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Introduction
Immune responses, clinical presentations, and 
radiological patterns are quite heterogeneous 
among the multitude of people affected by the 
widespread COVID-19 syndrome.1 One of the 
worst scenarios is sustained by the so-called 
cytokine storm, historically labelled as secondary 
haemophagocytic lymphohistiocytosis (sHLH), 
which is a complication most commonly encoun-
tered in viral infections.2 Influenza viruses, Ebola 
virus, cytomegalovirus and, more recently, SARS-
CoV-2 have been implicated in triggering the 
cytokine storm.3 This cytokine storm may provide 
the possible mechanism on why certain sub- 
populations are more likely to die of COVID-19 
than others.

When the immune system mounts an effective 
adaptive response against SARS-CoV-2, the 
infection can be cleared and clinical manifesta-
tions are absent or prone to complete recovery. 

This successful result is mediated by an antiviral 
CD4+ T helper (Th) cell commitment, associ-
ated with activation of CD8+ cytotoxic T lym-
phocytes and with a B cell-driven response 
leading to the production of specific antibodies.4 
However, when the human organism fails to 
develop an adequate adaptive immune reaction, 
viral persistence and the consequent prolonga-
tion and amplification of innate immune mecha-
nisms, associated with dysfunctional adaptive 
responses, can cause a ‘hyperinflammatory’ state 
underlying the cytokine storm typical of acute 
respiratory distress syndrome (ARDS).5 In other 
words, the massive and continuous release of 
proinflammatory cytokines and chemokines is 
responsible for a severe, even deadly, attack 
against the lung. Besides the comorbidities 
 (respiratory, cardiovascular, metabolic,  oncologic, 
etc.) involved, the senescence of the immune 
 system plays a role in the worst  outcomes 
observed in the elderly.6,7 During childhood and 
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adolescence, there are instead very high numbers 
of naïve T lymphocytes, ready to differentiate 
and to engage a successful fight against eventual 
new pathogens.5 Indeed, children are currently 
paying a very low death toll to SARS-CoV-2 
infection.

On the basis of the above considerations, the pre-
sent review will focus on the pathogenic mecha-
nisms underpinning the lung damage induced by 
the cytokine storm triggered by SARS-CoV-2, as 
well as on potential therapies targeting such a very 
severe condition.

Pathobiology of SARS-CoV-2-induced 
cytokine storm

Mechanisms of viral infection
SARS-CoV-2 is an enveloped, positive-sense 
and single-stranded RNA β-coronavirus, similar 
to coronaviruses responsible for Severe Acute 
Respiratory Syndrome (SARS) and Middle East 
Respiratory Syndrome (MERS).8,9 Its nucle-
ocapsid consists of genomic RNA and a 
 phosphorylated N protein, which is embedded 
within phospholipid bilayers and surfaced by 
two spike proteins.10 The latter include the spike 
glycoprotein trimmer (S) and the hemagglutinin- 
esterase (NE), among which the type III trans-
membrane glycoprotein M and the envelope E 
protein are interposed.10 The S glycoprotein 
binds to the cell membrane receptor angioten-
sin-converting enzyme 2 (ACE2), expressed 
within the lower respiratory tract by type 2 alve-
olar epithelial cells.11,12 This key function of S 
glycoprotein is primed by TMPRSS2, a human 
type 2 transmembrane serine protease, which 
thus facilitates virus entry into host cells.11 The 
S glycoprotein comprises a S1 subunit mediat-
ing the cellular tropism of SARS-CoV-2, and a 
S2 subunit that is responsible for virus-cell 
membrane fusion.13 This fusion is followed by 
penetration of viral genomic RNA into the cyto-
plasm. Once inside target cells, single-stranded 
viral RNA is recognised by the intracellular 
Toll-like receptor 7 (TLR7) located in 
endosomes.14 As a consequence of this infec-
tious process, SARS-CoV-2 RNA drives the 
translation and assembly of viral proteins inside 
the endoplasmic reticulum and Golgi appara-
tus. The newly formed vesicles, which contain 
viral particles, fuse with cell membrane thus 
releasing the virus.

Lymphopenia and lymphocytes exhaustion: a 
consequence of impaired adaptive immunity
Tissue destruction spreads throughout SARS-
CoV-2-infected cells, which trigger innate 
immune responses mediated mostly by mac-
rophages. Indeed, tight intercellular communica-
tions occur between ACE2-expressing lung 
epithelial cells and macrophages.15 Within the 
context of class I major histocompatibility com-
plex (MHC-I), macrophages present viral anti-
gens to T lymphocytes, thereby leading to T cell 
subset commitment and activation.16 The subse-
quent Th1-featured adaptive immune response 
should contribute to clear viral infection via the 
release of antiviral cytokines such as type I inter-
ferons (IFNs). However, it has been previously 
reported that severe infections caused by SARS 
coronavirus may be associated with low levels of 
IFN production.17 Therefore, this pathobiologic 
scenario could be characterised by polarisation 
towards an aberrant T cell lineage and a dysregu-
lated cytokine secretory pattern.

Indeed, it has been shown recently that SARS-
CoV-2 infection can prime CD4+ T lymphocytes 
to differentiate into pathogenic Th1 cells, secret-
ing high amounts of interleukin-6 (IL-6) and 
granulocyte macrophage-colony stimulating fac-
tor (GM-CSF) (Figure 1).18 Such a cytokine 
milieu promotes activation of CD14+ CD16+ 
monocytes, which in turn release IL-6 and may 
migrate from blood to lung, thus possibly 
 becoming alveolar macrophages or dendritic cells 
(Figure 1).18 In addition, severely ill COVID-19 
patients develop dysfunctional immunopheno-
types of CD4+ and CD8+ T lymphocytes, charac-
terised by a high co-expression of surface markers 
such as PD-1 (programmed cell death protein-1) 
and Tim-3 (T-cell immunoglobulin and mucin-
domain containing-3), which predisposes to a 
rapid T cell exhaustion during viral infections.19–22 
In fact, in patients with severe disease, innate 
immune mechanisms can fail to induce an effective 
virus-targeted cytotoxic response, normally imple-
mented by activated CD8+ cells.23 Furthermore, 
the adaptive immune response induced by SARS-
CoV-2 might be also shaped as a predominant 
Th17 profile.24

Hypercytokinemia in COVID-19
Cross-talking innate and adaptive immune path-
ways lead lung epithelial cells, activated monocytes/
macrophages and T lymphocytes to massively 
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release a broad array of proinflammatory cytokines 
and chemokines (cytokine storm), including 
interleukins-1β (IL-1β), 2 (IL-2), 6 (IL-6), 7 (IL-7), 
8 (IL-8), 17 (IL-17), 18 (IL-18), 33 (IL-33), 
GM-CSF, interferon-γ-inducible protein 10 (IP-10), 
monocyte chemoattractant protein-1 (MCP-1), 
macrophage inflammatory protein-1α (MIP-1α), 
tumour necrosis factor-α (TNF-α) and transform-
ing growth factor-β (TGF-β) (Figure 1).1,16

IL-6 plays a central role in the COVID-19 
cytokine storm
One of the most important cytokines produced as a 
consequence of SARS-CoV-2-induced TLR-7 sig-
nalling is IL-6, a pleiotropic proinflammatory 
mediator that promotes the proliferation of myeloid 

progenitor cells and the growth and activation of 
leukocytes, as well as induces pyrexia and the syn-
thesis of acute phase proteins such as C reactive 
protein (CRP) (Figure 2).25 IL-6 plays a central 
role in immune responses by stimulating the dif-
ferentiation of T follicular helper cells (Tfh) and 
contributing, together with TGF-β, to develop-
ment of Th17 cells (Figure 2).5,24 Through activa-
tion of the SOCS-3 (suppressor of cytokine 
signalling-3) pathway, IL-6 can also suppress phos-
phorylation of signal transducer and activator of 
transcription-4 (STAT-4), thus impairing the 
activity of CD8+ cytotoxic and natural killer T 
cells.5,25 Furthermore, via up-regulation of IL-4 
and down-regulation of IFN-γ, IL-6 inhibits antivi-
ral Th1 cell commitment and favours Th2 cell dif-
ferentiation.5 Elevated levels of IL-6 are associated 

Figure 1. Hypothetical mechanisms underlying the cytokine storm induced by SARS-CoV-2 in infected lungs. 
SARS-CoV-2 enters target cells (e.g. alveolar epithelial cells) via interaction with the ACE2 receptor, thus 
triggering a complex immune response characterised by activation of pathogenic Th1 cells, CD14+ CD16+ 
monocytes, alveolar macrophages and Th17 lymphocytes. These cells release high amounts of cytokines and 
chemokines, responsible for the cytokine storm sustaining a ‘hyperinflammatory’ environment featured by 
lung infiltration with neutrophils and macrophages. In critically ill COVID-19 patients with ARDS, the  
Th1-driven immune adaptive response leading to viral clearance appears to be defective (dashed lines).
ACE2, angiotensin-converting enzyme 2; APC, antigen presenting cells; ARDS, acute respiratory distress syndrome; 
COVID-19; coronavirus disease 2019; GM-CSF, granulocyte macrophage-colony stimulating factor; IFN, interferon;  
IL, interleukin; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; Th, T helper.
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with severe lung injury.26 IL-6 can suppress the 
functions of T lymphocytes, dendritic cells and 
macrophages aimed to eliminate coronaviruses, 
thereby dampening the ability of the immune sys-
tem to clear such infections.27 Therefore, IL-6 
overproduction can probably be induced by some 
viruses such as SARS-CoV-2, with the aim of 
escaping immune surveillance.

Role of other cytokines in COVID-19 cytokine 
storm
Active IL-1β and IL-18 originate from their inac-
tive precursors via a cleavage catalysed by cas-
pase-1, a proteolytic enzyme operating within the 
context of the multiprotein intracellular inflam-
masome complex,28 highly susceptible to activa-
tion induced by viral molecules. IL-1β and 
TNF-α, mostly generated by activated mac-
rophages, are present in high concentrations in 
bronchoalveolar lavage fluid (BALF) from 
patients with ARDS and stimulate neutrophil 
functions.29–31 TNF-α also causes the apoptotic 
death of lung epithelial and endothelial cells.32

High IL-8 BALF concentrations have been also 
detected in subjects with ARDS.31 IL-8 is a power-
ful chemoattractant and activator of neutrophils, 
whose apoptosis is inhibited by this chemokine. 
Thus, upon release from monocytes/macrophages 
and alveolar epithelial cells, IL-8 plays a key role in 
stimulating neutrophil survival and recruitment to 
the lungs.31 IL-8 synthesis is effectively stimulated 
by IL-17A and IL-17F secreted by IL-6-dependent 
Th17 cells, which are likely involved in triggering 
the cytokine storm associated with lung neutro-
philic infiltration.24 Indeed, high numbers of Th17 
lymphocytes can be found in peripheral blood of 
patients with severe SARS-CoV-2 infection.33

With regard to inflammatory cell influx into 
SARS-CoV-2-infected lungs, a key pathologic 
function is also exerted by GM-CSF, which medi-
ates relevant intercellular communications 
between pathogenic Th1 cells and CD14+ 
CD16+ monocytes (Figure 1).18 High numbers of 
CD14+ CD16+ monocytes are detectable in 
COVID-19 patients with severe involvement of 
lungs, where these cells actively participate in 

Figure 2. Pleiotropic effects of IL-6, which exerts its biological actions on several cells, tissues and organs.
IL-6, interleukin-6; Th, T helper cells; Tfh, T follicular helper cells; Treg, regulatory T cells.
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induction and amplification of tissue infiltration 
by macrophages.18

Another proinflammatory mediator potentially 
involved in the cytokine/chemokine storm charac-
terising severe SARS-CoV-2 infection is the 
chemokine IP-10. In fact, it has been previously 
shown that IP-10 is up-regulated in bronchiolar 
and alveolar epithelial cells, as well as in T cells 
and monocytes/macrophages infiltrating the lungs 
of subjects with SARS.30 IP-10 exerts a strong 
chemotactic action on T lymphocytes, monocytes 
and natural killer cells.30 Moreover, high blood lev-
els of IP-10 were detected in patients died of 
SARS.34 It is thus very likely that IP-10 signifi-
cantly contributes to the recruitment of mono-
cytes/macrophages into the lungs of SARS patients. 
Virus-induced production of IP-10 could also be 
responsible for a fast mobilisation, followed by a 
subsequent apoptosis of T cells30; this mechanism 
might be implicated in the impairment of T lym-
phocyte response against SARS-CoV-2.

Consequences of cytokine storm
Taken together, the above considerations suggest 
that, in critically ill COVID-19 patients, cytokine 
storm and cytokine dysregulation lead to remark-
able pathological consequences. Indeed, the 
cytokine storm elicits immunological changes 
that can potentially weaken the immune response 
aimed to clear SARS-CoV-2 infection. T lym-
phocyte-dependent protective responses against 
SARS-CoV-2, mediated by both CD4+ and 
CD8+ T cells, may potentially fail because of the 
overproduction of IL-6 and TNF-α. In fact, these 
cytokines can inhibit T cell proliferation and acti-
vation, thereby contributing to the development 
of lymphopenia in severely injured SARS-CoV-2 
infected patients.16,18 Consistent with such a 
speculation, it has been reported that high levels 
of both IL-6 and TNF-α coexist with relatively 
low counts of CD4+ and CD8+ T cells.21 It has 
been also hypothesised that a suppression of func-
tionally exhausted Th1 lymphocytes might be 
concomitant with an immunological shift towards 
Th2-driven responses.1,16 All the above immuno-
logical changes likely occur more often in the 
elderly, because of a negative impact of aging on 
the protective efficiency afforded by the adaptive 
immune network against new viral infections.6

Cytokine/chemokine-mediated injury of lung 
endothelial and epithelial cells may impair the 

integrity of blood/air barrier, thereby promoting 
vascular permeability as well as alveolar oedema, 
infiltration by inflammatory cells (i.e. neutrophils 
and macrophages) and hypoxia.32 In addition, the 
presence within the cytokine storm context of 
fibrogenic factors such as TGF-β could favour 
tissue remodelling and lung fibrosis,30 thus fur-
ther compromising gas exchange.

Diagnosis of cytokine storm
In clinical setting, there is an urgent need to 
detect the laboratory parameters which can be 
useful to diagnose cytokine storm. A recent meta-
analysis of 21 studies globally including 3377 
patients and 33 laboratory biomarkers suggests 
that elevated serum levels of IL-6 and ferritin, 
paralleled by high numbers of white blood cells 
and associated with low lymphocyte and platelet 
counts, could provide a valuable diagnostic plat-
form for critical COVID-19 illness.35 Such data 
are partially consistent with those of a very recent 
explorative study carried out on 127 hospitalised 
COVID-19 patients, which showed that, when 
compared with the group of less severe subjects, 
more severe patients were characterised by high 
blood levels of IL-6, fibrinogen, sialic acid, CRP 
and neutrophils.36 In particular, neutrophil-to-
lymphocyte ratio (NLR) resulted to be signifi-
cantly higher in severely ill patients,36 thus 
suggesting that the decreased lymphocyte count 
might be indicative of the existing impairment of 
the immune system.

Therapeutic implications for SARS-CoV-2-
induced cytokine storm
Several drugs, currently approved for treatment of 
various diseases and acting on different molecular 
targets, are potentially useful to lessen the strength 
of the cytokine storm triggered by SARS-CoV-2.37 
However, their utilisation in COVID-19 patients 
is mostly empirical, because of lack of published 
controlled trials showing a reliable profile of effi-
cacy and safety. Such drugs include IL-6 receptor 
antagonists, IL-1 receptor antagonists, JAK/
STAT (Janus kinases/signal transducers and acti-
vators of transcription) inhibitors, corticosteroids, 
hydroxychloroquine and azithromycin.

IL-6 receptor antagonists
An effective inhibitor of IL-6 pathogenic action 
within the context of SARS-CoV-2-induced 
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cytokine storm appears to be tocilizumab, a 
recombinant humanised monoclonal antibody 
targeting the IL-6 receptor, currently utilised for 
treatment of rheumatoid arthritis.38,39 A retro-
spective Chinese study, performed in 21 severely 
ill COVID-19 patients, showed that tocilizumab 
safely lowered fever and CRP, as well as improv-
ing hypoxemia and computed tomography (CT) 
scan lung lesions.40 On the basis of these positive 
results, a randomised controlled trial has been 
approved in China with the aim of testing tocili-
zumab in subjects with elevated IL-6 levels and 
interstitial pneumonia (ChiCTR2000029765).3 
Tocilizumab is also undergoing clinical investiga-
tion in Italy (Trial TOCIVID-19 – NCT04317092). 
Current Chinese and Italian guidelines recom-
mend the use of tocilizumab for treatment of 
COVID-19 infection.16 In particular, Italian 
guidelines suggest that tocilizumab should be uti-
lised in patients with interstitial pneumonia and 
severe respiratory failure, characterised by high 
blood levels of IL-6 or CRP/D-dimer/fibrinogen/
ferritin.16 A further phase III clinical trial has been 
approved by the United States Food and Drug 
Administration (FDA) to evaluate tocilizumab in 
hospitalised COVID-19 patients suffering from 
severe pneumonia [ClinicalTrials.gov identifier: 
NCT04320615]. However, the use of tocilizumab 
raises some concerns. Indeed, it is possible that 
the high viral load that drives the cytokine storm 
would be unsuppressed by the use of tocilizumab. 
Furthermore, although tocilizumab seems to be 
usually quite safe and well tolerated, it has been 
reported that the infusion of this drug can occa-
sionally be associated with the occurrence of liver 
damage, thrombocytopenia, leukopenia, serious 
infections, gastrointestinal perforations, hyperten-
sion, skin reactions and anaphylaxis.41 Another 
IL-6 receptor antagonist is sarilumab, already 
licensed for treatment of rheumatoid arthritis and 
currently undergoing a phase II/III clinical trial 
enrolling severely ill hospitalised COVID-19 patients 
[ClinicalTrials.gov identifier: NCT04315298].42

IL-1 receptor antagonist
Anakinra is a recombinant antagonist of human 
IL-1 receptor that appears to be capable of 
improving the survival of septic patients with 
macrophage activation syndrome (MAS).43 In 
particular, in 43 septic patients with MAS and 
concomitant disseminated intravascular coagula-
tion, hepatobiliary dysfunction, cytopenias and 

hyperferritinemia, when compared with placebo, 
anakinra treatment significantly improved the 
28-day survival rate (anakinra: 65.4%; placebo: 
35.3%).43

JAK/STAT inhibitors
Inhibitors of JAK/STAT (signal transducers and 
activators of transcription) signalling pathways 
such as baricitinib, a drug that is currently utilised 
to treat rheumatoid arthritis, can be potentially 
useful for treatment of cytokine storm. Indeed, by 
targeting the JAK/STAT signal transduction sys-
tem, baricitinib interferes with the functions of 
adaptor-associated protein kinase 1 (AKK1) and 
cyclin G-associated kinase (GAK), which are 
implicated in viral endocytosis.44 Fedratinib is a 
specific JAK2 inhibitor able to reduce IL-17 
expression, as well as to repress GM-CSF biologi-
cal actions.24 Therefore, this drug could contrib-
ute to attenuate the cytokine storm associated 
with severe SARS-CoV-2 infection. Another JAK 
inhibitor is ruxolitinib, a drug that is currently 
utilised for treatment of myelofibrosis. Ruxolitinib 
has been shown to induce relevant clinical bene-
fits in some COVID-19 patients treated in 
Southern Italy (unpublished observations). 
However, further studies are needed to corrobo-
rate and validate such positive preliminary data.

Corticosteroids
The use of systemic corticosteroids for treatment 
of COVID-19-associated cytokine storm could be 
of some value. In fact, by modulating cytokine 
production, these drugs might repress hyperin-
flammation associated with COVID-19-related 
ARDS.45 Some interesting observations suggest 
that in community-acquired pneumonia corticos-
teroids could increase the rate of therapeutic 
 success, and also decrease the number of hospi-
talisation days and the time occurring to reach 
clinical stability.46 However, it has been reported 
that early use of hydrocortisone in subjects with 
MERS could delay viral clearance.47 Moreover, 
utilisation of methylprednisolone in SARS-CoV-2 
infected patients with advanced ARDS and pro-
gressive disease appears to ameliorate respiratory 
symptoms and CT abnormalities, but does not 
seem to prolong overall survival.48,49 Nevertheless, 
because of the lack of control arms, such conclu-
sions based on observational studies should be 
considered with extreme caution.
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Hydroxychloroquine and azithromycin
Chloroquine, and especially its less toxic deriva-
tive hydroxychloroquine, could block SARS-
CoV-2 entry inside target cells by interfering with 
glycosylation of ACE2 receptors.50 This drug also 
acts by suppressing TLR7 signalling and by inhib-
iting endosomal acidification, essential for viral 
replication.5 Moreover, hydroxychloroquine pre-
vents endolysosomal fusion. The therapeutic 
action of hydroxychloroquine can be potentiated 
by azithromycin, capable of reducing the pro-
inflammatory activity of IL-6 and TNF-α.51,52

Conclusion
The dramatic outbreak of SARS-CoV-2 infection 
is currently associated with an ongoing progress 
in the knowledge of underlying pathogenic mech-
anisms, which is shedding partial light on the 
immunophenotypic traits characterising infected 
patients more susceptible to the development of 
heavy lung damage caused by cytokine storm. 
Indeed, an impairment in anti-viral immune 
response and the concurrent aberrant hyperin-
flammatory reaction can facilitate, especially in 
elderly people with comorbid conditions, the 
occurrence of the most severe forms of COVID-
19-related illness. A better understanding of 
cytokine storm pathobiology is also making it 
possible to explore the therapeutic efficacy of 
IL-6 receptor antagonists and JAK/STAT inhibi-
tors, which, however, require to be carefully eval-
uated by definitely needed randomised controlled 
trials.
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