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Abstract

Motivation: Despite intense effort, it has been difficult to explain chaperone dependencies of

proteins from sequence or structural properties.

Results: We constructed a database collecting all publicly available data of experimental chaperone

interaction and dependency data for the Escherichia coli proteome, and enriched it with an

extensive set of protein-specific as well as cell-context-dependent proteostatic parameters.

Employing this new resource, we performed a comprehensive meta-analysis of the key determi-

nants of chaperone interaction. Our study confirms that GroEL client proteins are biased toward

insoluble proteins of low abundance, but for client proteins of the Trigger Factor/DnaK axis, we

instead find that cellular parameters such as high protein abundance, translational efficiency and

mRNA turnover are key determinants. We experimentally confirmed the finding that chaperone

dependence is a function of translation rate and not protein-intrinsic parameters by tuning chaper-

one dependence of Green Fluorescent Protein (GFP) in E.coli by synonymous mutations only. The

juxtaposition of both protein-intrinsic and cell-contextual chaperone triage mechanisms explains

how the E.coli proteome achieves combining reliable production of abundant and conserved pro-

teins, while also enabling the evolution of diverging metabolic functions.

Availability and implementation: The database will be made available via http://phdb.switchlab.org.

Contact: frederic.rousseau@kuleuven.vib.be or joost.schymkowitz@kuleuven.vib.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein folding is thought to be thermodynamically determined, and

thus to be a spontaneous reaction toward the most stable conform-

ational ensemble (Hartl and Hayer-Hartl, 2009; Itzhaki and

Wolynes, 2008). However, protein folding is often a kinetically inef-

ficient reaction, so that a relatively large proportion of proteins end

up in misfolded conformations (Borgia et al., 2015; Mayor et al.,

2000). As a result, many proteins require the assistance of chaper-

ones, i.e. specialized proteins that avoid or revert misfolding, to at-

tain their native conformation (Hartl et al., 2011). The main reason

for protein misfolding is the existence of conformational frustration,

i.e. segments of the primary polypeptide chain that favor non-native

conformations (Onuchic et al., 1996). A major source of conform-

ational frustration in proteins is the presence of sequence segments

called aggregation-prone regions (APRs) (Ganesan et al., 2016).

These segments display a preference for self-association by b-strand

interaction, thereby hampering the formation of native interactions.

Several chaperone families can recognize such linear APRs, thereby

neutralizing their ability to misfold and self-assemble (Rousseau

et al., 2006).

Even though the vast majority of protein domains (>95%) possess

at least one and often several APRs (De Baets et al., 2014; Ganesan

et al., 2016), proteins within a proteome display very differing

chaperone requirements and/or dependencies (Fujiwara et al., 2010;
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Hartl et al., 2011; Niwa et al., 2012). Furthermore, during physio-

logical stress, the ability of different proteins to be rescued by chaper-

ones is also variable. The question as to what protein-specific or

cell-context-dependent factors determine chaperone dependency is

still poorly understood. A deeper insight into chaperone triage

however is of fundamental importance, as protein homeostasis (i.e.

protein transcription, translation, folding and degradation) is the

major energy consumer of the cell and loss of protein homeostasis is

associated with diverse pathologies (Chiti and Dobson, 2017;

Sweeney et al., 2017). In addition, protein homeostasis is also limiting

as even small physiological stresses on protein homeostasis readily re-

sult in a decrease in cellular fitness.

The Escherichia coli protein homeostasis network has three

main chaperone systems that help in the folding/disaggregation of

polypeptides. These are the Trigger Factor (TF), DnaK/DnaJ and

GroEL/GroES systems (Mogk et al., 2011). TF is the first chaperone

that interacts with a nascent chain, while it is still attached to the

ribosome exit tunnel (Ferbitz et al., 2004). DnaK/DnaJ and GroEL/

GroES act downstream of TF (Tyedmers et al., 2010). DnaK/DnaJ

and TF share their substrates and one can compensate the absence

of the other (Deuerling et al., 2003). A combined deletion of both is

lethal above 30�C of growth (Deuerling et al., 1999). Both TF and

DnaK/DnaJ bind to hydrophobic sequence segments that are

exposed in the denatured, but much less in the native state of a pro-

tein, and DnaK in particular shows strong binding when a positively

charged amino acid occurs near to the hydrophobic segment (Mogk

et al., 1999; Rudiger et al., 2001). Unlike TF and DnaK/DnaJ,

GroEL/GroES is the only essential chaperone in E.coli at all growth

conditions (Houry et al., 1999). Apart from binding to a sequence

segment to promote folding as seen in TF and DnaK/DnaJ, GroEL/

GroES offers a microenvironment in its barrel-shaped structure

where the full polypeptide can undergo undisturbed folding from

rest of the cellular environment (Ellis, 1996). Among these chaper-

ones, the DnaK/DnaJ system in particular is involved in disaggrega-

tion of aggregated proteins (Ben-Zvi and Goloubinoff, 2001).

Until very recently it was mostly believed that chaperone depend-

ence (at least of cytosolic proteins) was mainly determined by intrin-

sic protein factors relating to protein solubility, stability and

foldability (Calloni et al., 2012; Niwa et al., 2009; Tartaglia et al.,

2010). The main underlying assumption is that there are ‘good’ pro-

teins that are mostly functioning in a chaperone-independent man-

ner and ‘bad’ proteins that require some and sometimes extensive

chaperone assistance to fold to their native conformation. This view

has recently found additional support with the work of Taguchi and

colleagues showing that the in vitro translation of the entire E.coli

proteome results in a bimodal distribution constituted of soluble

and insoluble proteins (Niwa et al., 2009). Dobson and colleagues

have also demonstrated that protein abundance and solubility cor-

relate and have argued that protein solubility has co-evolved to sat-

isfy physiological protein functional requirements suggesting that

not only protein folding is encoded in the protein sequence but also

the determinants for protein solubility and thus protein abundance

(Tartaglia et al., 2009; Tartaglia and Vendruscolo, 2009, 2010).

As a result, this model suggests that the most abundant proteins will

also be the best proteins in terms of foldability and solubility and

thus those that will be less dependent on chaperones for their fold-

ing. This interpretation appears to make sense from a point of view

of the cellular energy economy as chaperones could then concentrate

their activity on more ‘difficult’ but less abundant proteins, and this

both under normal physiological conditions as well as under stress.

However, other lines of research suggest that this protein-centric

view might not be entirely satisfactory. Indeed, it is now clear that

protein translation and protein folding rates are of the same order of

magnitude and that as a result both processes are often coupled

(Ahmed et al., 2018; O’Brien et al., 2014a; Pechmann and Frydman,

2013; Shiber et al., 2018). Thus, co-translational folding could fol-

low very different folding kinetics than the same protein folding

post-translationally (O’Brien et al., 2014a). This principle has been

confirmed by forced vectorial protein unfolding by atomic force mi-

croscopy showing different unfolding kinetics than free unfolding in

solution (Fowler et al., 2002). In addition, it is now also very clear

that both average translation rates between different proteins and

local translation rates within a protein can vary substantially which

again is expected to dramatically affect folding kinetics (Doring

et al., 2017; Oh et al., 2011). It is also becoming increasingly clear

that evolution uses synonymous mutations between rare and abun-

dant codons to modulate protein translation rates and thereby mech-

anisms of protein folding in vivo (Pechmann and Frydman, 2013).

The question therefore remains how protein-specific factors and

cellular context interface with chaperone machinery and determine

cellular proteostasis.

2 Materials and methods

The E.coli K12 reference proteome (4305 proteins) and the amino

acid sequences of the proteins therein were obtained from UniProt

(UniProt, 2008) (proteome ID: UP000000625). Chaperone depend-

ency classifications were determined as outlined in detail in Section

3 and mapped to the reference proteome. The dataset was then

expanded with a set of experimentally determined, transcriptome-

and proteome-wide features: protein solubility and cell-free expres-

sion yield were obtained from the in vitro translation analyses of

Niwa et al. (2009); intracellular protein abundance was acquired

from the mass-spectrometry-based integrated E.coli dataset from the

PaxDb database (Berman, et al. 2000) and from ribosome-profiling

data obtained by Li et al. (2014); the latter study also provided data

on mRNA abundance and translational efficiency; genome-wide

transcriptomic microarray analyses by Esquerre et al. (2016) pro-

vided a second mRNA abundance scale, as well as mRNA half-life

measurements. Protein melting temperatures (Tm) were obtained

from limited proteolysis and mass spectrometry analyses performed

by Leuenberger et al. (2017).

To assess nucleotide sequence characteristics, sequences were

obtained from the European Nucleotide Archive (Harrison et al.,

2019). Protein structures for the calculation of Contact Order (CO)

(Plaxco et al., 1998) were retrieved from the Protein Data Bank

(PDB) (Berman et al., 2000). When available, the optimal resolution

structure with a coverage of at least 40% was retrieved for each pro-

tein. Based on nucleotide sequence, primary amino acid sequence

and protein structures, the feature-space was expanded using a com-

bination of database cross-references, simple calculations and

advanced bio-informatics tools: aggregation propensity and APRs

were identified using the TANGO algorithm (Fernandez-Escamilla

et al., 2004); The WALTZ algorithm was employed to predict amy-

logenic regions (Maurer-Stroh et al., 2010); a-helix propensity in the

unfolded state was calculated using the thermodynamics algorithm

AGADIR (Munoz and Serrano, 1997). Intrinsic disorder calcula-

tions were performed using IUPred (Dosztanyi et al., 2005); the

EFoldMine method (Raimondi et al., 2017) was used to determine

for each protein the percentage of residues predicted to be

capable of initiating protein folding. To this end, residues were
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classified as being part of a foldon if their EFoldMine early folding

score exceeds 1.63; GRAVY (grand average of hydropathy) scores

were determined by calculating the average hydropathy per protein

using the method developed by Kyte and Doolittle (1982); average

decoding times were calculated based on decoding time scales

devised by Dana and Tuller (2014); isoelectric point values were

obtained as the average of different scales using the standalone ver-

sion of the Isoelectric Point Calculator (Kozlowski, 2016); Codon

Adaptation Index (CAI) was calculated using the CodonW software

(http://codonw.sourceforge.net//culong.html). Structural classifica-

tion and protein topology were mapped from the SCOPe

(Chandonia et al., 2017) and SUPERFAMILY (Pandurangan et al.,

2019) databases. Secondary structure content was calculated from

UniProt secondary structure annotations based on a consensus be-

tween PDB structures; relative CO (Plaxco et al., 1998) was calcu-

lated from the PDB structures by determining the average sequence

distance between amino acids that form native contacts, divided by

protein length.

Extensive methods are available in supplementary Materials.

3 Results

3.1 An inclusive classification of chaperone substrates
To construct a comprehensive multi-omics dataset on chaperone-

substrate interactions and/or dependencies in E.coli we compiled and

cross-referenced interaction information of three main bacterial chap-

erone systems, i.e. TF, DnaK/DnaJ and GroEL/GroES systems from

13 published large-scale experiments (Arifuzzaman et al., 2006;

Calloni et al., 2012; Chapman et al., 2006; Deuerling et al., 2003; Fan

et al., 2016, 2017; Fujiwara et al., 2010; Houry et al., 1999; Kerner

et al., 2005; Martinez-Hackert and Hendrickson, 2009; Mogk et al.,

1999; Niwa et al., 2012, 2016), which can be divided into several cat-

egories (Supplementary Fig S1A) based on the detection method.

Direct methods aimed at identifying protein–chaperone interactions

which was achieved by chaperone co-immunoprecipitation (Deuerling

et al., 2003; Houry et al., 1999; Mogk et al., 1999) or his-tag purifica-

tion (Arifuzzaman et al., 2006; Calloni et al., 2012; Kerner et al.,

2005; Martinez-Hackert and Hendrickson, 2009), followed by chap-

erone client identification by proteomics methods. Indirect methods

aimed at identifying chaperone dependencies of protein abundance

(Calloni et al., 2012), solubility (Fujiwara et al., 2010; Niwa et al.,

2012, 2016), degradation (Calloni et al., 2012) or aggregation

(Calloni et al., 2012; Chapman et al., 2006; Deuerling et al., 2003;

Martinez-Hackert and Hendrickson, 2009; Mogk et al., 1999) or

mRNA profiling (Fan et al., 2016, 2017) by comparing wild-type

E.coli lysates with chaperone deletion/depleted strains. Finally, the in

cellulo approaches are complemented with in vitro protein solubility

determination using cell-free E.coli translation systems complemented

or not with specific chaperones (Niwa et al., 2012, 2016).

These various approaches all have their advantages as well as

their specific technical limitations. Direct methods for instance have

the advantage of directly monitoring chaperone-client interactions

(Supplementary Fig S1A). On the downside, it is hard to distinguish

direct from indirect interactions by these methods, that are also

biased toward identifying stable interactions while being less suited

to detect transient chaperone–client interactions. Indirect methods

will encompass the effect of transient chaperone interactions but

observed effects have an even larger potential for being indirect or

affected by convoluted proteostatic adaptations to chaperone dele-

tion/depletion. Finally, the in vitro translation system, while being

the most reductionist system, is probably not fully conservative of

cellular protein translation (e.g. in terms of tRNA and amino acid

concentrations), which could affect translation rates and therefore

protein solubility.

Given this variety in methodologies, it is not surprising that these

different studies yield only poor overlap (Supplementary Fig. S1B).

Yet it could be argued that they all reveal relevant information on

the chaperone dependencies of the E.coli proteome. For this reason,

we here decided to merge all the data from these different studies in

one meta-dataset and evaluate the union of all the chaperone sub-

strates, rather than to focus on each method separately. This ap-

proach has the advantage of creating a more statistically powerful

dataset to explore determinants of chaperone dependence.

Furthermore, rather than figuring out which study is physiologically

the most relevant we considered that creating a meta-dataset would

be more alike amalgamating chaperone requirements under a broad

range of environmental/experimental conditions. As a result, our

meta-dataset not only yields a larger dataset, it also provides a larger

window of variation for proteostatic parameters, although it is of

course unclear what those are exactly. We here investigated whether

such an approach might therefore allow to reveal broader chaperone

client properties that are not necessarily apparent in a single experi-

mental setting and/or with fewer data points.

For the large dataset, we merged the data of the 13 aforemen-

tioned studies and used the EcoCyc annotation (Keseler et al., 2017)

of each protein to focus on cytosolic proteins, and excluded known

chaperones, proteases and ribosomal proteins and protein

translocation-related chaperones. This left a total of 2198 cytosolic

proteins, annotated for their chaperone dependencies (Supplementary

Fig. S1C). We classified this dataset in three different manners, which

were subsequently analyzed in parallel for various protein-specific

and cell-dependent proteostatic dependencies. First, we used a binary

classification of proteins as chaperone clients (1617 proteins amount-

ing to 75% of the dataset) versus chaperone-independent proteins

(535) to provide a broad picture of the strongest trends differentiating

chaperone–clients from chaperone-independent proteins. Second, we

also classified our dataset according to whether they were DnaK-

(1376), GroEL- (1125) or TF-dependent (993) or chaperone-inde-

pendent (535). This classification is by definition redundant as many

proteins (1217 out of 1617) are dependent of more than one chaper-

one. The aim of this classification is to evaluate whether chaperone-

specific proteostatic parameters still emerge, despite the high redun-

dancy in chaperone function. Finally, having a large enough dataset,

we also investigated multi-chaperone dependencies of protein clients

by defining eight main chaperone fluxes or pathways (Supplementary

Figs S1D and E and S2). These include (i) proteins showing no chaper-

one dependence in any of the experiments (N), (ii) TF-only clients (T),

(iii) DnaK/DnaJ-only clients (K), (iv) GroEL/GroES-only clients (G),

(v) both TF and DnaK/DnaJ clients (TK), (vi) both TF and GroEL/

GroES clients (TG), (vii) both DnaK/DnaJ and GroEL/GroES clients

(KG), (viii) proteins depending on all three systems (TKG). Finally, in

a ninth category we grouped proteins for which chaperone depend-

ence was identified but for which the effects were paradoxical, e.g.

whereby chaperone knock-down results in an increase in protein

abundance. According to this classification, among the 1617 chaper-

one clients �25% are client of a single chaperone, �35% of two

chaperones and �41% are clients of all three chaperone systems

(Supplementary Fig. S1D and E and Fig. 1). Overall, this meta-dataset

demonstrates that over the broad range of conditions of these various

experimental studies, �75% of the cytosolic E.coli proteome displays

some degree of chaperone dependence, in at least one of the condi-

tions tested. At the same time, the low overlap between the chaperone

client repertoires determined by different methods suggests many pro-

teins are conditional clients. The poor overlap could also result from
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technical limitations affecting sensitivity of detection as well as strain-

specific differences. Last, but not least, only a small subset of proteins

shows consistent independence from chaperones.

3.2 Chaperone clients have different unfolded state

structural properties
To assess whether protein-intrinsic biophysical and/or structural

protein parameters determine chaperone dependency we analyzed

the meta-dataset introduced above by comparing the statistical dis-

tribution of these parameters. Since a brief inspection of the

proteome-wide distributions of these parameters frequently revealed

bimodal and more complex distributions, we employed the non-

parametric Kruskal–Wallis test, followed by post-hoc pairwise

Wilcoxon testing with Bonferroni correction for multiple testing. As

a simple but robust correction for the additional multiple testing di-

mension coming from evaluating the large range of properties in our

database, we only considered as significant P-values below 10–4.

A first thing that stands out is that chaperone clients tend to be high-

ly abundant (Supplementary Fig. S2A), which on the one hand may

be expected from a biophysical point of view since protein aggrega-

tion is concentration-dependent, but it appears to be in contradic-

tion to the widely held belief that abundant proteins have evolved to

fold independently from chaperones for reasons of energy-efficiency

(Santra et al., 2017). Second, we confirmed the basic observation

that chaperone clients have a significantly lower solubility than

chaperone-independent proteins (Supplementary Fig. S2B, P-value

¼ 10–28), although there is a clear biphasic distribution in both

groups, meaning that, perhaps counterintuitively, there also appear

to be highly soluble chaperone clients. The enrichment of proteins of

lower solubility appears to be confirmed by significantly higher total

aggregation propensity as predicted by the TANGO algorithm

(Fernandez-Escamilla et al., 2004) (Supplementary Fig. S2C), and

the fact that chaperone clients have an average isoelectric point that

is close to neutral pH, which is known to result in a low colloidal

stability (Supplementary Fig. S2D). However, the higher total aggre-

gation propensity seems to be driven mainly by the length of the

polypeptides, rather than their intrinsic sequence features, as chaper-

one clients are strongly biased toward large proteins (Fig. 3E and F,

length P-value ¼ 10–53, mass P-value ¼ 10–54). Indeed, there is no

difference in the length-normalized intrinsic aggregation propensity

between chaperone clients and chaperone-independent proteins

(Supplementary Fig. S2G), or in the density of APRs detected by this

method (Supplementary Fig. S2H). Similar conclusions were reached

with the alternative prediction method WALTZ (Supplementary

Fig. S2I) or using a simple proxy like the hydrophobicity of the se-

quence as calculated by the GRAVY index (Supplementary Fig.

S2J). The lower solubility of larger proteins therefore seems to stem

from the size-associated accumulation of more aggregation-prone

sequences rather than from a higher density of APRs.

When comparing other parameters describing differences be-

tween the native structures of chaperone clients and chaperone-

independent proteins, we found no difference in the thermodynamic

stability as estimated from their Tm (Supplementary Fig. S3A), no

difference in their native a-helix (Supplementary Fig. S3B), or b-

sheet content (Supplementary Fig. S3C), nor in the level of intrinsic-

ally disordered regions predicted by IUPred (Dosztanyi et al., 2005)

(Supplementary Fig. S3D). However, the relative CO, a term

describing the topological complexity of a protein’s structure, is

lower for chaperone binders than spontaneous folders

(Supplementary Fig. S3E, P-value ¼ 10–12). This is surprising since

high relative CO was shown to correspond to slower spontaneous

folding in vitro (Dinner and Karplus, 2001), suggesting that the

rate-limiting steps in vitro and in vivo differ significantly. However,

the frequency of sequences predicted to be capable of initiating pro-

tein folding is significantly lower in chaperone-interacting proteins

(Supplementary Fig. S3F, P-value ¼ 10–12). This was predicted using

the EFoldMine method, based on early folding data from hydrogen–

deuterium exchange from NMR pulse-labeling experiments

(Raimondi et al., 2017). This coincides with a higher propensity for

a-helix in the unfolded state as predicted by the statistical thermody-

namics method AGADIR (Munoz and Serrano, 1997)

(Supplementary Fig. S3G, P-value ¼ 10–27), which was shown to be

able to slow down protein folding by stabilizing non-native local

structure in the unfolded state (Viguera et al., 1995) as well as in-

hibit b-aggregation (Fernandez-Escamilla et al., 2004). This suggests

that in vivo the critical steps for folding occur already in the

unfolded state: chaperone clients both display lack of early foldons

and a level of structural frustration slowing down aggregation kinet-

ics, that conspire to slow down their spontaneous folding, driving

them toward chaperones (Bandyopadhyay et al., 2017).

Despite these findings none of the differences in these simple

structural or biophysical parameters directly affecting protein stabil-

ity, folding and aggregation are sufficiently large to allow segregat-

ing chaperone clients from chaperone-independent proteins from

single factors. Reanalysis of these parameters considering either de-

pendence on a specific chaperone (four categories) or dependence on

multi-chaperone fluxes (eight categories) did not yield additional

resolution.

3.3 TF/DnaK-dependent fluxes handle abundant

proteins with high translation rates
As we cannot detect simple structural determinants of chaperone de-

pendence the question therefore arises whether the specific physio-

logical context in which folding occurs is a bigger determinant of

chaperone dependence. Contrary to in vitro equilibrium conditions,

protein folding and quaternary protein structure assembly largely

occurs co-translationally (Khushoo et al., 2011; Nicola et al., 1999;

Fig. 1. Graphical summary of the routing of cytoplasmic proteins to different

chaperones. Different chaperone fluxes and their corresponding classifica-

tions are indicated, as well as the percentage of proteins that were identified

by our analysis to follow a specific flux
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O’Brien et al., 2014a; Pechmann and Frydman, 2013). As the time-

scales of protein translation kinetics and protein folding kinetics are

of the same order of magnitude, they can interfere which each other

so that translation can affect protein folding efficiency (O’Brien

et al., 2014a; Pechmann and Frydman, 2013) and vice versa

(O’Brien et al., 2014a,b). As previously mentioned, we find a strong

enrichment of highly abundant proteins in chaperone clients. When

classifying by individual chaperones (Fig. 2A and B) we find this en-

richment of abundant proteins in all three categories (TF P-value ¼
10�50, DnaK P-value ¼ 10�32, GroEL P-value ¼ 10�18). However,

classifying by multi-chaperone fluxes (Fig. 2C) we find that the en-

richment of abundant proteins specifically occurs in the TF/DnaK-

dependent pathways, but not GroEL-only clients. The same observa-

tion is evident from mRNA abundance: High mRNA abundance is

enriched in chaperone clients (Fig. 2D and E, P-value ¼ 10�40), but

here as well this enrichment is strongly associated with TF/DnaK-de-

pendent fluxes (P-values ranging 10�35 to 10�67, Fig. 2F), but it is

absent from DnaK-only or GroEL-only dependent fluxes (Fig. 2F).

Interestingly, in the category showing paradoxical response to chap-

erone deletion, i.e. an increase in abundance of mRNA or protein,

both protein and mRNA abundance are also increased, which is

consistent with the role of TF as a molecular brake of translation-

associated folding (Merz et al., 2008). However, next to abundant

proteins, chaperone clients are enriched in fast translating proteins

(Fig. 2G and H), which again is strongly associated with TF-depend-

ent chaperone fluxes (P-values ranging 10�20 to 10�24, Fig. 2I) while

GroEL-only clients show a modest enrichment in slowly translating

proteins (P-value 10�3, Fig. 2I). Interestingly, we find that low

mRNA half-life is also strongly enriched in chaperone clients

(Fig. 2J and K), again along the TF/DnaK axis (Fig. 2L, P-values

ranging 10�26 to 10�42). This suggests that abundant and highly

expressed proteins require high mRNA turnover, possibly to main-

tain low-density polysomes and avoid interference between nearby

nascent chains on polysomes that could result in jamming. Finally,

these observations are confirmed by the fact that chaperone clients

also display a significant codon usage bias, as calculated from the

CAI (Lee et al., 2010), a score that increases with the proportion of

translationally optimal codons in a gene (Fig. 2M and N). This is

again attributable to TF/DnaK-dependent chaperone fluxes (P-val-

ues ranging 10�19 to 10�22, Fig. 2O). It is clear that all these param-

eters describing translation and abundance are intercorrelated, but

since there is no simple correspondence between the values, it makes

sense to analyze each feature separately. These findings suggest that

TF/DnaK-dependent fluxes handle highly abundant and therefore

often fast translated proteins, which is associated with both a high

codon bias and fast mRNA turnover.

3.4 Translation rates modulates the GroEL dependence

of topologically complex folds
As previously mentioned chaperone clients are significantly enriched

in insoluble proteins (Supplementary Fig. S2B) as well as abundant

proteins (Fig. 2A–C). Dissecting multi-chaperone dependencies how-

ever shows that these two properties distribute over different chap-

erone fluxes. TF/DnaK-dependent fluxes are enriched in abundant

but more soluble proteins (Fig. 2P–R), while GroEL/DnaK-depend-

ent fluxes are enriched in less soluble but non-abundant proteins

(Fig. 2R). Only clients that are dependent on all three chaperone sys-

tems display both high abundance and low solubility (Fig. 2C and

5R). Interestingly, the DnaK-only group (160 proteins) does not dis-

play any enrichment toward solubility, nor abundance (Fig 2C and

2R), confirming the status of DnaK as a universal chaperone which

can support the folding of TF-dependent abundant and fast translat-

ing proteins, as well as GroEL-dependent poorly soluble proteins.

As reported previously by other studies, the GroEL-dependence of

its clients could partially be explained by the fact that they are

enriched in proteins with complex, difficult-to-fold topologies that

require GroEL’s ‘Anfinsen cage’ to be able to fold. To analyze this,

we performed an enrichment analysis of superfamilies of the SCOP

classification (Andreeva et al., 2004) in our different fluxes over

proteome average. The superfamily level groups protein families

with a similar fold but no detectable evolutionary relationship,

whereas within a family the proteins are also evolutionarily related.

We represented these results in so-called ‘volcano plots’, which

show the fold enrichment of each SCOP superfamily versus the P-

value of each enrichment calculated by the Fisher-exact test, which

allows to identify significantly enriched folds in each chaperone flux

(Supplementary Fig. S4A–G). To perform this analysis we employed

the Superfamily database (Pandurangan et al., 2019) in which SCOP

annotations of entire proteomes can be obtained, using a method

based on a Hidden Markov Model that requires only the sequence

of each query protein (Gough et al., 2001). In agreement with previ-

ous reports, we only found significantly enriched topologies (super-

families) in the different fluxes involving GroEL/ES (Supplementary

Fig. S4A and E–G) (Houry et al., 1999) and not those depending on

DnaK/J or TF (Supplementary Fig. S4B, C, and E). Also, well within

expectations, most of the enriched superfamilies stem from the C

class in SCOP, which is the topologically most complex category

involving elements of a- and b-structure that occur interspersed in

the primary structure, although some exceptions confirm this rule

(Supplementary Table S1). This confirms the earlier proposed

notions that GroEL specializes in hard-to-fold topologies, but since

the fold enrichments are often fairly low, topogical selection is cer-

tainly not absolute and for each enriched superfamily, there are

also members that fold spontaneously. To resolve this, we had a

closer look at the previously reported TIM barrel family, which is

often cited as a topology in relation to GroEL clients (Houry et al.,

1999) as this is one of the most abundant folds in protein space, al-

though it falls just outside the enrichment criterion in our analysis

(log fold enrichment ¼ 1.47, P-value ¼ 5.10�5). Even though the

fold is conserved, its member proteins exhibit a high functional di-

versity [33 superfamilies in SUPERFAMILY database

(Pandurangan et al., 2019)] and often lack sequence similarities

even between proteins in the same functional class, making their

evolutionary history hard to track. Several members have been

shown to interact with GroEL/ES (Fujiwara et al., 2010; Hirtreiter

et al., 2009; Houry et al., 1999; Kerner et al., 2005), but also here

this dependence is not universal throughout the superfamily as

many TIM barrel proteins have been reported among the most

highly soluble proteins when expressed in vitro in a cell-free trans-

lation system in the absence of any chaperones (Fujiwara et al.,

2010; Niwa et al., 2016).

For example, enolase, an abundant enzyme of E.coli with with

two folds, a TIM barrel fold (c.1) and an enolase N-terminal

domain-like fold (d.54), shows spontaneous refolding upon dilution

from denaturant and regains more than half of its activity (�55%)

under standard conditions (Kerner et al., 2005). The solubility of

enolase is 101% in the cell-free (and chaperone-free) translation sys-

tem (Niwa et al., 2009). Although recently two different studies sug-

gested that folding rate and local frustration, similar to our findings

above, may play a role in chaperonin dependency (Bandyopadhyay

et al., 2017; Georgescauld et al., 2014), it remains unclear at present

what makes some TIM barrels obligate GroEL substrates and some

spontaneous folders. Since we found the GroEL/ES axis has an

4102 R.Ramakrishnan et al.



enrichment of slow translated proteins (Fig. 2I), we reanalyzed TIM

barrel proteins in E.coli to determine how well this property sepa-

rates obligate GroEL/ES and spontaneously folding TIM barrel pro-

teins in E.coli. To avoid noise and to obtain precise information we

restricted our analysis to an experimentally validated set of TIM bar-

rels with known GroEL/ES dependency. The list of proteins was

obtained from four different studies (Fujiwara et al., 2010; Kerner

et al., 2005; Niwa et al., 2012, 2016) and consists of 30 cytoplasmic
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Fig. 2. Distribution of cell-specific parameters and a comparison between different grouping strategies. Distributions are shown through a combination of box-

plots (in white) and violin plots (colored) as described in Supplementary Figure S2. Plots are arranged per parameter (one per row) with one grouping strategy

per column. The first column shows the simple grouping into chaperone-dependent folders (C) and spontaneous folders (N). The second column shows the

grouping of proteins into clients of each individual chaperone system (G for GroEL, K for DnaK, T for Trigger Factor and N for spontaneous folders). This grouping

is inherently redundant as one protein may be client to several chaperone systems. The third column depicts grouping into six different chaperone fluxes (G:

GroEL only, K: DnaK only, KG: DnaK and GroEL, T: Trigger Factor, TK: Trigger Factor and DnaK, TKG: Trigger Factor, DnaK and GroEL) as well as spontaneous

folders (N) and a group of proteins with paradoxical classification (S). (A–C) Abundance in p.p.m. determined by mass spectrometry (Wang et al., 2015). (D–F)

mRNA abundance (Li et al., 2014). (G–I) Average decoding time (Dana and Tuller, 2014), (J–L) mRNA half-life (Esquerre et al., 2016), (M–O) CAI (Lee et al., 2010).

(P–R) Solubility during cell-free translation (Niwa et al., 2009)
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TIM barrel proteins that are obligate GroEL/ES clients and 28 TIM

barrel proteins that can fold independently of GroEL/ES. The solubil-

ity obtained with cell-free translation of these two groups is funda-

mentally different (Supplementary Fig. S5A), confirming their

classification into obligate chaperone substrates and spontaneous

folders. The CAI already shows a difference between these two

groups at the gene level (Supplementary Fig. S5B), and when we eval-

uated the difference in decoding time (Supplementary Fig. S5C) or

translational efficiency (Supplementary Fig. S5D), we observed the

same trend as for GroEL substrates overall, that obligate GroEL client

TIM barrels show longer decoding times and lower translational

efficiency.

3.5 Validation through a reanalysis of cross-sectional

data
As an alternative approach, we repeated the key findings but

restricting the analysis to chaperone substrates that are consistent

between studies, which yields a much smaller but higher confidence

dataset. To this end, from the Supplementary Figure 1, B1, B2 and

B3, the proteins in the outer most layers are removed. These are the

proteins that were detected only once in a particular study and it

could be argued that they cannot be reliably classified to any cat-

egory, so removal of these protein from the chaperone clients

ensures a reduction in noise additional to the above grouping strat-

egies (especially the nine groups). After removing the proteins in the

outer layers, which in–total constitute 1453 proteins (or we put all

of them to a single group), the chaperone substrates dropped from

1617 to only 187, divided over the categories as follows; 72 (TKG),

19 (TK), KG (23), K (15), G (58), T (0), TG (0). We verified that for

the main findings we found the same conclusions than for the more

inclusive approach: mass (Supplementary Fig. S6A), solubility

(Supplementary Fig. S6B), abundance (Supplementary Fig. S6C),

decoding time (Supplementary Fig. S6D) and CAI (Supplementary

Fig. S6E).

3.6 Manipulating translation rates to modulate

chaperone dependencies
To observe the effects of translation rate on chaperone dependency

in an experimental setting, we employed synonymous mutations to

design three variants of GFP with identical amino acid sequences,

yet varying translational efficiencies. Apart from a wild-type ver-

sion, we designed a variant with low translational efficiency in

E.coli (‘slow’ variant), and high translational efficiency (‘fast’ vari-

ant). We designed these variants using the codon decoding time

scales devised by Tuller and colleagues (Dana and Tuller, 2014),

and replaced every codon with either its fastest or slowest translat-

ing counterpart, for the fast and slow variants, respectively

(Fig. 3A). To assess chaperone dependencies, these protein variants

were expressed in an in vitro translation system (NEB

PURExpressVR ) with or without the addition of either DnaK mix,

which consists of mixture of DnaK, DnaJ and GrpE or GroE mix,

which contains both GroEL and GroES. The use of a reconstituted

in vitro translation system offers the advantage of being completely

devoid of proteostatic machinery components such as molecular

chaperones and proteases, and therefore allows for a very clean in-

terpretation of the effects of the addition of individual chaperones.

To determine the effects of translation rate on solubility, proteins

were expressed for 1 h, after which protein solubility was assessed

(Fig. 3B and C). Clearly, increasing translation rate decreases soluble

protein expression under control conditions. DnaK addition does

not significantly increase solubility for the wild-type and slow

variants, but does do so for the fast variant, confirming our observa-

tion that abundant proteins with high translation rates rely more

strongly on DnaK. Addition of GroE mix however, does not signifi-

cantly increase solubility of any of the constructs.

To assess in cellulo effects of altered translation kinetics, the

same set of constructs was overexpressed in E.coli K12, and solubil-

ity assessed. Wild-type and slow GFP produce mostly soluble pro-

tein, resulting in diffuse fluorescence throughout cells (Fig. 3D–F).

Increasing translation rate however, renders half of the GFP pro-

duced insoluble and clustered into non-fluorescent inclusion bodies.

We verified the presence of GFP in these inclusions through a tetra-

cysteine tag, which was stained using ReASH-EDT (ThermoFisher;

Fig. 3F, inset). Co-overexpression of DnaK with fast GFP rescues

the protein from going insoluble, and results in completely diffuse

staining, in agreement with the in vitro results.

Together, these data show that increasing the translation rate of

GFP changes the dependencies of the protein, causing it to become

more dependent on DnaK for its solubility. In other words, merely

increasing the translation rate without affecting intrinsic properties

of the protein reroutes GFP from a mostly DnaK-independent flux

to a DnaK-dependent flux, showing that translation rate is in fact a

strong determinant for chaperone dependency, independent of

protein-intrinsic characteristics.

4 Discussion

Chaperone-interaction and -dependence data have previously been

generated for E.coli as well as for other organisms using a multitude

of different approaches. Overall these studies suffer from a lack of

overlap in chaperone clients which in turn made it difficult to iden-

tify general protein structural or proteostatic properties determining

chaperone dependencies. Rather than trying to figure out which ex-

perimental approach is most effective in uncovering physiologically

meaningful chaperone clients we here reasoned that all these studies

should be considered equally as they all map real chaperone depend-

encies. Rather than only introducing noise, the addition of these

different experimental results then is the equivalent of building a

dataset that explores the proteostatic landscape under a wider var-

iety of conditions. The immediate consequence of this approach is

that about 75% of the 2198 cytosolic E.coli proteins considered in

this dataset display some degree of chaperone dependence under at

least one of the experimental conditions while of course only a very

limited set is found to have the same chaperone dependencies in all

studies. This added advantage of statistical power also allows to

study multi-chaperone dependencies in more depth.

Our meta-analysis confirms that chaperone clients have a signifi-

cantly lower average solubility than chaperone-independent proteins

but also that some proteins are chaperone clients despite being high-

ly soluble. When looking for structural parameters we found not so

surprisingly that chaperone client are significantly enriched in larger

proteins. However, when normalizing for size we could not find any

difference in structural features defining the native state and its

stability. Thus, for an average protein domain size there is no signifi-

cant difference in density of aggregation-nucleating regions,

hydrophobicity, secondary structure, thermodynamic stability or

intrinsic disorder content between chaperone dependent and inde-

pendent proteins.

Interestingly however we found significant differences in struc-

tural parameters determining folding kinetics. Indeed, chaperone cli-

ents are enriched in proteins displaying a lower frequency in early

foldons, i.e. polypeptide segments having a high propensity to
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Fig. 3. Experimental analysis of codon usage in the chaperone dependence of GFP. (A) Decoding times of our GFP variants. Decoding time is shown per residue

position, with each panel representing one of the variants. (B) Representative western blot of the solubility analysis of GFP variants upon cell-free expression.

Bands show Total (T) and Soluble (S) fractions after centrifugation at 21 000g for 30 min. ‘þ Dnak’ and ‘þ GroEL’ indicate addition of either DnaK mix—containing

DnaK, DnaJ and GrpE—or GroE mix—containing GroEL and GroES—respectively. (C) Bar plots showing mean solubility as determined through quantification of

western blot bands in (B), whiskers indicate standard deviation (n ¼ 5). Statistical significance was determined through two-way ANOVA followed by Tukey’s

post-hoc test (‘**’ indicates P-value <0.0021). (D) Representative western blot of the solubility analysis of GFP variants upon overexpression in E.coli K12. Bands

show Soluble (S) and Insoluble (I) fractions after centrifugation at 17 100g for 15 min. ‘þ Dnak’ indicates co-expression of pKJE7, encoding DnaK, DnaJ and GrpE.

(E) Bar plots showing mean solubility as determined through quantification of western blot bands in (B), whiskers indicate standard deviation (n ¼ 4). Statistical

significance was determined through two-way ANOVA followed by Bonferroni’s post-hoc test (‘**’ indicates P-value < 0.0021, ‘****’ indicates P-value < 0.0001).

(F) Structured Illumination Microscopy images of E.coli after 3 h of expression of one of the GFP variants. GFP fluorescence is show in green. ‘þ Dnak’ indicates

co-expression of pKJE7, encoding DnaK, DnaJ and GrpE. White arrows indicate the position of non-fluorescent inclusion bodies. The inset in the top center panel

shows an overlay of intrinsic GFP fluorescence in green, and ReASH-EDT2 labeled GFP fluorescence in red

Differential proteostatic regulation of insoluble and abundant proteins 4105



readily adopt native-like structure in the unfolded state. At the same

time chaperone clients display a significantly higher helical tendency

in the unfolded state which often is not the native secondary struc-

ture and therefore indicative of some degree of structural frustra-

tion. Together the lack of early foldons and (non-native) helical

structural frustration in chaperone clients suggest less efficient co-

translational folding kinetics allowing for more efficient chaperone

interactions. Interestingly this contrasts with the maybe counterin-

tuitive observation that chaperone clients are significantly enriched

in proteins with low CO in their native structure, a feature which

correlates with faster protein folding kinetics under post-

translational equilibrium conditions. Together this might reflect the

selective co-optimization of chaperone clients for efficient chaperone

interactions during translation with an efficient post-translational

folding rate when chaperones leave these proteins to their own

devices.

Next to intrinsic protein structural parameters we also investi-

gated cell-context-dependent proteostatic parameters of chaperone

clients. Contrary to the structural parameters described above we

found that proteostatic parameters clustered according to specific

(multi)chaperone dependencies. TK-dependent clients are highly

enriched in fast translating and abundant proteins but have a

solubility distribution that is not significantly different from chaper-

one-independent proteins. However, G- and GK-dependent clients

display very low solubilities and protein abundance but have similar

translation rates as chaperone-independent proteins. Finally, only

proteins dependent on TKG display low solubilities together with

high abundance and/or translation rates. These findings suggest that

the proteostatic regulation of the E.coli proteome by TF, DnaK and

GroEL is organized along two different but sometimes also overlap-

ping needs: (i) avoiding misfolding and aggregation of abundant

and/or fastly translating proteins and (ii) avoiding misfolding and

aggregation of low solubility proteins. The specialization of the

TF/DnaK axis to protein abundance and fast translation rates as

found here is also confirmed by associated proteostatic parameters

such as high mRNA levels in conjunction with high mRNA turnover

rates (which very likely regulates polysome occupancy) as well as a

significant codon usage bias toward fast translating codons.

These findings do not contradict but rather complement previous

findings that chaperones and particularly GroEL favors topological-

ly complex folds with low abundance and solubility. Indeed here we

confirmed the low solubility and abundance of GroEL clients as well

as the enrichment of mixed a/b topologies for GroEL chaperone-de-

pendent clients. In addition however, comparing cell-dependent pro-

teostatic parameters for a set of validated GroEL obligate and

GroEL-independent TIM barrels, we found that obligate GroEL

TIM barrels not only have a significantly lower solubility but that

they also have a lower translation rate as well as a codon bias to-

ward slow translation, suggesting that here as well solubility, trans-

lation rate and codon biases are interrelated.

Finally, we recapitulated some of the above finding experimen-

tally by comparing WT GFP with both codon-optimized slow trans-

lating and fast translating GFP. While slow translating GFP does not

significantly differ from WT GFP due to the fact that WT is already

a slow translating protein, the situation is different for fast translat-

ing GFP. Both in vitro and in E.coli cells it was found that fast trans-

lating GFP was more abundant but also less folding competent,

forming nonfunctional inclusion bodies. However, complementing

fast GFP with DnaK did efficiently rescue GFP solubility while par-

tial less efficient rescue was also observed by GroEL.

Together our results therefore highlight the dual nature of chap-

erone regulation in E.coli which is both geared toward difficult to

fold insoluble proteins and also to abundant and fast-translating

proteins.
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