance was

observed for any model.

Found at: doi:10.1371/journal.pcbi.1001099.s015 (0.07 MB PDF)

Table S2 Test sets for cross validation experiment. In each test

case, the measured signal under one stimulation condition with all

inhibitor conditions was used as the test data. The remaining data

was training data.

Found at: doi:10.1371/journal.pcbi.1001099.s016 (0.08 MB PDF)

Table S3 Frequency of interactions linking protein signals to

phenotypic cytokine release. Frequency of links in the subset of 31

cFL models (Figure S12) with MSEs lower than one standard

deviation of the family of models.

Found at: doi:10.1371/journal.pcbi.1001099.s017 (0.08 MB PDF)

Table S4 Experimentally verified and computationally predicted

transcription factor binding sites in relevant genes. Genes were

queried in BioBase TRANSFAC [62,63] for experimentally
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verified or computationally predicted transcription factor binding

sites and the March 2006 (NCBI36/hg18) assembly of UCSC

Genome Bioinformatics (http://genome.ucsc.edu/) for computa-

tionally predicted transcription factor binding sites. Those binding

sites listed below were included either because they were binding

sites of phosphorylated proteins measured or transcription factors

modulated by phosphorylated proteins measured.

Found at: doi:10.1371/journal.pcbi.1001099.s018 (0.09 MB PDF)

Text S1 Supplementary materials and methods.

Found at: doi:10.1371/journal.pcbi.1001099.s019 (0.09 MB PDF)
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