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Simple Summary: To elucidate the role of angiogenesis as a prognostic signature in gastric
cancer, we analyzed the expression level of 36 angiogenesis-related genes (ARGs) from Stomach
Adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). Consensus clustering analysis
showed two major angiogenesis-related types: one related to more aggressive clinicopathological
characteristics and worse survival, and the other related to lower tumor, lymph node, metastasis
(TNM) stage and better outcomes. Our analysis of TCGA with a least absolute shrinkage and selection
operator (LASSO) regression model identified 10 genes associated with overall survival in gastric
cancer patients. With this gene signature, we computed angiogenesis-related gene signature risk
scores for individual cancer patients that predicted overall and disease-free survival, which were
further validated in the independent dataset Asian Cancer Research Group (ACRG). Moreover,
an overall survival (OS)-related nomogram was established and had better performance in prognosis
prediction than TNM stage. Our analysis provides a comprehensive map of ARGs that can be serve
as useful biomarkers for gastric cancer.

Abstract: Increasing evidence indicates that angiogenesis is crucial in the development and progression
of gastric cancer (GC). This study aimed to develop a prognostic relevant angiogenesis-related gene
(ARG) signature and a nomogram. The expression profile of the 36 ARGs and clinical information
of 372 GC patients were extracted from The Cancer Genome Atlas (TCGA). Consensus clustering
was applied to divide patients into clusters 1 and 2. Least absolute shrinkage and selection
operator (LASSO) Cox regression analyses were used to identify the survival related ARGs and
establish prognostic gene signatures, respectively. The Asian Cancer Research Group (ACRG)
(n = 300) was used for external validation. Risk score of ARG signatures was calculated, and a
prognostic nomogram was developed. Gene set enrichment analysis of the ARG model risk score
was performed. Cluster 2 patients had more advanced clinical stage and shorter survival rates.
ARG signatures carried prognostic relevance in both cohorts. Moreover, ARG-risk score was proved
as an independent prognostic factor. The predictive value of the nomogram incorporating the risk
score and clinicopathological features was superior to tumor, lymph node, metastasis (TNM) staging.
The high-risk score group was associated with several cancer and metastasis-related pathways.
The present study suggests that ARG-based nomogram could serve as effective prognostic biomarkers
and allow a more precise risk stratification.
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1. Introduction

Gastric cancer (GC) is a global health problem, with more than one million people newly diagnosed
worldwide each year, almost two-thirds occurring in developing countries [1]. Most patients are
diagnosed at advanced stage, even with distant metastasis. Although improvements in systemic
therapy have been made, the mortality rate is still high, with five-year survival rates only around
30% worldwide [2]. In this respect, the initial response to anticancer treatment might diminish over
time due to acquired resistance, representing a major multifactorial problem [3]. In essence, GC is a
highly heterogeneous disease with different location types, histological types, molecular classifications,
and biological behavior [4–7]. However, conventional risk assessment is mainly based on tumor, lymph
node, metastasis (TNM) staging, which ignores the biological heterogeneity of the primary tumor.
Therefore, it is critical to develop a multi-dimensional model to identify patients at high risk and aim
to achieve personalized medicine in GC patients.

Genome analysis may offer new insights beyond TNM for characterizing tumor biology. In 2014,
The Cancer Genome Atlas (TCGA) defined four distinct subtypes of stomach adenocarcinoma
(Epstein–Barr virus (EBV) positive, microsatellite unstable (MSI), genomically stable (GS), chromosomal
instability (CIN)) through comprehensive genomic profiling analysis [6]. This novel and innovative
classification system described the genomic landscape of GC and provided a roadmap for patient
stratification as well as a direction of targeted therapy. Nevertheless, TCGA typing based on European
and American populations may not be applicable to Eastern populations. Therefore, selecting
representative gene sets for tumor classification and developing predictive models can provide new
ideas for more precise molecular subtypes and corresponding personalized therapy. Given the crucial
role of angiogenesis in GC, it seems very promising to use angiogenesis related genes (ARGs) to provide
effective risk stratification and identify potential targets for personalized therapeutic approaches.
Angiogenesis is an essential process in tumorigenesis, because its induction is indispensable to deliver
nutrients and evacuate metabolic waste [8]. During cancer development, several proangiogenic
cytokines are released by tumor cells, such as vascular endothelial growth factor A (VEGFA), fibroblast
growth factor (FGF) and hypoxia-inducible factor-1 (HIF-1), which contributes to the sprout and
formation of neovasculature in the tumor microenvironment (TME) [9]. Thus, it had been demonstrated
that anti-angiogenic therapies significantly improved prognosis in GC patients [10,11].

Based on comprehensive genome-wide gene expression profiles derived from TCGA, the present
study aimed to develop prognostic relevant ARG expression signatures and a nomogram. These results
were further validated in corresponding data from the Asian Cancer Research Group (ACRG).

2. Results

2.1. Cluster Analysis Based on ARG Expression Profiles

The ARG set was downloaded from “Gene Set Enrichment Analysis” (GSEA)
(hallmark-angiogenesis [12], which includes 36 genes upregulated during the formation of tumorigenic
blood vessels. To analyze the prognostic implication of ARGs in the training cohort (TCGA) of GC
patients, a consensus clustering analysis was performed. As shown in Figure S1a–c, k = 2 was the
optimal cluster number providing an excellent clustering stability in the training cohort. In Figure S1c,
most of samples are concentrated on the far left, middle and far right. Density is too high to display
every single sample. Therefore, the 372 GC patients from the training group were clustered into two
subgroups (cluster 1 and 2). PCA was further applied to demonstrate the distinction of gene expression
levels between the two subgroups, although the difference was not significant (Figure 1A). Meanwhile,
the composition of the four different subtypes identified by TCGA in these two clusters was also
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analyzed (Figure 1B). Compared with cluster 2, the proportion of CIN and EBV-positive tumors in
cluster 1 was higher, while GS and MSI subtypes were less.

Figure 1. Two clusters based on the expression level of 36 angiogenesis-related genes (ARGs) in
The Cancer Genome Atlas (TCGA) cohort. (A) Principal component analysis of the two clusters
(cluster 1 and 2) in the TCGA cohort. (B) The proportion of different TCGA molecular subtypes in
the two clusters. EBV: Epstein–Barr virus, MSI: microsatellite unstable, GS: genomically stable, CIN:
chromosomal instability.

Furthermore, the association between the clinicopathological characteristics and grouping was
tested. Cluster 2 patients are more likely to have tumors with a higher grade (p = 0.004), a higher T
stage (p = 0.002) and showed metastases significantly more often (p = 0.019). Gene expression analysis
revealed that ITGAV, FSTL1, LUM, POTN, VCAN, COL5A2, COL3A1, TIMP1, SPP1 and OLR1 were
overexpressed in cluster 2 patients compared to patients of cluster 1 (Figure 2).

In this respect, the survival analysis showed that cluster 1 patients had significantly increased
overall survival (OS) rates than patients of cluster 2 (p = 0.02; Figure 3).

2.2. Identification of ARGs with Prognostic Value and Establishment of Prognostic Models

In order to develop powerful predictive models based on ARGs, univariate Cox regression
analysis was conducted. This analysis screened out 17 OS-related ARGs in the TCGA cohort (p < 0.05;
Figure S2a). Subsequently, least absolute shrinkage and selection operator (LASSO) Cox regression
analysis was performed to further analyze these 17 genes (Figure S2b,c). This analysis determined ten
genes (ITGAV, STC1, APOH, SLCO2A1, NRP1, POSTN, VTN, SERPINA5, LPL, KCNJ8), which were
used to build the prediction model (Figure 4A). Thus, the prediction risk score formula reads as follows:
ITGAV×0.16310506+STC1×0.11382763+APOH×0.09369982+NRP1×0.05749847+POSTN×0.04985928+

VTN×0.04265286+SERPINA5×0.03821238+LPL×0.03609897+KCNJ8×0.01472726. The prediction risk
score of each TCGA patient was calculated, and patients in the training set were divided according
to their risk score (median 7.239 in TCGA, median 1.483 in ACRG) into high- and low-risk groups.
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Kaplan–Meier survival analysis revealed that patients of the high-risk score group had highly
significant shorter OS rates than those in the low-risk score group (p < 0.0001) (Figure 4B). Receiver
operating characteristic (ROC) analysis of the predictive signature for 5-year OS showed an area under
the curve (AUC) of 0.750 (Figure 4C).

Figure 2. Heat map of clinicopathological features of the two subtypes (cluster 1 and 2).
The overexpressed genes (ITGAV, FSTL1, LUM, POTN, VCAN, COL5A2, COL3A1, TIMP1, SPP1
and OLR1) in cluster 2 are highlighted. (T: primary tumor, T1: tumor invades the lamina propria,
the muscularis mucosa, or the submucosa, T2: tumor invades muscularis propria layer, T3: tumor
invades the subserosa layer without invasion of the serosa and adjacent structures, T4: tumor penetrates
the serosa or adjacent structures, N: regional lymph node, N0: no regional lymph node metastases, N1:
metastasis in 1-2 nodes, N2: metastasis in 3–6 nodes, N3: metastasis in more than 7 nodes, M: distant
metastasis, M0: no distant metastasis, M1: distant metastasis).

Figure 3. Kaplan–Meier survival curves for cluster 1 and 2 of the TCGA dataset. Overall survival of
cluster 1 and cluster 2 (p = 0.02).
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Figure 4. Development of overall survival (OS) prediction signature with angiogenesis related genes
(ARGs). (A) The final 10 gene signatures with corresponding coefficients. (B) The survival analysis
of the high- and low-risk score groups stratified based on the median of risk scores calculated by OS
prediction risk score formula. (C) The receiver operating characteristic (ROC) curve for assessing the
predictive ability of the 10-ARG signature.

Furthermore, the above-mentioned prediction risk score was tested for its predictive value
regarding disease-free survival (DFS) in the TCGA cohort. Figure 5A highlights DFS which proved to
be highly significant different between high and low-risk score groups (p < 0.05). The ROC analysis of
the ARG signature model for 2-year DFS revealed an AUC of 0.673 (Figure 5B).

2.3. Validation of Prognostic ARG Signatures with External Dataset

To evaluate the prognostic power of the identified ARG signatures from the training data set,
an independent dataset (ACRG cohort) was introduced as validation group. The established prediction
risk score formula was used to calculate the risk score of each sample in the validation cohort. Similarly,
the validation cohort was divided into high- and low-risk score groups using the corresponding median
risk score as the cut-off value. As shown in Figure 6, the outcome of patients in the high-risk score
group was significantly worse compared to patients in the low-risk score group. The risk score proved
to be highly significant for OS (p < 0.001) (Figure 6A) and for DFS (p < 0.001) (Figure 6B).

2.4. ARG Signatures Independently Predict OS and DFS

To further confirm whether the newly generated risk score of the ARG signature was an
independent risk factor in GC patients, various clinicopathological parameters were tested in both
cohorts. In order to make the results easier to interpret and better present, patients were divided into
two groups by cut-off points for age, stage and risk score based on previously published studies [13,14].
In the TCGA cohort, the univariate analysis revealed that age (p = 0.02), gender (p = 0.03), tumor stage
(p = 0.004), and risk score (p < 0.001) were significantly associated with OS (Table 1a). Multivariate
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Cox regression analysis proved age, tumor stage, and risk score to be independent risk factors of OS
(Table 1a).

Figure 5. The performance of disease-free survival (DFS) in TCGA cohort based on the 10-ARG
signature. (A) The DFS analysis of the high- and low-risk score groups stratified based on the median
of risk scores calculated by 10-ARG signature prediction risk score formula. (B) The ROC curve for
assessing the accuracy of DFS.

Figure 6. The prognostic performance of ARG signature risk score in the validation set.
(A) Kaplan–Meier curve of overall survival of the ACRG cohort. (B) Kaplan–Meier curve of disease-free
survival of the ACRG cohort.
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Table 1. Independent prognostic factors for overall and disease-free survival in gastric cancer patients.
Univariate and multivariate Cox regression analysis of the relationship between clinicopathological
features (including the risk score) and overall survival and disease-free survival of patients in the TCGA
(a and b) and ACRG (c and d) datasets.

Variable

Overall Survival in TCGA

Univariate Analysis Multivariate Analysis

Hazard Ratio (HR) (95%CI) p-Value HR (95%CI) p-Value

Age (≥60 vs. <60 years) 1.63 (1.10−2.42) 0.02 1.62 (1.09−2.41) 0.02

Gender (male vs. female) 1.51 (1.03−2.21) 0.03 1.43 (0.95−2.04) 0.09

Stage (III+IV vs. I+II) 1.70 (1.18−2.43) 0.004 1.64 (1.14−2.35) 0.008

Risk score (high vs. low) 1.99 (1.39−2.83) <0.001 1.84 (1.29−2.63) <0.001

(a)

Variable

Disease-Free Survival in TCGA

Univariate Analysis Multivariate Analysis

HR (95%CI) p-Value HR (95%CI) p-Value

Age (≥60 vs. <60 years) 0.97 (0.64−1.47) 0.89 1.10 (0.72−1.67) 0.67

Gender (male vs. female) 1.82 (1.14−2.91) 0.01 1.76 (1.10−2.81) 0.02

Stage (III+IV vs. I+II) 1.44 (0.96−2.17) 0.08 1.37 (0.91−2.07) 0.13

Risk score (high vs. low) 1.98 (1.32−2.98) <0.001 1.81 (1.21−2.72) 0.004

(b)

Variable

Overall Survival in ACRG

Univariate Analysis Multivariate Analysis

HR (95%CI) p-Value HR (95%CI) p-Value

Age (≥60 vs. <60 years) 1.26 (0.89−1.77) 0.19 1.58 (1.11−2.24) 0.01

Gender (male vs. female) 0.92 (0.66−1.28) 0.61 0.88 (0.63−1.23) 0.45

Stage (III+IV vs. I+II) 3.41 (2.34−4.97) <0.001 3.23 (2.21−4.72) <0.001

Risk score (high vs. low) 1.83 (1.32−2.54) <0.001 1.72 (1.23−2.41) 0.002

(c)

Variable

Disease-Free Survival in ACRG

Univariate Analysis Multivariate Analysis

HR (95%CI) p-Value HR (95%CI) p-Value

Age (≥60 vs. <60 years) 1.09 (0.76−1.55) 0.64 1.33 (0.84−2.12) 0.23

Gender (male vs. female) 0.98 (0.68−1.42) 0.93 0.87 (0.54−1.40) 0.56

Stage (III+IV vs. I+II) 4.07 (2.62−6.33) <0.001 3.76 (2.41−5.85) <0.001

Risk score (high vs. low) 1.95 (1.35−2.80) <0.001 1.68 (1.15−2.44) 0.007

(d)

In addition, univariate and multivariate analyses indicated that a high-risk score was independently
correlated with significantly poorer DFS (Table 1b). Consistent with the findings in the TCGA dataset,
these were further validated by the ACRG cohort (Table 1c,d).

2.5. Construction and Validation of a Nomogram Based on ARG Signatures

To develop a clinically applicable tool easily assessing the prognosis of GC patients, a graphic
nomogram was established. The nomogram was based on the training set predicting OS. The integrated
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clinicopathological features of the nomogram included age, gender, T stage, N stage, M stage, lymph
node ratio (LNR) and the newly generated risk score (Figure 7A). ROC analysis and C-index were
used to evaluate the prognostic value of the nomogram. The AUCs of the predictive value of the
nomogram for the 3-, and 5-year OS in the TCGA dataset were 0.725 and 0.753, respectively (Figure 7B).
The C-indexes of the nomogram in the training set and the validation set were 0.671 (95% CI; 0.62–0.73)
and 0.704 (95% CI; 0.66–0.75), respectively.

Figure 7. Establishment, assessment and validation of the nomogram to predict overall survival (OS)
in gastric cancer patients. (A) The OS-related nomogram was developed in the TCGA cohort, with age,
gender and T, N, M stage, lymph node ratio (LNR) and risk score incorporated. The different values
for each parameter correspond to a point at the top of the axis. Points for all parameters are added
and translated into the probability of 3- and 5-year survival. ROC curve of the OS-related nomogram
at 3- and 5-year (B). Decision curve analysis of the OS-related nomogram at 3- (C) and 5-year (D).
Net benefit of TNM staging alone and the combination of nomogram and TNM staging in making a
more precise prediction of OS. “None” indicates that all samples were negative without intervention
and the net benefit was 0. “All” indicates that all samples were positive with intervention.

Additionally, the calibration plots showed a stable consistency between the nomogram-predicted
probability and actual observation in terms of the 3- and 5-year OS in the TCGA cohort (Figure S3a,b).
In addition, the nomogram was further tested in the validation group in terms of the calibration plots.
This analysis demonstrated a significant correlation with the training results (Figure S3c,d).

Decision curve analysis (DCA) of the nomogram was performed in the TCGA cohort and
demonstrated that the nomogram model had an excellent net benefit for 3- and 5-year OS (Figure 7C,D).
Compared to the conventional TNM staging system, the nomogram built with the ARG signature risk
score had a better performance in predicting OS. Moreover, the comparison between the nomogram
with the ARG risk score and a nomogram that only contained the clinicopathologic features was
also conducted. Compared with the nomogram with only clinicopathological factors, the ARG
risk score-based nomogram has better discrimination and calibration (Figure S4a–c). Moreover,
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the nomogram based on the risk score slightly added more net benefit than the one without the risk
score or the model based on clinicopathological factors, and the threshold probability ranged from 0.6
to 0.75 (Figure S3e,f). Therefore, these results showed that the nomogram based on ARGs risk score
can be used as an effective method to predict prognosis of patients in clinical practice.

2.6. Functional Analysis of the ARG Signatures

To elucidate the potential influence of the ARG-related classifier on the expression profiles of GC,
GSEA was applied to compare the high- and low-risk groups. Based on the OS-related ARG signature
risk score, the gene sets of the high-risk group were mainly enriched in cancer- and metastasis-related
pathways, including KEGG (pathways in cancer, regulation of actin cytoskeleton and focal adhesion)
and REACTOME (pathways of degradation of the extracellular matrix and signaling by VEGF)
(Figure 8A–E).

Figure 8. Gene set enrichment analysis identified biological pathways and processes associated with a
high-risk score within the TCGA cohort. (A–E) Selected enrichment plots of canonical pathway gene
sets between overall survival-related high- and low-risk score groups based on the 10-ARG signature
prediction model.

3. Discussion

Substantial evidence suggests that angiogenesis is involved in processes of carcinogenesis,
progression, and metastasis of GC. Moreover, results from translational research on angiogenesis in GC
indicate that several angiogenesis-related factors might be prognostically relevant [9,15–17]. Although
analyzing the expression levels of a single angiogenetic gene is convenient with immunohistochemistry
and ELISA [17,18], multiple gene signature analysis reflects the complex interaction of various
parameters affecting angiogenesis in tumor pathology. Therefore, this multigene approach might allow
the characterizing of tumor biology, thereby supporting clinical decision-making in times of cancer
precision medicine.

In this study, consensus clustering according to the expression levels of 36 ARGs identified
two innovative subtypes, clusters 1 and 2, significantly associated with clinicopathological features.
However, the PCA showed that there is not a clear difference between the two clusters. The main reason
is that this algorithm may miss some information as compared to the original features. Moreover,
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the principal component is obtained by dimension reduction, which leads to a negligible loss of
information during the analysis process. The TCGA molecular subtypes were analyzed according
to the clustering. This analysis revealed that cluster 2 patients more often had GS and MSI tumors,
but fewer EBV associated carcinomas. GS and MSI tumors are characterized by several important
molecular alterations, such as RHOA (Ras Homolog Family Member A) mutation, CLDN18-ARHGAP26
fusion, PIK3CA and EGFR (Epidermal Growth Factor Receptor) mutations [19]. In cluster 2, GC
expressed higher levels of ARGs, therefore it can be inferred that anti-angiogenesis therapy might
have a better response to GS and MSI subtypes, which needs to be confirmed in future studies. Most
importantly, in both cohorts (TCGA, ACRG) a significant difference in overall survival was evident
between the two novel subtypes. Moreover, gene sets closely related to the high-risk group were
further explored, which might help to understand the poor prognosis of patients in the high-risk group.
Nonetheless, because this study focused on ARGs, this pre-selection introduced a bias to GSEA. The
present study revealed that the expression profiles of the high-risk score group significantly correlated
with an increased expression of metastasis-related processes, such as degradation of the extracellular
matrix (ECM), focal adhesion and VEGF signaling [20,21]. In this respect, a significant relationship
between the immune microenvironment and pathological angiogenesis in GC has previously been
reported [22]. The ECM is a key component of the tumor and cancer progression, due to it acting on
endothelial cells [23]. Besides, integrin-mediated adhesion plays an important role during angiogenesis
and protects the integrity of endothelial cells [24]. Thus, the identified ARG pathways add information
on tumor biology further characterizing gastric cancer.

In addition to the above-mentioned gene clusters, an ARG-based risk score has been established.
Five (ITGAV, POSTN, VTN, STC1, NRP1) of the identified genes were previously investigated in
GC. The present findings suggest that ITGAV was the main contributing gene because of the highest
coefficient. Wang et al. showed that ITGAV was highly expressed in GC, which was associated
with advanced tumors and deteriorated survival rates [25]. Moreover, high ITGAV expression rates
correlated with deteriorated survival rates in breast cancer [26], liver cancer [27] and osteosarcoma [28].
Meanwhile, an ITGAV antagonist (cilengitide) was proven to inhibit angiogenesis and metastasis in
breast cancer [26].

As mentioned above, the ARG signature correlated with pathways associated to the degradation
of ECM. The ARG signature included two ECM related genes (VTN, POSTN) and high expression
rates of these genes are associated with worse outcome in multiple malignancies [29,30]. VTN, as a
downstream target of VEGFR2, has been reported to be related to promoting the metastasis and
proliferation of GC [31]. POSTN binds to integrins and by promoting adhesion and migration of
epithelial cells it is involved in metastasis formation and further supports invasion of GC cells [18].

Furthermore, two genes (STC1, NRP1) encoding glycoproteins are also included in the ARG
signature. STC1, involved in various cancer-related signaling pathways [32], induces VEGF expression
in GC cells [17] and NRP1 induces proliferation, migration, and metastasis of GC cells [33]. Additionally,
in patients with GC, the overexpression of STC1 was significantly associated with higher proliferation
rates, chemoresistance, metastasis formation, and deteriorated survival rates [34]. More importantly,
STC1 and NRP1 are both connected with the VEGF/VEGFR2 pathway [35,36]. In this regard, the present
results suggest that the identified ARG signature was closely related to a higher malignancy of GC.
Therefore, the ARG signature might be an easily applicable tool supporting clinical decision-making.

In the present study, the newly established risk score was an independent prognostic factor
in multivariate analysis. The AUCs of the ARG signature was 0.750. Previously published gene
expression-based scores for the prognosis of GC only reached an AUC of 0.671 [37]. Notably, to establish
prediction signatures and models, which provided more insightful prognosis analyses than other
studies, two databases with complete clinical follow-ups were used in the present analysis. Additionally,
the evaluated model proved to be significant in both the training and the validation cohort. Thus, the
present study provides an additional tool in achieving a more precise diagnosis and could provide
support in treatment decision making.



Cancers 2020, 12, 3685 11 of 15

In an attempt to evaluate the ARG-based risk score in a clinical setting, a nomogram was
established. Nomograms combine multiple prognostic significant factors, and thus nomograms have
become a powerful and easy-to-use tool to assess the survival probability of cancer patients [38,39].
Building a nomogram can transform statistical predictive models into a single numerical estimate
of a patient’s outcome, which is tailored to the background of each patient. The nomogram of the
present study, combining age, gender, TNM stage, LNR and ARG risk score, yielded a favorable
predictive performance. Out of the included parameters, age, was the most significant prognostic
marker. A Surveillance, Epidemiology, and End Results (SEER) data-based study showed that younger
GC patients had improved survival rates after surgery than elderly patients [40]. This might be in part
due to the fact that younger patients had a better tolerance to surgery, chemotherapy, and recovered
faster [41]. LNR was also introduced into the two nomograms, which had been proposed as a
sophisticated prognostic marker reflecting the quantity of metastatic lymph nodes as well as the quality
of lymph node dissection [42]. It has been proven that LNR can accurately identify patients at high-risk
of recurrence [43]. The TNM staging system represents the standardized benchmark to categorize
patients with GC, evaluate prognosis, and recommend the optimal treatment [44]. The impact of tumor
heterogeneity on individual prognoses is still difficult to assess. Thus, the addition of the ARG risk
score made the nomogram more reliable because it was associated with outcome in both training
set and validation set. Although the increase in net benefit was not clearly obvious compared to the
nomogram without the risk score, the ARG risk score-based nomogram had a better performance in
discrimination and calibration. Thus, the present findings suggest that the established nomogram
has a better predictive value than the current TNM staging system and the nomogram that excludes
the ARG risk score. The threshold probability ranged from 0.6–0.75 and the ARG-based nomogram
was superior to a model based on clinicopathological features alone. In this respect, the three-year
and five-year survival rates in the TCGA-STAD cohort were 60.8% and 58.8%, respectively. Therefore,
the present findings suggest that the predictive value of the ARG risk score model might be beneficial
regarding the three-year survival rate of GC patients compared to the model excluding the risk score.
However, this difference is not consistent regarding the five-year survival rate.

To the best of our knowledge, this is the first and most comprehensive study identifying prognosis
related ARGs and developing prognostic relevant nomograms in patients with GC. However, there
are limitations as well. Firstly, this was a retrospective study for the establishment of gene signatures
based on public databases [6,7]. Moreover, TCGA is the world’s largest and richest collection of
genomic data. The clinical data and genomic information are comprehensive and reliable. It also
contains the gastric cancer database with the largest sample size. Nonetheless, these databases are
well characterized, and the signatures proved a significant benefit in both cohorts. Secondly, this
analysis has been conducted in silico, introducing a bias. Correction for multiple testing has not
been conducted, therefore the results of the present study have to be interpreted with caution. This
theoretical approach which seems to provide an additional benefit should be further tested in a well
characterized prospective collective. Furthermore, subsequent studies should focus on information
about systemic treatment, response rates, and acquired resistance to therapy. In particular, resistance
represents a major multifactorial problem leading to deteriorated survival rates [3].

4. Materials and Methods

4.1. Gene Expression and Clinical Data Acquisition

The level III gene expression profiles and corresponding clinical information, such as TNM
classification, age, gender, overall survival, of patients with stomach adenocarcinoma were downloaded
from the TCGA data portal as a training set, which contained 372 stomach adenocarcinoma samples
and 35 adjacent normal tissues after excluding incomplete cases. The disease-free survival (DFS) rates
of the TCGA STAD (stomach adenocarcinoma) cohort were obtained from the cBio Cancer Genomics
Portal [45].
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As a validation set, data of 300 GC patients from ACRG were downloaded, which included gene
expression data and follow-up information (overall survival (OS) and DFS). All gene expression data
were log2-transformed.

4.2. Consensus Clustering Analysis

In order to investigate the function of ARGs in GC, we divided tumor samples into different
clusters with “ConsensusClusterPlus” (50 iterations, resample rate of 80%). Thereafter, PCA (principal
component analysis) was used to validate the reliability of clustering with the R package “ggplot2”.
PCA (principal component analysis) was used to validate the reliability of clustering with the R package
“ggplot2”. Heatmaps were generated using the package “pheatmap” in the statistical programming
language R (developed by RC Team, Vienna, Austria) [46].

4.3. Development and Validation of Prognostic Signatures Based on ARGs

The OS-related ARGs found to be statistically significant in univariate Cox regression analysis
were then used in least absolute shrinkage and selection operator (LASSO) regression analysis with the
R package “glmnet”. In order to prevent overfitting effects of the model, the penalty regularization
parameter λ was determined via the ten-fold cross validation. Ten ARGs were selected to build the risk
signature based on the optimal lambda value and the corresponding coefficients. The risk score of
ARG signature for each patient was calculated as follows:

Risk score =
n∑

i=1

(Expi ∗ βi) (1)

where n is the number of selected ARGs, Expi is the expression value of gene i, and βi is the coefficient
of gene i generated from LASSO regression analysis. All patients were divided into high- and low-risk
groups by the median risk score.

Finally, Kaplan–Meier analysis was used to evaluate the differences of OS and DFS between high-
and low-risk groups in the two cohorts. This analysis was performed with R software based on the R
package “survival” and “survminer”.

4.4. Construction and Evaluation of the Nomogram

A nomogram and calibration plots were established by utilizing the “rms” package in R software.
The time-dependent receiver operating characteristic (ROC) curves were used to determine the
prognostic performance of the gene signature and nomogram model with R package “pROC”.
The calculation of Concordance index (C-index) is to estimate the probability that the predicted result
is consistent with the actual outcome. Calibration curves were plotted to assess the discrimination of
the nomogram and the 45◦ dotted line indicates the optimal prediction. In addition, decision curve
analysis (DCA) was performed to evaluate the clinical usefulness and to compare the established
nomogram with the conventional TNM staging system and the nomogram without the ARG risk score.

4.5. Gene Set Enrichment Analysis (GSEA)

GSEA was used to identify the expression of differentially expressed gene sets between high- and
low-risk score groups of the two ARG signatures through MSigDB C2 CP: Canonical pathways gene
set collection (1485 gene sets available). GSEA was conducted by the JAVA program [12]. Gene set
permutations were conducted 1000 times for each evaluation.

4.6. Statistical Analysis

Statistical analyses were performed using R software v4.0.0 (R Foundation for Statistical
Computing, Vienna, Austria). All tests were two-tailed and p-values < 0.05 were considered statistically
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significant and p-values < 0.001 were considered highly significant. FDR (false discovery rate) q < 0.05
was considered statistically significant.

5. Conclusions

In conclusion, the present study demonstrated that the identified ARG signature was a reliable
prognostic and predictive marker for OS and DFS in patients with GC. Furthermore, the ARG-based
risk score and the nomogram were independent prognostic factors. These additional and easily usable
tests might facilitate personalized treatment and guide clinical decisions. In addition, an ARG-based
stratification of patients with gastric cancer might improve the value of clinical trials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3685/s1,
Figure S1: Consensus clustering analysis of the angiogenesis related genes in the TCGA cohort. Figure S2:
Univariate Cox and LASSO Cox regression analysis for OS-related ARGs. Figure S3: The calibration plots and
decision curve analysis of the OS-related nomogram in two datasets. The calibration plots for predicting OS at
3. Figure S4: The discrimination and calibration of the nomogram without ARG risk score. ROC curve of the
nomogram only contains clinicopathological features at 3- and 5-year.
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