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Synapses are the basic units for information processing and storage in the

nervous system. It is only when the synaptic connection is established, that

it becomes meaningful to discuss the structure and function of a circuit. In

humans, our unparalleled cognitive abilities are correlated with an increase

in the number of synapses. Additionally, genes involved in synaptogenesis

are also frequently associated with neurological or psychiatric disorders,

suggesting a relationship between synaptogenesis and brain physiology and

pathology. Thus, understanding the molecular mechanisms of synaptogenesis

is the key to the mystery of circuit assembly and neural computation.

Furthermore, it would provide therapeutic insights for the treatment of

neurological and psychiatric disorders. Multiple molecular events must be

precisely coordinated to generate a synapse. To understand the molecular

mechanisms underlying synaptogenesis, we need to know the molecular

components of synapses, how these molecular components are held

together, and how the molecular networks are refined in response to neural

activity to generate new synapses. Thanks to the intensive investigations

in this field, our understanding of the process of synaptogenesis has

progressed significantly. Here, we will review the molecular mechanisms

of synaptogenesis by going over the studies on the identification of

molecular components in synapses and their functions in synaptogenesis,

how cell adhesion molecules connect these synaptic molecules together,

and how neural activity mobilizes these molecules to generate new synapses.

Finally, we will summarize the human-specific regulatory mechanisms in

synaptogenesis and results from human genetics studies on synaptogenesis

and brain disorders.
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Introduction

The word “synapse,” coined by Charles Sherrington, is used
to describe the place at which communication occurs between
neurons. The existence of the synapse was consolidated by
electron microscopy after years of debate (De Robertis and
Franchi, 1956; Sotelo, 2020). The study of synapses started with
histology and was later joined by biophysics, molecular biology,
and biochemistry. It is now well-recognized that there are two
kinds of synapses in the nervous system: electrical and chemical
synapses. The electrical synapses allow an ensemble of cells to
be activated simultaneously, as compared to chemical synapses
where there is a delay in the transmission of signals. There
has been accumulating evidence supporting the importance of
electrical synapses in physiological processes (Pereda, 2014), but
here we will primarily review the molecular mechanisms of the
synaptogenesis of chemical synapses. Synapses are composed of
three parts: the pre-synaptic terminal, synaptic cleft, and post-
synaptic compartment. Synapses transform the electrical signals
into chemical signals and then into electric signals again. They
help living animals survive their environments, are the targets of
predators, and are often affected under diseases. Consequently,
understanding the molecular genetic basis of synaptogenesis
may help us understand how genes instruct the wirings of the
nervous system and direct the flow of information (Colon-
Ramos, 2009), how the environment shapes behaviors, and how
diseases arise, especially in humans.

Synapse formation involves the interactions between
neurons. As a result, neuron differentiation, migration, axon
guidance, and dendrite morphogenesis can all influence the
outcomes of synaptogenesis (Batool et al., 2019). Nevertheless,
even if all these processes are accomplished, forming synapses
still requires precise regulations (Chia et al., 2013). To gain
insights into the underlying mechanisms required to generate a
synapse, one needs to first know the components that constitute
a synapse and how they are assembled together. Both pre- and
post-synaptic compartments contain electron-rich structures
which are named the “cytomatrix” and “post-synaptic density,”
respectively. These structures consist of mostly scaffold proteins
that are connected intercellularly by cell adhesion molecules and
are anchored by the cytoskeleton intracellularly. Accordingly,
forming synapses usually requires a few prerequisites. First,
synaptic molecules must be assembled at pre- and post-synaptic
sites instead of randomly in the cytosol. Second, pre- and post-
synaptic compartments where these synaptic molecules dwell
must be aligned and connected accurately by cell adhesion
molecules. Third, the cytoskeleton must be organized and
coordinated so as to support the synaptic structure. In addition,
synapses are dynamic and can be influenced by neural activities.
Thus, by manipulating neural activities, we can examine the
molecular events that impact the destinies of synapses. Last but
not least, synaptogenesis, though largely conserved, has been
constantly reshaped during evolution (Schmidt and Polleux,

2021), which endows humans with unprecedented cognitive
capabilities and provides avenues to develop treatments and
therapies for neurological disorders and diseases.

To better parse the process of synaptogenesis, we have
organized this review into four parts: (I) the assembly of
intracellular synaptic proteins, most of which are scaffold
proteins (Jin and Garner, 2008; Sheng and Kim, 2011); (II)
cell adhesion molecules that bridge these proteins intercellularly
(Sudhof, 2021); (III) the cytoskeleton system that supports
the structure of the synapse; and (IV) neural activity that
drives the formation of new synapse (Zito and Svoboda, 2002;
Pan and Monje, 2020). These aspects coordinated with each
other, were renovated during evolution, and, when gone awry,
are frequently associated with impaired brain formation or
cognitive abilities. We will review each of these aspects using
some well-studied examples and summarize their relationships
to the development of diseases.

Assembly of scaffold proteins and
synaptogenesis

Identification of synaptic components
and their interactomes

To study the molecular mechanisms of synapse formation,
the first step is to identify the molecules that constitute the
synapses and examine their ways of assembly through protein
interactions during synaptogenesis, because most of them are
used to define synapses. Studies on synaptic transmission led to
the observations that the pre-synaptic terminals contain ready-
to-be-released vesicles docking on the “cytomatrix” and that
post-synaptic compartment named post-synaptic density (PSD)
contain “patches” that are electron-enriched (Phillips et al.,
2001). Endeavors to purify synaptic proteins and examine their
effects on synaptic transmission, led by Sudhof et al. (1993),
discovered synaptic vesicle proteins such as synaptophysin,
synapsin, synaptobrevin/VAMP 1/2, syntaxin, and SNAP-25
as well as their functions in synaptic transmission. Although
genetic evidence from knockout mice suggests that most of
them have no effects on the structure of synapses (Rosahl
et al., 1995; Ahnert-Hilger et al., 1996; Fujiwara et al., 2006;
Kwon and Chapman, 2011), they have laid the foundation for
further probing the building blocks of synapses that enable
the vesicles to dock. Advances in biochemistry, molecular
biology, immunology, and other fields such as imaging (Fortin
et al., 2014) have provided versatile approaches to dissect the
building blocks of synaptic components and describe the protein
meshwork for synaptic transmission, transforming the search
into a more feasible and fruitful field of study (Sudhof, 1995; De
Camilli and Takei, 1996).

One approach is genetic screening. For example, using
Synaptobrevin/VAMP fused with GFP (Hallam and Jin, 1998;
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Nonet, 1999), Zhen and Jin (1999) performed screenings on
C. elegans regarding the localization of synaptic vesicles and
discovered Liprin-α which was also named syd-2 (short for
synaptic defective). Liprin-α encodes a synaptic scaffold protein
and was first identified through the yeast-two-hybridization as
a binding protein for the leukocyte common antigen-related
protein (LAR) transmembrane protein (Serra-Pages et al., 1995,
1998). There are four members of LIPRIN-α in humans with
distinct expression patterns: LIPRIN-α1 and LIPRIN-α4 are
widely expressed across the body, whereas LIPRIN-α2 and
LIPRIN-α3 are enriched in the brain (Serra-Pages et al., 1998).
LIPRIN-α contains multiple domains including two coiled-coil
(CC) domains, a single alpha helix (SAH) domain, and three
sterile-α-motif (SAM) domains (Figure 1). The N-terminal
coiled-coil domains are sufficient to mediate the homo- and
heterodimerization between liprins, and C-terminal regions
interact with LARs (Serra-Pages et al., 1995, 1998). When
co-expressed together with LARs in cell lines, Liprin-α was
sufficient to promote the clustering of LARs (Serra-Pages et al.,
1995, 1998), suggesting that through oligomerization, LIPRIN-
αs provided a platform for the assembly of other synaptic
proteins. They interact with multiple synaptic proteins that
are essential for the development of both pre- and post-
synaptic compartments (Spangler and Hoogenraad, 2007; Xie
et al., 2021). At the pre-synaptic site, SYD-2/Liprin-α recruits
the synaptic protein ELKS/CAST to promote the assembly of
the active zone (Dai et al., 2006). ELKS is a protein around
120 KD and contains four coiled-coil domains indicating its
role in associating with other protein components. CAST
is also a member of this protein family that is structurally
homologous but with a differential expression pattern as
compared to ELKS in that CAST is highly expressed in the
brain whereas ELKS is broadly expressed (Hida and Ohtsuka,
2010). ELKS interacts with Liprin-α through the coiled-coil
domain and mediates the function of Liprin-α in recruiting
synaptic vesicles to the active zone in worms (Dai et al., 2006).
Indeed, ELKS/CAST can bind with RIM1 (Rab interacting
molecules) and regulates synaptic transmission, consistent with
its role in the generation of functional synapses (Takao-
Rikitsu et al., 2004). ELKS also interacts directly with Bassoon
and Piccolo through the coiled-coil domain (Takao-Rikitsu
et al., 2004), suggesting that it plays a pivotal role in the
assembly of active zone proteins. Piccolo and Bassoon were
identified from a study by Craig Garner in 1996 in which a
cDNA library from the rat brain was screened with antisera
against the synaptic fraction and the positive clones were
selected as candidates for synaptic proteins (Garner et al., 1988;
Langnaese et al., 1996). They are structurally related proteins
both containing zinc-finger regions and coiled-coil domains
(Takao-Rikitsu et al., 2004). Through the same approach, a few
other synaptic proteins were discovered in addition to Piccolo
(Cases-Langhoff et al., 1996; Fenster et al., 2000) and Bassoon
(Dieck et al., 1998), such as SAP90 (also known as PSD95)

(Kistner et al., 1993), SAP97 (Muller et al., 1995), and SAP102
(Muller et al., 1996).

Another approach is homologous cloning of genes identified
from other model organisms or tissues such as C. elegans or fruit
flies. For example, the mammalian homolog of unc-13, Munc-
13, was found in this way (Brose et al., 1995); identified and
cloned by Brenner (1974) and Maruyama and Brenner (1991),
unc-13 causes abnormal neurotransmitter release but normal
anatomical structure when mutated in worms (Richmond et al.,
1999). In mammals, there are three isoforms of Munc-13
that are enriched in the brain. However, neither Munc-13-1
nor Munc-13-2 has been found to be essential for synaptic
morphogenesis in mice (Rosenmund et al., 2002). Using known
synaptic proteins as baits to probe unknown candidates is also
an effective strategy. For example, by fusing the cytoplasmic
domain of SYNTAXIN A with glutathione-s-transferase (GST)
and performing pull-down assays followed by amino acid
sequencing, Munc-18/STXBP1 was discovered (Hata et al.,
1993b); through yeast two-hybrid screen using the C-terminal of
NEUREXIN, Cask was cloned (Hata et al., 1996); and using the
active mutant of Rab3C or its isolated domains, the active zone
protein RIM (Rab3 Interacting Molecules) and its interaction
partners such as RIM-BP, ELKS, and CAST were identified
(Wang et al., 1997, 2000, 2002) [sub-cellular fractionation
of mammals’ synaptic fraction also independently discovered
CAST (Ohtsuka et al., 2002)]. Among these molecules, mice
deficient in Munc18-1 die immediately after birth but the
differentiation of synapses appears normal (Verhage et al.,
2000). Cultured neurons from Cask knockout mice developed
a similar number of synapses when compared with wild-
type counterparts, indicating that Cask is not essential for
the formation of structurally sound synapses (Atasoy et al.,
2007). Studies on the morphology from cultured neurons
where RIM-BPs were removed showed that there are no
significant differences between knockout animals and wild-
type controls (Acuna et al., 2015). These studies suggested
that synaptic proteins coordinate to regulate the formation and
function of synapses.

Through ion channels such as NR2B (Grin2b) that are
located in the post-synaptic region, Sheng and colleagues
performed yeast hybridization and GST-pull-down assays to
uncover the interactomes of post-synaptic proteins. Using the
cytoplasmic domain of the NR2B subunit of NMDA receptors,
Sheng and colleagues discovered that PSD95 is the scaffold
protein for NR2B (Cho et al., 1992). PSD95 contains three
PDZ (PSD95, Dlg4, and ZO-1) domains, one SH3 domain,
and one GK domain (Figure 1), indicating that it organizes
the synaptic proteins at the post-synaptic site. Indeed, further
studies have demonstrated that it interacts with GKAP through
its GK domain (Kim et al., 1997), while GKAP interacts with
SHANK proteins in the PDZ domains (Naisbitt et al., 1999).
SHANK proteins are also synaptic scaffold proteins that contain
PDZ domains and other domains (Figure 1). They interact
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FIGURE 1

Schematic illustration of representative scaffold proteins (not scaled).

with Homer (Brakeman et al., 1997), which on the other hand
interacts with mGluR and IR3 receptors. The PDZ domains
of PSD95 also interact with the protein TARP, which is an
auxiliary subunit of AMPAR receptors. In such a way, PSD95
acts as a core that enables the coupling between different kinds
of receptors and controls the excitability of synapses. In order
to do so, PSD95 clusters together through the N-terminal
cysteine formed a di-sulfate bond, which is regulated by the
phosphorylation of CDK5 (Morabito et al., 2004). PSD95 may
also form clusters with other members in the same family and
thus increase the diversity of molecules that can be anchored
within synapses (Kim et al., 1996). Additionally, PSD95 interacts
with SPAR (Spine-associated RapGAP) via its GK domain (Pak
et al., 2001). Overexpression of SPAR in cultured hippocampal
neurons increases both the density and diameter of dendritic
spines, likely through its effect on the re-organization of the
actin cytoskeleton. In contrast, the PDZ domains of PSD95
interact with SynGAP1 which is a RasGAP to restrict spine
maturation (Chen et al., 1998; Kim et al., 1998; Clement et al.,
2012).

Assembly of the synaptic proteins
during synaptogenesis

Trafficking of synaptic proteins
Synaptic proteins need to be transported to the

synaptic terminals to execute their synaptic functions

(Ahmari et al., 2000; Zhai et al., 2001). In neurons, the
anterograde trafficking of cargos through microtubules is
mainly achieved through the Kinesin family motor proteins
(Hirokawa and Takemura, 2005). Mutations in the kinesin
family gene have been shown to cause deficits in synaptic
vesicle trafficking (Hall and Hedgecock, 1991; Yonekawa
et al., 1998; Pack-Chung et al., 2007). Liprin-α interacts
directly with KIF1A through its coiled-coil domain (Shin
et al., 2003; Miller et al., 2005), and mutations in Liprin-α
showed decreased anterograde movement of synaptic vesicles
(Miller et al., 2005). Interestingly, in unc-104/KIF1A mutated
worms, the localization of syd-2 is unchanged (Zhen and Jin,
1999), suggesting other distinct mechanisms underlying its
trafficking. Further studies have shown that to ensure the
synaptic localization of syd-2, its retrograde trafficking by
dynein was inhibited by cyclin-dependent kinases pct-1 and
cdk-5 (Ou et al., 2010). In addition, the cyclin-dependent
kinase 5 pathway promotes synaptogenesis by facilitating
the trafficking of synaptic vesicles to the newly formed
synapses through KIF1A (Park et al., 2011). Transportation
of Piccolo–Bassoon vesicles is mediated by KIF5B which
also mediates the activity-dependent pre-synaptic assembly
(Cai et al., 2007). The interactions between Bassoon and
dynein light chains mediate the retrograde trafficking of
vesicles (Fejtova et al., 2009). When fused with fluorescent
proteins or through antibody labeling, these synaptic proteins
provide important insights into how pre-synaptic and post-
synaptic assembly happen, both spatially and temporally.
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For example, Bassoon clustering occurs in parallel with
both inhibitory and excitatory synaptogenesis (Zhai et al.,
2000). Piccolo and Bassoon are transported in a protein
complex associated with vesicles, which may be the basis
for the formation of the active zone (Zhai et al., 2001). In
contrast, PSD95 accumulates rapidly after the establishment
of new contacts (Bresler et al., 2001), and the post-synaptic
scaffold proteins are recruited to the synaptic sites gradually
(Bresler et al., 2004).

Enrichment of the synaptic proteins by phase
separation

These complex synaptic machinery must deposit at specific
locations during synaptogenesis. The theory of liquid–liquid
phase separation provides insights into how this phenomenon
may occur. Recently, it has been shown that both SYD-2
and ELKS can undergo liquid–liquid phase separation before
condensation and that such a step is essential for recruiting
other active zone proteins (McDonald et al., 2020). The
mechanisms underlying the liquid–liquid phase separation
seem to be initialized by the oligomerization of Liprin-α
followed by the phase separation of ELKS and the recruitment
of RIM-α to the condensates (Liang et al., 2021). At the
post-synaptic compartment, PSD95 and SynGAP1 interactions
have also been reported to be essential for the formation of
liquid condensates (Zeng et al., 2016). In addition, both the
combinations of PSD95-GKAP and SHANK-Homer are able to
form condensed droplets and recruit their interacting proteins,
such as NR2B and SynGAP1 (Chen et al., 2020). Given that
dendritic spines and axonal buttons are highly specialized
compartments, and that the density of these molecules is
extremely high, it is reasonable to propose that liquid–liquid
phase separation plays an important role in promoting the
specification of synapses.

Functional studies of the synaptic proteins and
their relationships with diseases

Synaptic proteins assemble at synapses through protein–
protein interactions and govern synaptic signaling and plasticity
(Sheng and Kim, 2002). With accumulated information on
these molecules, we are now able to describe a sketch of
the synaptic network and “zoom in” to examine their role
in synaptogenesis (Figure 2). Since most of the proteins
mentioned above are scaffold proteins that provide platforms
for the assembly of the synaptic machinery, overexpressing
or knocking them down usually affects synaptic strength
or morphogenesis (Hung et al., 2008; Wang et al., 2014;
Yoon et al., 2021). Mutations in these genes, for example,
SHANK1/2/3 and SYNGAP1 to name a few, are frequently
associated with abnormal synaptogenesis and neurological
or psychiatric disorders such as intellectual disability and
autism (Table 1).

Cell adhesion molecules bridging
the pre- and post-synaptic
machinery during synaptogenesis

Scaffold proteins beneath the synaptic membrane act as
the core for the assembly of various molecular modules and
thus provide the platform for synaptogenesis. Nevertheless,
these platforms must be connected across the synaptic cleft.
Cell adhesion molecules are the best candidates to bridge pre-
and post-synaptic components. Consistently, it was discovered
that cell adhesion molecules are transported together with pre-
synaptic components-formed particles, and that cell adhesion
molecule also interact with scaffold proteins, suggesting that cell
adhesion molecule may mediate the transcellular connections
between pre- and post-synaptic terminals (Phillips et al., 2001).
Moreover, in artificial synapse-inducing assays, cell adhesion
molecules such as Syncam1 (Biederer et al., 2002), Neurexin
(Graf et al., 2004), Neuroligin (Scheiffele et al., 2000), and NGL-
3 (Woo et al., 2009) have been shown to be sufficient to induce
the formation of synapses (Sudhof, 2018), highlighting the
importance of cell adhesion molecules. Similarly, evidence from
RNAi/shRNA-mediated knockdown and knockout animals also
underlines the essential roles of cell adhesion molecules in
synaptogenesis. Though these assays have their own caveats,
they have provided unique perspectives for our understanding
of the processes of synapse formation.

Leukocyte common antigen-related
family receptors protein-tyrosine
phosphatases and their
ligands/partners

The leukocyte common antigen-related family receptors
protein-tyrosine phosphatases (LAR-RPTPs) are composed
of extracellular Ig domains and fibronectin domains at the
extracellular side, a single transmembrane domain, and a
cytoplasmic region that includes two phosphatase domains. The
phosphatase domain proximal to the membrane is catalytic
active, whereas the distal one is catalytic inactive (Um and
Ko, 2013). In vertebrates, there are three genes encoding the
proteins of this family: LAR, also called RPTPF; RPTδ, also
called PTPRD; and RPTσ, also called RPTPS. They distribute
both pre- and post-synaptically. Loss-of-function studies on
LAR-RPTPs by RNAi-mediated knocking down resulted in a
dramatic reduction in synapse numbers (Dunah et al., 2005).
Intracellularly, LAR-RPTPs bind to the scaffold protein Liprin-α
and transcellularly, they bind to various cell adhesion molecules
including NGL-3, synaptic adhesion-like molecules (SALM),
TrkC, and slit and trk like(Slitrks) (Um and Ko, 2013). Their
associations with specific cell adhesion molecules are controlled
by alternative splicing, indicating functional diversity and
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FIGURE 2

Illustration depicting the protein network in excitatory synapses (protein size not scaled).

TABLE 1 Scaffold proteins that have been reported to be associated with neurological or psychiatric disorders from human genetics studies.

Genes Reported disorders and references

SHANK1 Autism (Sato et al., 2012)

SHANK2 Autism, ID (intellectual disability) (Berkel et al., 2010; Satterstrom et al., 2020)

SHANK3 Autism (Durand et al., 2007; Moessner et al., 2007; Satterstrom et al., 2020)

SYNGAP1 ID (Intellectual disability) (Hamdan et al., 2009; Rauch et al., 2012; Deciphering Developmental Disorders Study., 2015, 2017), autism (Hamdan
et al., 2011; Satterstrom et al., 2020)

GRIP1 Autism (Mejias et al., 2011)

HOMER1 Autism (KelleherIII, Geigenmuller et al., 2012), schizophrenia (Norton et al., 2003), depression (Rao et al., 2016)

PSD95 Schizophrenia, ID, autism (Coley and Gao, 2018)

CASK ID (Hayashi et al., 2008; Najm et al., 2008), brain malformation (Najm et al., 2008)

PICCOLO Major depressive disorder (Sullivan et al., 2009), bipolar disorder (Choi et al., 2011; Chen et al., 2021), schizophrenia (Chen et al., 2021)

BASSOON Bipolar disorder, schizophrenia (Chen et al., 2021)

STXBP1/MUNC18-1 Dravet Syndrome (Carvill et al., 2014), Infantile epileptic encephalopathy (Saitsu et al., 2008)
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specificity (Han et al., 2018). Among them, NGL-3 belongs
to the netrin G ligand family and is a single transmembrane
protein anchored at the post-synaptic sites through interactions
with PSD95. The interaction between LAR and NGL-3 induces
the formation of excitatory synapses in cultured neurons (Woo
et al., 2009). The phenotypes of mice lacking NGL-3 depends
on the genetic background: mice with the C57BL/6J background
show reduced growth and abnormal brain anatomy, while mice
with a hybrid genetic background exhibit normal gross brain
development but impaired synaptic transmission (Lee et al.,
2019). SALMs are a family of cell adhesion molecules that also
bind to the PDZ domain of PSD95. They have eight leucine-
rich repeats, one Ig domain, and one fibronectin domain.
Mice lacking SALMs show varying extents of abnormality in
synapse development depending on which specific member
of the family was knocked out (Lie et al., 2018). SALMs
regulate synapse development by inducing the clustering of
PSD95 and recruiting NR1 (Lie et al., 2018). Overexpressing
and knocking down Slitrks can promote and reduce excitatory
and inhibitory synapses, respectively, in cultured neurons by
interacting with PTPδ and PTPσ (Yim et al., 2013). The
detailed interactions among these cell adhesion molecules and
their function in synapse development need to be further
examined to explain the diverse phenotypes from knockout
mice. The complicated interactions will likely compensate for
the loss of others. Consistently, mice carrying the mutated
LAR without the cytoplasmic phosphatase domains exhibited
impaired spatial learning and hyperactive behaviors (Kolkman
et al., 2004), whereas mice lacking LAR showed disrupted
glucose homeostasis (Ren et al., 1998). Mice lacking RPTσ, on
the contrary, showed increased synapse density (Horn et al.,
2012). Studies on triple knockout mice either in vivo using
virus carrying Cre recombinase or in cultured neurons showed
that PTPδ, PTPσ, and LAR triple knockout do not affect the
development and function of synapses (Sclip and Sudhof, 2020;
Emperador-Melero et al., 2021).

Neurexins and neuroligins

Neurexins were discovered through the chromatography
purification of the targets of α-latrotoxin (Ushkaryov et al.,
1992). Through the studies of neurexins, Ca2+ sensor
synaptotagmin was found to interact with their cytoplasmic
domains (Brose et al., 1992); the ligands of neurexins,
neuroligins, were identified as well (Ichtchenko et al., 1995).
In total, there are three neurexin genes, each encoding α- and
β- isoforms driven by distinct promoters, and four neuroligin
genes with two splice sites differentially distributed in these
four genes (Craig and Kang, 2007; Sudhof, 2017). Pre-synaptic
neurexins are anchored at the synapses by binding with the
scaffold protein CASK, while post-synaptic neuroligins are
anchored by binding with PSD95 and gephyrin (Craig and Kang,

2007). Neuroligin 1 is mainly expressed at excitatory synapses,
while neuroligin 2 is enriched at inhibitory synapses (Song
et al., 1999). When expressed in non-neural cells, neurexins
and neuroligins can, respectively, induce the differentiation
of post-synaptic and pre-synaptic parts, whereas neuroligins
containing autism-associated mutations fail to do so (Scheiffele
et al., 2000; Graf et al., 2004; Chubykin et al., 2005; Poulopoulos
et al., 2009), suggesting their important roles in the initiation
of synaptic terminal specification and synapse formation (Hata
et al., 1993a). Consistent with this idea, both loss- and gain-
of-function studies have validated the importance of neurexins
on synapse formation in cultured neurons (Prange et al., 2004;
Chih et al., 2005) and in vivo (Chen et al., 2017), though
the function of neuroligins on synapse formation in vivo was
inconsistent with that of in vitro studies (Varoqueaux et al., 2006;
Shaw and Salmon, 2017). One of the possible reasons for the
differential effects of neuroligin 1/2 is that the overexpression
effects in vitro resulted from the use-dependent stabilization
of synapses instead of newly generated ones (Chubykin et al.,
2007). These results also suggested that neurexins have other
receptors or ligands that are used for synapse formation. Indeed,
several lines of evidence demonstrated that neurexins can bind
to Cbln1 (Uemura et al., 2010), C1ql2/3 (Matsuda et al., 2016),
LRRTM2 (de Wit et al., 2009; Ko et al., 2009; Siddiqui et al.,
2010), GABA(A) receptors (Zhang et al., 2010), and latrophilin
(Boucard et al., 2012). The interactions between neurexins
and these molecules are isoform-specific, and their functions
are synaptic type specific (Chih et al., 2006; Sudhof, 2017).
For example, neuroligin 1 splice site b determines if it can
bind to α-neurexin but does not affect its binding with β-
neurexin. In addition, the neuroligin that binds with β-neurexin
only promotes synaptogenesis, while the isoform binding to
both neurexin isoforms stimulates the enlargement of synapses.
LRRTM2 binds to neurexins lacking splice site #4 to induce
the formation of excitatory synapses. In line with the diverse
interactions of neurexins and neuroligins, various mutations in
neuroligins have been reported to be associated with autism
disorders; and some syndromic phenotypes can be recapitulated
in mice (Sudhof, 2008; Reichelt and Dachtler, 2015).

N-cadherin

N-cadherins are single transmembrane proteins that
localize both pre- and post-synaptically. They consist of
extracellular ectodomains that mediate homophilic interactions,
a transmembrane domain, and a cytoplasmic domain that
connects it to the cytoskeleton system through β- and α-
catenins (Bruses, 2006; Figure 2). Evidence supporting
N-cadherins’ functions in synaptogenesis include (1) its
colocalization with the synaptic marker synaptophysin and
PSD95 at the stage of synapse formation (Benson and Tanaka,
1998); (2) its interacting protein β-catenin begins to localize
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at the dendritic protrusions at the beginning of synaptogenesis
in cultured hippocampal neurons, and cultured neurons
from β-catenin knockout mice showed thinner dendritic
protrusions; and (3) overexpressing the ectodomain deleted
N-cadherins in cultured neurons causes the same phenotype
as that of the loss of β-catenin in cultured neurons, indicating
an essential role of N-cadherins and β-catenin in synapse
formation (Togashi et al., 2002; Okuda et al., 2007). However,
another study showed that overexpressing only the cytoplasmic
domain of N-cadherin in cultured neurons has no effects on
either the level of dendritic and synaptic PSD95 and Bassoon
but reduced the amplitude of mEPSCs (Peng et al., 2009),
suggesting a function of N-cadherin in synaptic transmission.
The discrepancies between the two studies might be due
to the development stages the experiments were performed
with the former at around div (days in vitro) 21, while the
latter at div12, suggesting that the functions of N-cadherin
vary at different developmental stages. In line with this,
knocking down N-cadherin in cultured neurons reduces spine
density only at the early stage, suggesting that N-cadherin
is required for the initiation but not the maintenance of
synapses (Saglietti et al., 2007). Although in vivo knockout
of N-cadherin in the neocortex and hippocampus disrupted
tissue structures such as the cortical lamination and radial
glia fiber orientation, there were no obvious effects on spine
morphology in cultured hippocampal neurons after Cre
mediated knockout in culture (Kadowaki et al., 2007). These
results appear to indicate that N-cadherin maybe not essential
in the formation of synapses in vivo or that there could be other
adhesion molecules that can replace N-cadherin to associate
with catenins and regulate synapse formation (Yamagata et al.,
2018). Nevertheless, it should be noted that acute knockout may
take time to remove the protein, and thus when the protein
is completely gone, the time window for synaptogenesis may
have passed. It is also possible that N-cadherin is important
for neural activity-dependent synaptogenesis or pruning. The
evidence supporting this hypothesis comes from experiments
in which neuronal depolarization, induced by extracellular
K+, leads to an increased membrane level of N-cadherin. The
mechanisms behind this have been reported to be protein
kinase D mediated phosphorylation and the ensuing enhanced
interaction with β-cateinin (Tanaka et al., 2000; Tan et al., 2010;
Bian et al., 2015; Cen et al., 2018). In addition, mutations in
β-catenin have been reported to be associated with autism
(O’Roak et al., 2012a,b; Sanders et al., 2012; Krumm et al.,
2014) and a dominant mutation in humans that causes
intellectual disability has been shown to reduce the affinity
between β-catenin and N-cadherin (Sanders et al., 2012). These
discoveries and the fact that constitutive N-cadherin knockout
is embryonic lethal underline the importance of N-cadherin in
neural development and suggest that further examination of
conditional knockout animals of N-cadherin is necessary for
analyzing synaptogenesis.

The cytoskeleton system as
structural support during
synaptogenesis

After connections mediated by cell adhesion molecules
are established between pre-synaptic terminals and post-
synaptic compartments, the highly differentiated sub-cellular
regions need to be anchored. The cellular cytoskeleton system
provides support to these molecules and thus the building of
synapses. We will summarize the function of regulations of
cytoskeleton organization.

The actin cytoskeleton is the main cytoskeleton system that
supports the structure of the dendritic spines as well as the
growth cone of axons (Landis and Reese, 1983). The synaptic
scaffold proteins are anchored at the actin framework (Kuriu
et al., 2006). However, the actin system is quite dynamic, and
the kinetics of actin re-organization underlies the structural
changes in dendritic spines (Okabe, 2020). In addition, neural
activity also remodels synaptic structure by acting on the
actin system (Hotulainen and Hoogenraad, 2010). Actin can
be classified as G-actin and F-actin: G-actin is a monomer,
while F-actin is a polymer. The balance between G- and F-actin
is controlled by actin-associated proteins such as profilin and
capping proteins (Amann and Pollard, 2000). The branching
of actin filaments is mainly regulated by the Arp2/3 complex
while severing filaments and dissociating actin are achieved
through the function of cofilin (Amann and Pollard, 2000;
Goley and Welch, 2006). The branching dynamics of actin
affect the curvature of the plasma membrane, so it determines
the fate and shape of the synapses. For example, the head of
the dendritic spines usually contains more highly branched
actin than the base (Korobova and Svitkina, 2010; Basu and
Lamprecht, 2018). Imaging studies also revealed rapid actin
dynamics along with the formation of dendritic spines (Fischer
et al., 1998). Moreover, when actin undergoes remodeling
that is mediated by synaptic activity, it allows the entry of
the microtubules into the dendritic spines (Schätzle et al.,
2018), possibly facilitating the trafficking of synaptic proteins.
Mutations in the actin-regulating molecules impair synaptic
plasticity and are associated with neurodevelopmental deficits
and cognitive disorders (Bednarek and Caroni, 2011; Lian and
Sheen, 2015; Yan et al., 2016; Hlushchenko et al., 2018; Cousin
et al., 2021; Qi et al., 2021).

Molecular mechanisms underlying
activity-dependent
synaptogenesis

In the nervous system, synapses are formed enthusiastically
at the beginning which usually culminates with more synapses
than required (Figure 3). It is possible that such consequences
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FIGURE 3

Dynamic process of synaptogenesis: (I) axonal and dendritic growth; (II) excessive synaptogenesis; (III) pruning of the synapses.

are supposed to provide enough neural connections for
organisms to learn and memorize their encounters. When the
organisms gradually adapt to the environments, the synapse
network will be reshaped and stabilized by neural activity
to operate efficiently. The openings of various channels are
the basis for neural activity and will be followed by the
spreading of signals from activated synapses to surrounding
regions and nuclei. The chemical reactions induced by
ion influx or efflux reorganize the structure of synapses
(Ebert and Greenberg, 2013).

Studies from the visual system provided a good amount
of insights into how neural activities instruct the formation
of neural circuits. Reshaping of the neural circuits mediated
by neural activity has been demonstrated systematically by
studies in the visual system by Hubel and Wiesel (2012) in
the 1970s. Parallelly, studies from neuromuscular junctions
suggested the essential roles of neural activity in the elimination
of muscle innervating axonal terminals of motor neurons
(Colman and Lichtman, 1993). Moreover, ocular dominance can
form in animals that have undergone binocular deprivation,
underscoring the importance of spontaneous activity on
synaptogenesis (Shatz, 1990). In a series of pioneering studies
led by Katz and Shatz (1996), retinal waves in the early
developmental stages were demonstrated to be crucial for
the connectivity of retinal ganglion cells to the thalamus.
Cholinergic transmission has been shown to be required for the
generation of spontaneous waves (Feller et al., 1996). With the
advances in imaging techniques and available genetic tools, it has
been demonstrated that retinal waves instruct the activity of the
midbrain superior colliculus and primary visual cortex (Ackman
et al., 2012), and that disrupting the naïve spontaneous activity
by deleting the β2-acetylcholine receptor or using optogenetics
interferes with the normal retinotopic map refinement (Xu et al.,
2011; Zhang et al., 2011; Burbridge et al., 2014).

These studies indicated that the formation of functional
synapses occurs at the cost of removing other synapses.
However, one of the ensuing questions is whether the reshaping
of the neural connectivity happens at the synaptic level and, if

yes (Zuo et al., 2005), what are the molecules that are acted on by
the neural activity. In addition, evidence on whether there would
be de novo synaptogenesis after neural activity was still limited
at the time. Disrupting neural activity by genetically ablating
neurotransmitter release caused a reduction in synapse number,
which provided indirect but important evidence supporting
the role of neural activity in synaptogenesis (Andreae and
Burrone, 2014). Nevertheless, there have been several lines of
evidence supporting that there is a cause-and-effect relationship
between neural activity and synaptogenesis. First, it has been
reported that neural activity can lead to the switch between
different types of neurotransmitters (Spitzer, 2017), suggesting
that there may be newly generated synaptic types. Second,
the treatment of cultured neurons with potassium chloride
(KCl) or bicuculline which induces depolarization increased
the spine density (Papa and Segal, 1996). This observation was
later validated by time-lapse imaging on the same segment of
denrites (Hamilton et al., 2012). Third, Maletic-Savatic et al.
(1999) observed the rapid formation of dendritic protrusions
after tetanic stimulation, certifying that neural activity induces
the formation of potential dendritic spines. In addition, Engert
and Bonhoeffer performed experiments where they induced
neural activity locally and imaged the dynamics of dendritic
spines on slices. They found that, accompanied by long-term
potentiation induction, there are newly generated spines (Engert
and Bonhoeffer, 1999). This study provided evidence that
neural activity promotes synaptogenesis within an intact circuit.
Recently, it has been corroborated elegantly by the discoveries
that the local application of glutamate or GABA with high
frequency uncaging at places that originally have no spines will
be sufficient to induce the de novo formation of dendritic spines
in the cortex of developing mice (Kwon and Sabatini, 2011; Oh
et al., 2016). Finally, in vivo studies suggested strong associations
between physiological level neural activity and synaptogenesis.
Using two-photon microscopy, it has been shown that there
is rapid synapse formation during motor activity in the cortex
of developing mice (Xu et al., 2009). At the adult stage,
although the turnover speed of dendritic spines becomes lower
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(Grutzendler et al., 2002), it has also been demonstrated that
after stimulation, there exists rapid formation of both excitatory
and inhibitory synapses in freely moving animals (Knott et al.,
2002). These studies provided compelling evidence that neural
activity reshapes the circuits through synaptogenesis. Moreover,
the dendritic spines are quite dynamic and can be generated
independently or derived from the existing ones by splitting
(Zito and Svoboda, 2002). Neural activity can also change the
motility of pre-synaptic terminals in a retrograde manner (Gan,
2003; Tashiro et al., 2003). There are a few other models to mimic
and study the effects of neural activity on synapse formation,
such as environmental enrichment (Kondo et al., 2012) and fear
conditioning (Lai et al., 2012) to name a few.

As for the underlying molecular mechanisms for activity-
dependent synaptogenesis, multiple aspects are believed to be
involved. For example, accumulated evidence shows that neural
activity re-organizes the cytoskeleton system and regulates the
production of neurotrophic factors from various levels and thus
affects synaptogenesis (Ebert and Greenberg, 2013). Most of
these mechanistic studies are conducted in vitro due to technical
obstacles, but there is some in vivo evidence as well. We will
summarize these investigations here.

Protein kinases mediated neural
activity-dependent synaptogenesis

Under most circumstances, neural activity utilizes Ca2+ to
activate kinase CaMKII or phosphatases such as calcineurin to
affect synaptogenesis (Figure 2). Imaging studies suggested that
the activation of CaMKII is restricted to the dendritic spine
(Nishiyama and Yasuda, 2015). One of the pathways activated
by CaMKII-mediated phosphorylation is the Ras signaling
pathway, whose activation results from the inactivation of the
RasGAP, Syngap1 (Gamache et al., 2020). On the one hand, the
activated Ras can promote the synaptic trafficking of AMPA
receptors and enhance transmission efficiency (Zhu et al., 2002).
The GluR2 subunit of AMPAR has been reported to interact
with the extracellular domain of N-cadherin and promote the
morphogenesis of dendritic spines (Passafaro et al., 2003),
suggesting function and structure coupling. On the other hand,
the activated Ras can relay the signal through PI3K-Akt-mTOR
to promote the formation of mushroom-shaped spines (Kumar
et al., 2005). The Ras signaling pathway can also send signals
to the nucleus by activating ERK, which will phosphorylate
CREB (Tang and Yasuda, 2017). Other small GTPases such
as Rho/Rac/CDC42 have also been shown to be involved in
regulating spine morphology through the cytoskeleton system
(Lawler, 1999; Tada and Sheng, 2006; Figure 2). Activated Ras
and RhoA signaling can spread to nearby spines whereas the
CDC42 signaling is restricted in the activated spines (Nishiyama
and Yasuda, 2015). With different temporal kinetics of these

three signaling pathways, they coordinated to mediate input-
specific structural plasticity of dendritic spines: usually, the
signal pathways that will be relayed to nearby synapses or the
nucleus have a longer activation time window and vice versa
(Hedrick et al., 2016). Of the molecules involved, the loss-of-
function mutation of SYNGAP1 has been reported to be a cause
of intellectual disability (Jeyabalan and Clement, 2016). The
loss of one copy of Syngap1 in mice will result in premature
development of synapses and impaired synaptic plasticity after
stimulation (Clement et al., 2012).

Transcription and translation for neural
activity-dependent synaptogenesis

In 1986, (Greenberg et al., 1986) performed experiments
by stimulating the differentiated PC12 cells with a cholinergic
agonist and discovered that this treatment induced rapid
transcription, which was demonstrated later both in cultured
neurons and in vivo (Greenberg et al., 1986; Sheng and
Greenberg, 1990). These discoveries opened the direction that
neural activity might also affect neural connectivity at the level
of transcription. Indeed, the signaling from synapses can be
transduced to the nucleus to initiate transcription. After the
initiation of transcription, these products will be transported to
synapses both non-selectively and selectively and act locally at
the activated synapses. Multiple mechanisms can contribute to
this process such as the cis-elements in the mRNAs ( Steward
and Worley, 2001), trans-factors such as RNA-binding proteins
(Fujii et al., 2005; Doyle and Kiebler, 2011), remodeling of the
cytoskeletons system (Schätzle et al., 2018), and local translation
and degradation (Tai and Schuman, 2008; Bingol and Sheng,
2011; Glock et al., 2017). In such a way, transcription and
local translation supply the materials to support the activity-
induced structure changes (Sutton and Schuman, 2006; Ebert
and Greenberg, 2013). The effectors that relay information
from synapses to the nucleus are usually the calcium-activated
CamKII–CamKIV signaling pathways. In this process, a series of
transcription factors act coordinately to control the expression
of downstream genes to adapt to the external changes as well as
to maintain internal homeostasis. Under some circumstances,
some membrane-associated proteins will undergo cleavage and
translocate into the nucleus to function as transcription factors.
For example, the intracellular C-terminal domain of neuregulin
1 has been reported to enhance the transcription of PSD95 in
response to elevated neural activity (Bao et al., 2004).

Neurotrophic factors in neural
activity-dependent synaptogenesis

The neural activity also regulates the synapse by regulating
neurotrophic factors (Vicario-Abejon et al., 2002). There are
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four main kinds of neurotrophic factors: NGF, BDNF, NT3,
and NT4. The receptors for these neurotrophic factors include
TrkA, TrkB, TrkC, and p75NTR. All neurotrophins bind to
p75NTR but with lower affinity than to the Trk receptor family.
Trk receptors belong to the receptor tyrosine kinase family
and, when binding with their ligands these receptors undergo
endocytosis and retrogradely relay the neurotrophic factors to
the nucleus (Sharma et al., 2010). TrkA is the main receptor
for NGF, TrkB for BDNF and NT4, and TrkC for NT3 which
can also bind to TrkA and TrkB but with lower efficiency.
Neurotrophic factors were recognized as important players in
the formation of synapses first at neural muscular junctions
and later in the central nervous system as well. Mice with TrkB
and TrkC knockout showed a reduced number of excitatory
synapses at the stage of synaptogenesis (Martinez et al., 1998),
and mice with conditional deletion of TrkB showed reduced
synapse density at the CA1 regions (Luikart et al., 2005). Among
the neurotrophic factors, BDNF is the most prominent, and
accumulating evidence supports its role in the development of
synapses. The mRNA of BDNF can be targeted to dendrites
by the alternative 3′UTR (An et al., 2008) and BDNF can
mediate neural activity-regulated synapse formation in various
ways. First, it can undergo proteolytic maturation after synaptic
stimulation (Nagappan et al., 2009; Yang et al., 2009); second, the
BDNF receptor TrkB can undergo activity-dependent exocytosis
(Lu, 2003); and third, BDNF and its signaling can activate
the local translation, thus augmenting the contrast between
activated versus non-activated synapses (Kang and Schuman,
1996; Baj et al., 2016). Moreover, the BDNF-TrkB signaling
mediated structural change in dendritic spines is NMDAR-
CaMKII dependent (Harward et al., 2016).

Neural activity-induced synaptic
scaling through synaptogenesis

Under the influence of neural activity, synaptogenesis not
only enables neurons to adapt to new conditions but also
acts as a feedback mechanism to maintain neural homeostasis.
Activity-dependent neurotransmitter switching is one way to
achieve such a goal (Spitzer, 2017). Recently, it has been
reported that neural activity can promote the differentiation of
parvalbumin interneurons (Donato et al., 2013) and NMDAR-
mediated inhibitory potentiation (Chiu et al., 2018). In cultured
neurons, elevating neural activity by tetanic stimulation or
blocking GABA transmission promotes gephyrin clustering
mediated by CaMKII phosphorylation (Flores et al., 2015).
At the transcriptional level, transcription factor NPAS4 can
maintain the overall activity at a proper level by promoting the
transcription of Bdnf, thus leading to the formation of inhibitory
synapses at somatic regions in excitatory neurons, and excitatory
synapses in inhibitory neurons (Lin et al., 2008; Bloodgood
et al., 2013; Spiegel et al., 2014). The transcription factor

MEF2 can also mediate the activity-induced homeostasis via
transcriptional activation of arc and synGAP to put a restriction
on synaptogenesis (Flavell et al., 2006).

Contributions from glia and
microglia during synaptogenesis

Glia is another major cell type in the nervous system other
than neurons. Astrocyte is one of the most abundant glia types
in the brain. In the central nervous system, the astrocytes
are generated after neurogenesis. In studies by Barres and
colleagues, it was found that when co-cultured with neurons,
astrocytes promoted a higher number of synapses on retinal
ganglion neurons (Ullian et al., 2001; Freeman, 2005), and this
phenomenon was observed in other types of neurons such as
motor neurons (Ullian et al., 2004). Astrocytes regulate synapse
formation mainly in a non–cell-autonomous manner, by para-
secretion (Christopherson et al., 2005; Eroglu et al., 2009)
or through cell adhesion molecules-mediated cell interactions
(Stogsdill et al., 2017). In a forward genetic screen in C. elegans,
it was identified that the glia cells secreted UNC-6 (netrin),
which instructed the synaptogenesis between AIY and RIA
neurons through regulating pre-synaptic assembly and the axon
guidance via its receptor UNC-40 (DCC) (Colon-Ramos et al.,
2007). For secreted netrin to act properly, the position of the
astrocyte is required to be retained through its interaction
with epithelial cells (Shao et al., 2013). The Wnt signaling
pathway has also been reported to regulate synaptogenesis via
both pre- and post-synaptic sites (Park and Shen, 2012; Shi
et al., 2018). These reports highlighted the conserved function
of astrocytes on synaptogenesis. In addition, astrocytes can
promote microglia-mediated synaptic elimination (Allen and
Eroglu, 2017). Though it has been shown that astrocytes are
quite heterogeneous across brain regions, if and how astrocytes
selectively influence synaptogenesis is still an open question.
Moreover, astrocytes can influence synaptic connectivity by
modulating the interaction between microglia and neurons.
Neurons express the complement system molecules C1q after
they were co-cultured with astrocytes, although the mechanisms
for astrocytes to stimulate the upregulated C1q remain unknown
(Stevens et al., 2007; Stephan et al., 2012). The “tagged” spines
will undergo phagocytosis and thus the synaptic elimination
by microglia. How the microglia only engulf the synapse and
leave the remaining part of the neuron intact is unknown.
When this process goes awry, it is usually associated with
psychiatric diseases. In a genetic screen for genes associated with
the susceptibility to schizophrenia, variants in the complement
component C4 were found to be associated with dysfunction
in synapse elimination (Sekar et al., 2016). Overexpression
of C4A/B causes excess pruning of synapses (Yilmaz et al.,
2021) through the phagocytosis function of microglia (Schafer
et al., 2012), suggesting their contributions to the pathogenesis

Frontiers in Synaptic Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnsyn.2022.939793
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/


fnsyn-14-939793 September 7, 2022 Time: 18:16 # 12

Qi et al. 10.3389/fnsyn.2022.939793

of Alzheimer’s disease. Microglia can influence specific types
of synapses via both active and feedback mechanisms by
responding to changes from the active neurons. For example,
it has been shown that neural activity enhances the expression
of Fn14 in thalamic relaying neurons to promote synapse
formation; however, at the same time, the expression of Fn14’s
ligand TWEAK increases in microglia, which will restrict the
number of spines in relay neurons at places where microglia
interact with (Cheadle et al., 2020). It has also been found that
microglia can respond to the released GABA neurotransmitter
and sculpt the number of synapses (Favuzzi et al., 2021).
Neurons express CD47 to exhibit a “don’t eat me” signal and
are prevented from being engulfed by microglia (Lehrman
et al., 2018). Thus, the homeostatic interactions between
astrocytes/microglia and neurons are pivotal for the proper
wiring and connectivity of the nervous system (Schafer and
Stevens, 2013; Hammond et al., 2018).

Evolutionary perspectives on
molecular mechanisms of
synaptogenesis and susceptibility
to psychiatric diseases

Given its importance for information processing, the
development of the synapse provides an avenue for the
understanding of the unrivaled cognitive abilities of humans.
It has been observed that accompanied by the increase in
the size of the human brain, the spine density is higher
in human cortical neurons compared to other primates or
rodents (Defelipe, 2011; Schmidt and Polleux, 2021). The most
prominent feature of synaptogenesis in humans is the protracted
developmental window (Liu et al., 2012). One molecule that
has been reported to prevent the premature assembly of a
functional synapse is SYNGAP1. SYNGAP1 encodes a RasGAP
that negatively regulates the Ras-GTPase activity and thus
prevents the formation of actin filaments and the insertion
of AMPAR into the synapse. Haploinsufficiency of SYNGAP1
leads to autism-like spectrum disorders, highlighting the
importance of SYNGAP1 dosage in synaptogenesis (Clement
et al., 2012). Neurons derived from human iPSCs where the level
of SYNGAP1 was reduced showed premature neural activity
(LIamosas et al., 2020), further highlighting the temporal
importance of synaptogenesis.

Another gene that has been reported to regulate human-
specific synaptogenesis is SRGAP2. In mice, there is only one
copy of Srgap2. It contains mainly three functional domains:
the F-BAR domains, RhoGAP domain, and SH3 domains. Loss
of Srgap2 in juvenile mice in vivo resulted in increased spine
density accompanied by decreased spine head width, which
commonly reflects the maturation of the synapse. The increase
in spine density will persist to adulthood (Charrier et al., 2012),

indicating that in mice, Srgap2 restricts the generation but
promotes the maturation of synapses. Srgap2 is required for
the maturation of both excitatory and inhibitory synapses at
the expense of spine density, and the spine density regulation
depends on both the F-bar domain and RhoGAP domain,
whereas the regulation of inhibitory synapses density on the
dendritic shaft depends on RhoGAP only (Fossati et al., 2016).
During evolution, SRGAP2 genes were duplicated partially
three times only in humans which are named SRGAP2B/C/D,
with SRGAP2C expressed at the highest level (Dennis et al.,
2012). The product of SRGAP2C only contains the F-BAR
domain and when overexpressed in mice, it phenocopies
the effects of loss of function of Srgap2A, suggesting its
inhibitory effects on Srgap2A. These results suggested that the
human-specific duplication generated product prolonged the
synaptogenesis of humans. Bioinformatic analysis suggested
that chromosome aberrations potentially disrupt the SRGAP2A
genes that are associated with patients with brain malformations
and psychiatric diseases, such as epilepsy, while the diploid
copy number of the duplicated gene SRGAP2C is highly stable
(Dennis et al., 2012).

Recently, it has been reported that in the human prefrontal
cortex (PFC), which is an evolutionarily expanded region during
evolution and has been reported to have a higher density
of synapses, CBLN2 (cerebellin 2 precursor) is differentially
expressed across mice, rhesus macaques, and human (Johnson
et al., 2009; Shibata et al., 2021b). Overexpression of CBLN2
in mice is sufficient to increase spinogenesis (Shibata et al.,
2021b). CBLN2 belongs to the cerebellin gene family and is
a secreted glycoprotein. It bridges the interaction between
neurexins and glutamate receptor σ2, and such a function
has been demonstrated in the cerebellum of mice to promote
synaptogenesis (Tao et al., 2018). Further examination revealed
that the differential expression pattern of CBLN2 across
species is due to the variations in its enhancers that can
be regulated by Sox5 and retinal acid signaling pathways
(Tao et al., 2018; Shibata et al., 2021a). Noteworthy, retinal
acid signaling pathways have been reported to be associated
with psychiatric disorders such as autism spectrum disorders
and schizophrenia (Wan et al., 2009; Moreno-Ramos et al.,
2015; Huang et al., 2020; Reay and Cairns, 2020). In
summary, this evidence not only provides novel insights
into the molecular mechanisms of synaptogenesis but also
strengthens the associations between abnormal synaptogenesis
and psychiatric disorders.

Concluding remarks and
perspectives

Synapse formation is fundamental for the precise wiring of
the nervous system. It is a coordinated process that mobilizes
various cellular and molecular events. Nevertheless, there are
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still many unanswered questions in the field. First, it remains
unclear how post-synaptic sites are precisely aligned to the pre-
synaptic releasing site. Although cell adhesion molecules have
provided insightful clues to this question, the in vivo functions
of these molecules are not always consistent with in vitro studies
and thus need to be clarified in greater detail. Currently, the
widely accepted criteria to define the importance of molecules
in synapse development are through genetically modified model
organisms or human genetic studies. Second, the temporal
sequence of the synapse assembly should be elucidated in more
detail. For example, does the synapse formation start from
the contact between pre- and post-synaptic sites, or is the
cytoskeleton system below the synaptic membrane organized
first to prepare a platform for the cell–cell contact? Technical
advances for multiplexing labeling and live cell imaging are
likely to provide more clues. Third, it is now agreed that
synapse formation is not random but rather stereotyped at least
in the developmental stage. How the specificity of synaptic
contacts is achieved remains largely an open question, especially
in mammals. It has been demonstrated in invertebrates that
alternative splicing of cell adhesion molecules governs the
contact-dependent synaptic specificity, and recently there has
been evidence that mice cell adhesion molecules, indeed,
govern the wiring specificity in the retina (Sanes and Zipursky,
2020) and hippocampus (Berns et al., 2018; Li et al., 2020).
Nevertheless, because of the complexity of the central nervous
system, especially the brain, further investigations are still
needed to get a comprehensive picture of this landscape.
Importantly, it has been shown that most neurological and
psychiatric disorders can be attributed to neural developmental
disorders, particularly anomalies in synapse development such
as synaptic transmission and dendritic spine morphogenesis
(Penzes et al., 2011; Zoghbi and Bear, 2012). Studies on how
genetic variants contribute to abnormal synapse formation still
have a long way to go. With the reduced cost of genomic
sequencing and advances in gene therapies, we will be able to

unravel the molecular genetics of synapse formation and provide
accessible and reliable ways to treat and cure neurological and
neuropsychiatric diseases (Sztainberg et al., 2015; Benger et al.,
2018; Hill and Meisler, 2021).
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