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The interplay between Mn and Fe
in Deinococcus radiodurans triggers
cellular protection during paraquat-
Induced oxidative stress
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The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation.
According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe

ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-
binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used
synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon
stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that
manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-
dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron
delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum
formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal
homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.

The bacterium Deinococcus (D.) radiodurans, is a highly resistant organism to several conditions, namely radia-
tion, desiccation, or oxidation. The complex mechanisms behind the resistance to such stresses remain unclear,
although they have been the focus of several studies?. What is proposed is that D. radiodurans avoids cell death
by protecting its proteome against oxidative stress>*, using a high intracellular Mn/Fe ratio®*. Manganese pro-
tective role is not only associated with an enzymatic system (e.g., as a cofactor of Mn-superoxide dismutase,
MnSOD) but also with a non-enzymatic system relying on the accumulation of small Mn?*-antioxidant com-
plexes”®. Manganese forms complexes with small molecules, such as orthophosphate, and pyrophosphate, and
these can react with reactive oxygen species (ROS) formed under stress conditions®!!.

Although neither the homeostasis of manganese nor the intracellular localization and formation of the
Mn*"-complexes are yet fully understood, D. radiodurans high cellular manganese concentration was associated
with the existence of electron-dense granules located at the center of its nucleoids*. These electron-dense granules
are also known as phosphate granules and were reported in D. radiodurans by several publications [e.g.">1?].
The exact composition of these granules is not known, but similar structures in other organisms were reported to
contain a high amount of phosphate in the form of polyphosphate, pyrophosphate, and orthophosphate!#-'¢, and
also other ions, such as calcium, magnesium, and potassium'#1”8,

D. radiodurans does not have any gene that encodes for a ferritin-like protein but it expresses two DNA-binding
proteins under starved conditions: Dps1 (DR2263) and Dps2 (DRB0092); in vitro, both can store manganese and
iron and have the ability to bind/protect DNA"-2!. Dps1 shows distinct oligomeric forms depending on cellular
growth phase and additionally can change its oligomeric form in response to the addition of manganese and
iron?!. Dps2 was proposed to have a role in Fe-storage since in in vitro conditions it has a higher iron storage
capacity (1.6x) than Dpsl, moreover the electrostatic potential surface of the internal cavity of Dps2 is more

1ITQB NOVA, Instituto de Tecnologia Quimica e Bioldgica Anténio Xavier, Universidade Nova de Lisboa, Av. da
Republica, 2780-157, Oeiras, Portugal. 2Present address: iBET, Instituto de Biologia Experimental e Tecnoldgica,
Apartado 12, 2781-901, Oeiras, Portugal. 3ESRF- The European Synchrotron, CS540220, 38043, Grenoble, Cedex
9, France. “Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay,
91198, Gif surYvette, France. *email: abreu@itqb.unl.pt; cmromao@itgb.unl.pt

SCIENTIFIC REPORTS |

(2019) 9:17217 | https://doi.org/10.1038/s41598-019-53140-2


https://doi.org/10.1038/s41598-019-53140-2
http://orcid.org/0000-0003-4124-6237
http://orcid.org/0000-0002-4129-9091
http://orcid.org/0000-0002-5566-2146
http://orcid.org/0000-0002-9474-2405
mailto:abreu@itqb.unl.pt
mailto:cmromao@itqb.unl.pt

www.nature.com/scientificreports/

A. D. radiodurans wild-type B. Adps1
tZOh
7 -
6 4
5 4
£4 -
S
ol
0,
1
01 . 0 , , . , . : ‘
0 10 20 30 40 5 60 70 0 10 20 30 40 5 60 70
Growth time (hours) Growth time (hours)
C. Adps2 D. Adps1Adps2
71 ——CTR "] —e—CcTR
6 1 61 —=—Mn 20n
£ 5 5 - ceceee MV
o
§4 ] §4 | eecocs Mn+MV
S a 3 tan
2 - °, b
& lll .....
1 1
0 . , , , , . , 0 ‘ : . : , : ,
0 10 20 30 40 5 60 70 0 10 20 30 40 5 60 70
Growth time (hours) Growth time (hours)

Figure 1. D. radiodurans cells subjected to different conditions. Growth curves of D. radiodurans cells strains: (A)
wild-type, (B) AdpsI, (C) Adps2, (D) AdpsIAdps2, grown in M53 medium with the addition at time 0 (OD =0.3)
of water (Control condition, black line), manganese (Mn, gray line), methyl viologen (MV; dotted gray line), and
manganese followed by the addition of methyl viologen (Mn + MYV, dotted black line). The time points analyzed are
represented by the arrows and correspond to times 0, 15’ (early exponential phase), 2h (mid-exponential phase),
and 20h (stationary phase). Data presented are from four biological replicates (+/—sd).

negative than Dps1 and thus more prone to store iron?'. Adding to this, its non-cytoplasmic localization and the
fact that iron localizes in the septum region, suggests that Dps2 can be involved in Fe-sequestering®*. Recently
we showed that D. radiodurans has two dodecameric forms of Dps2, one associated with the membrane (Dps2y,)
and another present in the cytoplasm (Dps2.)?, suggesting that Dps2 may be involved in Fe-trafficking.

Taking into account the above open questions, we asked if manganese and iron distributions are important
for D. radiodurans oxidative stress response and if its two Dps are involved in the overall process. To correlate
the protection mechanisms of D. radiodurans with the presence of manganese, iron, and both Dps, we studied
the wild-type and dps knockout mutants and followed element localization by state-of-the-art synchrotron X-ray
fluorescence nano-imaging (nano-XRF). This technique allows precise intracellular localization of trace elements
within the cellular context. Obtained results were contextualized with the cellular localization of GFP-tagged Dps
proteins as determined by epifluorescence microscopy.

Our results show that cell protection against ROS depends not only on a proper Mn/Fe ratio but maybe
more importantly, on the correct cellular localization and trafficking of the metals. The DrDps-dependent
re-distribution of these ions contributes to the intracellular protection against oxidative stress of the
radiation-resistant bacterium D. radiodurans.

Results and Discussion

Mn and Fe at the forefront of oxidative stress management. To evaluate the protective effect of
manganese in D. radiodurans when subjected to oxidative stress, we used methyl viologen (MV, paraquat) at ear-
ly-exponential growth to induce superoxide production, in the presence or absence of added manganese (Fig. 1A,
Supplemental Fig. 1).

After the oxidative stress stimulus, cells immediately stopped their normal growth but could recover after
30hours (Fig. 1A). The addition of manganese before MV (Mn + MV) protected the cells against oxidative stress
(Fig. 1A). Interestingly, Adps1 strain does not feel the stress as wild-type (WT) cells do (Fig. 1B). This strain
showed no growth arrest after the MV addition, and consequently, the pre-treatment with manganese had no vis-
ible effect. In fact, AdpsI cells phenocopy the Mn 4+ MV condition in WT cells (Fig. 1B). D. radiodurans mutant
strains Adps2 and Adps1Adps2 (Fig. 1C,D) show similar growth profiles under control and MV conditions,
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Figure 2. Localization of elements in D. radiodurans cells using X-ray fluorescence nano-imaging (nano-XRF).
Elements mapping in D. radiodurans (A) wild-type, (B) Adpsl, (C) Adps2 and (D) Adps1Adps2. The samples
analyzed were in control and oxidative stress conditions at time point 2 hours. Oxidative stress was promoted
by the addition of methyl viologen (MV). Elemental areal density quantification bar (ng/mm?) for each element
is presented. In panel (C,D) in control conditions, the small regions where Mn is concentrated are marked with
white arrows. Data presented are from three biological replicates (+/—sd). Each condition was measured by
nano-XRF at least in 12 cell tetrads.

suggesting that the absence of Dps2 is sufficient to induce the observed phenotypes. Cellular growth profiles show
that the cells are not able to recover to the same growth level as WT do after oxidative stress, even in the presence
of extra manganese. Still, Adps2 and Adps1 Adps2 regain the ability to grow to higher optical densities in the
presence of manganese alone, a trend observed in the WT strain but not in AdpsI (Fig. 1B-D). The observed
effect of higher optical densities in the presence of Mn has been previously reported for the D. radiodurans W'T
strain (e.g.”*?*).

To assess metal distribution during the cellular response to oxidative stress, we followed metal-intracellular
localization using nano-XRF. Manganese, phosphorus, and calcium, in wild-type D. radiodurans, are co-localized
in rich elemental cellular regions that resemble electron-dense granules, while iron is mostly localized in close
proximity to or within the septum membrane (Figs. 2A, 3).
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Figure 3. 3D localization of the elements in Deinococcus radiodurans using X-ray fluorescence nano-imaging
(nano-XRF). 3D elemental imaging in Deinococcus radiodurans wild-type cells under control conditions, the
elements present are manganese, phosphorous, calcium and iron.

When an oxidative stress stimulus occurs, manganese is mobilized to the cytoplasm and is transported to the
outer region of the membrane (Fig. 2A, Supplemental Fig. 2), while the iron is mostly dispersed throughout the
cell (Fig. 2A). It is possible that the mobilization of manganese ultimately results in membrane protection, which
would agree with the protective effect exerted by the external addition of manganese before MV addition, as
shown above. This result corroborates previous studies, in which the addition of manganese before the exposure
to radiation protects the cells®. Notably, phosphorous and calcium follow manganese redistribution (Fig. 2A,
Supplemental Fig. 2). It has been reported that manganese can form complexes with phosphate molecules (Pi)
that can detoxify ROS, probably in a Mn?*-Pi form!®*. Analysis of D. radiodurans W cells after being subjected
to the addition of manganese alone showed that the regions rich is several elements, which we proposed to be
electron-dense granules, tend to increase in size (Supplemental Fig. 3A), and exhibit higher amounts of Mn, P and
Ca, when compared to control condition (Fig. 2, Supplemental Figs. 3, 4). So the formation of Mn?*-Pi complexes
may not be the sole form of Mn-complexes in D. radiodurans.

In all D. radiodurans dps mutant strains, the intracellular amount of Mn is similar to that of WT, while P
amounts decrease (Supplemental Fig. 4). The ability that the mutant strains Adps1, Adps2, and AdpsI1Adps2,
have to form putative electron-dense granules is compromised since manganese and phosphorus are homogene-
ously distributed in the cytoplasm. However, small regions where these metals are concentrated are still visible
in the cells of Adps2 and Adps1Adps2 (Fig. 2C, D- white arrows). At this point, it is not possible to assess if
the nature of these regions is the same as that of the WT electron-dense granules or if they constitute another
type of element-containing bodies. Furthermore, nano-XRF results show that iron is concentrated in the sep-
tum region in WT cells, while it looks more widespread throughout the cell in all knockouts mutants (Fig. 2,
Supplemental Figs. 4, 5). It is important to notice that the Mn/Fe is ca. 0.8 £0.15 for the conditions tested and in
all D.radiodurans strains, except for when external manganese was added to the cell growth media (Supplemental
Fig. 3).

Therefore, we can say that the resistance and recovery capabilities of D. radiodurans to oxidative stress and
the intracellular distribution of elements are dependent on the presence of Dps1 and Dps2. The absence of Dpsl
renders the cells insensitive to oxidative stress as they do not interrupt their normal growth when MV is added
as WT cells do (Fig. 1A,B). On the contrary, the absence of Dps2 (Adps2 and AdpsIAdps2) is sufficient to com-
promise cell growth and the ability of the cells to recover from oxidative stress or to use Mn as a protecting agent
(Fig. 1C,D). Thus we next asked what the role of both proteins in this process is.

Different Dps protein forms determine their cellular localization.  Although Dps are known as
dodecameric proteins, we previously have shown that Dps1 can be dimeric, trimeric or dodecameric according to
the condition that it was subjected®!. Based on our previous data the dimeric Dpsl is associated with DNA?!. Here,
we show that under control conditions this association is observed during the exponential growth phase of the
bacteria since GFP-Dps1 fluorescence signal superimposes with the DAPI staining of DNA (Fig. 4, Supplemental
Fig. 6) and that, during this growth phase, Dps1 remains mostly dimeric (Fig. 5A)?!. Immediately after Mn or MV
addition, Dps1 changes its oligomeric form from a dimer to a trimer (Fig. 5A) as also shown previously?', and the
protein appears dispersed throughout the cell with a stronger signal in specific regions that are consistent with the
electron-dense granules (Fig. 4A). This change in oligomerization state is concomitant with the phosphorylation
of the protein in, at least, five different residues (Fig. 5B), but does not depend on it*'. The phosphorylation sites
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Figure 4. D. radiodurans GFP-Dpsl and GFP-Dps2 cellular localization using epifluorescence microscopy.
The samples analyzed were D. radiodurans cells under control, manganese (Mn) and methyl viologen (MV)
conditions at 2hours. Cell images are represented in phase contrast (PC), stained for DNA using DAPI (blue),
fluorescence for GFP-Dps constructs (green), and the membranes stained with FM4-64 (red). The two last
columns correspond to the overlay of GFP-Dps with DAPI and GFP-Dps with FM4-64. Data presented are
from four biological replicates (+/—sd).

of Dpsl are not known, but interestingly, Dps1 has a putative phospho-motif (D,,;ART,sQVADLV) that can be
targeted by the radiation pyrroloquinoline quinone (PQQ) inducible protein kinase (RgkA) (DR2518)%.

Our previous work shows that Dps2 is a stable dodecamer and it can store iron or manganese, but when is in
the presence of equal amounts of iron and manganese, the protein is selective towards iron, incorporating approxi-
mately double amounts of iron than of manganese?!. It is interesting to note that in WT cells grown in control con-
ditions, the localization of Dps2 coincides with the iron distribution, mostly at the septum region (Figs. 2A, 4B).
Consistently, Dps2 was primarily detected in the membrane fraction of these cells (Fig. 5C, Supplemental Fig.
8A). Upon MV addition, Dps2 and iron became homogeneously distributed throughout the cells; Mn appeared
to leave the electron-dense granules and also became widespread all over the cell, and appeared in the outer part
of the plasma membrane (Fig. 2A, Supplemental Fig. 2). Upon addition of external Mn, Dps2 was no longer
localized in the setptum membrane, instead was localized in the cytosol (Figs. 4B, 5C, Supplemental Fig. 8A).
Thus, we propose that in vivo conditions in the presence of an excess of manganese, Dps2 can store manganese
metal as well as iron. Also, it is interesting to note that the Dps2 crystal structure previously determined, showed a
metal iron site coordinated by D, 3,(X)D,33(Xg0) D103(X) N1o5(X5)L0o?’- This metal site is close to the putative Dps2
Mn-binding motif, N(X;)D?. However, from the crystal structure, the binding motif includes N(X;)I instead of
N(X;)D, in which the coordination of I, is through the oxygen from the main chain. Thus it is plausible that
Dps2 will manage an increase in cytoplasmic manganese occurring with the external addition of this metal or as
aresult of oxidative stress, acting then as a manganese transporter in the cell. In this sense, both iron and manga-
nese mobilization would be mediated by Dps2. The absence of Dps2 results in the disruption of the WT patterns
of distribution of both metals (Figs. 2, 3).
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Figure 5. Detection of Dpsl and Dps2 in D. radiodurans cellular extracts. (A) Dpsl detection in the following
conditions: control (CTR), manganese (Mn), methyl viologen (MV) and manganese followed by the addition of
methyl viologen (Mn 4 MV). Dpsl1, corresponds to the dimeric form of Dps1 which is associated with the DNA
(Dpslpya) and Dpsl; to the trimeric form (Dpsly) which is phosphorylated (Dps1p). The time points analyzed
correspond to 0, 15’ (early exponential phase), 2h (mid-exponential phase), and 20h (stationary phase). (B)
Detection of phosphorylation in Dps1 from D. radiodurans wild-type cellular extracts, subjected to manganese
condition at time 0 and 15, without (lanes 1, 2) and with (lanes 3, 4) Phos-tag AAL-107. (C) Detection of Dps2
in soluble and membrane fractions in D. radiodurans wild-type, AdpsI strains and after addition of Dpsl
recombinant pure protein (Dpsl,..) to the cellular extract of AdpsI. The soluble (SF, lanes 1, 2, 6,7, 11 and 12)
and membrane (MF, lane 3, 4, 8,9, 13 and 14) fractions were isolated from control (CTR) and manganese (Mn)
conditions at time 2h. Dps2 recombinant (Dps2,.. - lanes 6-9 and 11-14), in which Dps2), corresponds to the
Dps2 dodecamer (279 kDa), and Dps2. corresponds to Dps2 dodecamer without N-terminal tails (232 kDa).
(A,C) Bar charts represent the quantification of the total Dps amount using Image]. Data presented in panel A
are from four biological replicates (4-/—sd), and in panel B and C are from two biological replicates (4-/—sd).
(A.B) Correspond to the full-length blots; (C) full-length blots are presented in Fig. S8A.

Phosphorous and calcium distributions are also affected in Adps2 and follow the manganese distribution
pattern. While the formation of Mn?*"-Pi complexes”® can explain phosphorous co-distribution with manganese,
the calcium profile was unexpected. If calcium distribution follows the manganese one, which depends on Dps2,
then Dps2 should also influence calcium localization. Indeed, Dps2 can bind Ca?* %, which further supports this
hypothesis.

A direct functional link between Dpsl and Dps2. Remarkably, the detachment of Dps2 from the mem-
brane is dependent on the presence of Dpsl, since in AdpsI cellular extracts all Dps2 is membrane-associated,
and this can be reversed by the addition of recombinant Dpsl (Fig. 5C- lanes 6-9, 11-14 Supplemental Fig. 8A).
However, Dpsl is not directly responsible for Dps2 N-terminal cleavage, since adding recombinant Dps1, in the
trimeric form (Dpsly), to the full-length dodecameric form of recombinant Dps2 (Dps2,;) does not lead to a
change in Dps2 molecular mass (Supplemental Fig. 7). Also, Dps1 phosphorylation may have a role in this pro-
cess since the trimeric form of Dps1 detected in D. radiodurans cellular extracts is always phosphorylated.

The direct consequence of the above mechanism is that, when Dpsl is not present, Dps2 cannot leave the
membrane, and if Dps2 is shuttling metals, such as iron and manganese, their homeostasis will be affected.
Accordingly, the absence of Dpsl is sufficient to destabilize the formation or growth of the electron-dense gran-
ules, where manganese, phosphorus, and calcium are concentrated, as our data indicates (Fig. 2B). In the initial
phase of WT growth (time 0), a small proportion of the Dpsl trimeric form is detected (Fig. 5A), which may be
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important to initiate the formation of the granules, through the action of cytoplasmic Dps2 (Dps2¢). Thus, in
Adpsl, these regions are much smaller than in the WT cells (Fig. 2A,B).

While Dpsl affects Dps2 localization, the absence of Dps2 does not affect the oligomerization states of
Dpsl (Supplemental Fig. 8B). However, in all the three dps knockout mutants, the correct distribution of iron
and manganese to the septum and granules, respectively, is abolished. According to our model, the absence of
MV-sensitivity by Adps1 cells may be due to the exclusive presence of Dps2y, that results in widespread distribu-
tion of manganese, which would protect the cells against oxidative stress, as the addition of external manganese
does in WT cells.

In summary, Dpsl and Dps2 appear to act in a concerted way in D. radiodurans to regulate manganese and
iron homeostasis and act in the formation of the regions rich in elements such as manganese and phosphorus that
we propose to correspond to electron-dense granules.

Dps-dependent iron localization is essential for septation. Under control conditions, cell division
occurs as an orderly process, where tetrads are generated by the formation of two septa in opposite sides per-
pendicularly to the cell wall, forming two cells'*°. Moreover, manganese is concentrated in the rich elemental
regions, whereas iron is localized in the membrane septum (Fig. 2A). Interestingly, all the dps knockout mutants
show a strong phenotype in cell division, as cells seem to have difficulty in performing septation to form the new
tetrads (Supplemental Fig. 9). We hypothesize that the presence of Dps2 in the membranes of D. radiodurans
may play a role in cell septation since its tendency to distribute to the cytoplasm correlates with the severity of
the phenotype. Both Adps2 and Adps1Adps2 mutants have the most pronounced phenotype. Their cells have
irregular forms, and the septum formation seems to be affected. This is visible even under control conditions
(Supplemental Fig. 9). Accordingly, both WT and Adps1I strains have similar doubling times of ca. 2 hours, while
Adps2 and Adps1Adps2 grow slower with a doubling time of ca. twice that of WT and AdpsI (Supplemental
Fig. 10). Even though the most striking difference amongst WT and the dps knockout mutants strains is that
the mutants cells tend to aggregate (Supplemental Fig. 9), they still show a tetrad-like organization in the Adps1
mutant cells, which is gradually lost in Adps2 and more evidently in AdpsIAdps2. These phenotypes can merely
reflect the cells’ inability to accurately form the septum when Dps2 is not present or fully functional (in Adps1,
Dps2 cannot exit the membrane). Thus, in both Adps2 and Adps1 Adps2, cellular division occurs in a disordered
manner even under control conditions. This effect is much more pronounced when cells are subjected to a stress
condition, where the septum region is profoundly damaged (Fig. 2C,D, Supplemental Fig. 9). This can explain
why in both Adps2 mutants the cells never recover after being subjected to MV promoted stress condition, even
when pre-treated with manganese (Fig. 1C,D). This effect is reflected in the lag-phase of the different strains
(Supplemental Fig. 10). Also, both Adps2 mutants have longer lag-phases when compared with the WT cells,
while the Adpsl mutant has a slightly shorter lag-phase. It is interesting to observe that the cell septation phe-
notype observed in the Adps2 mutants is similar to the one seen in the autolysin knockout mutant from murein
hydrolase of Staphylococcus aureus, (AtlA)*. Although autolysins from D. radiodurans have not been studied,
there are at least four genes predicted for N-acetyl muramoyl-L-alanine amidases, namely DR2394, DR1387,
DR2567, and DR1632. The role of iron in the cell separation process remains unclear. Nevertheless, we cannot
rule out that the effect observed in the cell division is related to the damage of DNA since Dps2 protects DNA
under in vitro conditions?'. If that is the case, the inhibition of the septum formation due to DNA damage could
resemble the SOS system from Escherichia coli (e.g.*?).

In summary, these data indicate that there is a link between Dps function, the presence of iron in the sep-
tum region, and cell septation. The association of Dps with the cell division process is only very poorly stud-
ied, although DpsA from Streptomyces coelicolor was proposed to be involved in the condensation of DNA to
ensure an appropriate degree of nucleoid compaction during cell division*’. Nevertheless, the question remains
of whether Dps in D. radiodurans are also involved in the DNA compaction before cell division, DNA protection
in addition to controlling Fe localization in the septum region.

Electron-dense granules are multi-ion stores involved in stress response.  Our data show the pres-
ence of rich elemental regions with high concentrations of manganese, phosphorous, and calcium that we pro-
pose to correspond to the electron-dense granules in D. radiodurans. Other elements, like potassium or copper,
can also be found in these regions, but to a lesser extent (Supplemental Fig. 3). This is in agreement with previous
work, in which under control conditions manganese is mostly not associated with proteins®'’. After a stress stim-
ulus, manganese, phosphorus, and calcium are dispersed throughout the cell and into the membrane structures
(Fig. 2A, Supplemental Fig. 2). As manganese and phosphorus migrate together, it is tempting to speculate that
they probably exist in the form of Mn*"-Pi complexes and that these are directed to the membrane to play a role
in the protection of macromolecules against oxidation, as previously proposed®!®. Noteworthy, no data is sup-
porting the in vivo formation of Mn*"-Pi complexes in D. radiodurans, but manganese can form complexes with
pyrophosphate or orthophosphate, in other organisms®**%. Also, D. radiodurans has enzymes, e.g., polyphos-
phate kinases (DR1939, DR0132) and exopolyphosphatase (DRA0185), capable of hydrolyzing polyphosphate*?.
As shown above, calcium follows the same redistribution pattern as phosphorus and manganese. As in other
organisms, calcium mobilization to the membranes may serve to initiate stress-responsive signaling pathways
involving kinases and should be investigated in the future. Our data do not allow to discriminate between free
Ca*" and Ca*"-complexes, and thus, we cannot rule out that calcium phosphate complexes can also exist intracel-
lularly as previously observed in mitochondria®.

The rich elemental regions are devoid of sulfur, while calcium, manganese, and phosphorus, are compartmen-
talized in specific regions within the cell (Fig. 2A, Supplemental Fig. 3). The fact that in the dps knockout mutants
sulfur does not appear as excluded from these regions suggests that the observed structures in these mutants are
different from those observed in the WT cells.
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Figure 6. Proposed model for D. radiodurans protection mechanism after a stress stimulus, linking the cellular
function of Dpsl and Dps2 with Mn and Fe homeostasis. (A) Under control conditions, Dpsl in its dimeric
form is bound to DNA (Dpslpy,), and most of the Dps2 is attached to the membrane (Dps2,;) through its
N-terminal tail, but it is also present in the cytosol, without N-terminal tails (Dps2). Phosphorous, probably
phosphate (Pi), manganese (Mn) and calcium (Ca) are stored in the electron-dense granules that are highly rich
in these elements. Iron (Fe) is mostly localized in the septum membrane region and can be stored by Dps2,;. (B)
Under oxidative stress, Mn, Pi, and Ca are released to the cytosol. Dps1 changes its oligomeric state from dimer
to trimer, which is phosphorylated (Dps1;), and becomes mostly widespread in the cytoplasm with a higher
concentration close to the electron-dense granules. A detachment of Dps2 from the membrane (Dps2,,) and
Mn and Pi release as Mn-Pi complexes to the cytosol (step 1) is dependent on Dpsly Dps2 is proposed to store
Mn-Pi complexes and deliver them to the cytosol (Step 2), septum, and membrane regions (Step 3). Distribution
of Mn-Pi complexes to the membrane and septum constitute a first protection barrier against ROS. Dps2y and
membrane Mn-transporters may be involved in the distribution of Mn-Pi throughout the membrane (Steps 4
and 5). Question marks represent open questions.

In sum, the data presented here show the presence of rich elemental regions in D. radiodurans that act as res-
ervoirs of calcium, manganese, and phosphorus and can be mobilized upon stress.

DrDps as central players in oxidative stress response. To summarize our findings, we propose a
model (Fig. 6) showing the role of DrDps in manganese and iron homeostasis that contributes to the intracellular
protection against oxidative stress of the radiation-resistant bacterium Deinococcus radiodurans. The model pro-
poses that under control conditions this organism stores manganese in the rich elemental regions that we propose
to be electron-dense granules together with other elements, namely phosphorus, and calcium, whereas iron is
mostly localized in the septum region. Under these conditions, Dps1 associates with the DNA (?! and the data
here presented), whereas Dps2 preferentially store/transport iron*!, and localizes mostly at the septum region.

After being subjected to a stress stimulus, in our case oxidative stress promoted by MV addition, iron becomes
dispersed throughout the cell, probably halting cell division. Manganese is also distributed throughout the cell,
probably in the form of Mn?* complexes with small molecules such as phosphate, by Dps2. Moreover, manga-
nese appears in the outer part of the membrane, where it can protect membranes from further damage. Indeed,
Mn-complexes have been proposed to play a crucial role in the scavenging of ROS upon stress conditions®!°.
Calcium follows a similar distribution and may be responsible for the activation of stress-responsive signaling
pathways involving kinase activation that may affect the phosphorylation state of Dpsl.

The model now presented shows how Dps, including their different proteoforms, Dpslpya/Dpsly, Dps2y/
Dps2,, control the localization and stress-dependent relocalization of manganese together with other elements
(phosphorous, calcium, and iron) (Fig. 6). Dps1 regulates processes such as the formation of the rich elemental
regions and the detachment of Dps2 from the membrane, while Dps2. plays a role as a metal transporter (Fe vs.
Mn). The DrDps crosstalk and the interplay between iron and manganese are critical protection players in alle-
viating oxidative stress damage, in D. radiodurans. As the formation of superoxide anion and hydrogen peroxide
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are exceptionally rapid after irradiation®®, we expect that the proposed model is also valid during D. radiodurans
exposure to radiation, which ultimately leads to the formation of ROS.

Material and Methods

GFP-Dpsl and GFP-Dps2 bacterial strains and transformation. D. radiodurans strains expressing
Dps proteins fused to GFP-tag were constructed by the tripartite ligation method®. Plasmid pFAP246 was the
source for the cassette containing the GFP-tag and the resistance gene to chloramphenicol®. The gene sequence
and the purity of the resulting tagged genes were verified by PCR and sequence analysis. Strains expressing tagged
proteins were grown with aeration in TGY2x at 30 °C. Media were supplemented with chloramphenicol (3.5 pg/
ml final concentration). D. radiodurans Adps1, Adps2 and Adps1Adps2 strains were previously described?!.

Deinococcus radiodurans growths. D. radiodurans cells wild-type, Adps1, Adps2, Adps1Adps2,
GFP-Dpsl and GFP-Dps2 strains were grown in M53 medium (1.0% (w/v) casein peptone, 0.5% (w/v) yeast
extract, 0.5% (w/v) glucose and 0.5% (w/v) NaCl) at 30 °C. Four independent growths were performed, and cells
were collected at different time points. Methyl viologen (paraquat) is a compound that increases the intracellu-
lar production of superoxide anion and thus induces an oxidative stress condition*?. Different concentrations
of methyl viologen (MV) were initially tested from 0.5mM to 5mM, without and in the presence of 0.5 mM
manganese, which was added 2 hours before or after MV addition (Supplemental Fig. S1). Based on these initial
tests, the effect of different compounds was tested, namely: 0.5 mM manganese (II) (Mn) chloride, 1 mM MV and
0.5mM manganese (II) chloride followed after 2 hours by the addition of 1 mM methyl viologen (Mn + MV).
These compounds were added to the media at an optical density (ODgyg,,) of 0.3. A control (water addition)
growth was performed and followed simultaneously. The different growths were obtained from bacterial inoc-
ula in later exponential phase and reliable growing conditions, important to achieve a reproducible lag time.
Cells were collected at different time points: 0 (before adding any compound - OD =0.3), 15’ (early exponential
phase), 2 hours (mid-exponential phase), and 20 hours (stationary phase) after adding the different compounds.
The viability of the cells was assessed using 10 ug/ml propidium-iodide dye. The cells were visualized on a Leica
DM RA2 microscope.

DrDps detection from soluble and membrane fractions. Cellular extracts from D. radiodurans
wild-type in control conditions, and after manganese, methyl viologen and Mn + MV addition at time points 0,
15} 2h and 20 hours were ultracentrifuged at 200,000 X g, at 4°C. Soluble and membrane fractions were quan-
tified using Bradford (Bio-Rad)* and modified Biuret methods*, respectively. A total of 30 ug of protein from
each condition was loaded on a 12% PAGE, and the Dps1 protein bands were detected by Western-Blotting, as
previously described?. Four biological replicates (+/—sd) were used.

Detection of Dps2 in soluble and membrane fractions in D. radiodurans wild-type, Adps1 strains and after
addition of Dps1 recombinant pure protein to the cellular extract of AdpsI incubated during 1h was also per-
formed. The soluble and membrane fractions were isolated from control and manganese conditions at time
2hours. Two biological replicates (+/—sd) were used.

Mobility shift detection of phosphorylated proteins - Mn?*-Phos-tag Western blotting. The
analyzed samples correspond to wild-type strain protein extracts, in manganese and control conditions, from
time point 2 hours. Cellular extract containing 60 g of total protein was centrifuged at 18,000 x g, 4°C and the
soluble fraction was injected on a 12% PAGE. Two gels were simultaneously run, without (control) and contain-
ing a 2mM MnCl, and 100 uM Phos-tag AAL-107 solution (Wako Chemicals USA, Inc.) in the resolving gel.
These two solutions lead to the formation of a di-nuclear metal complex (1,3-bis[bis(pyridin-2-ylmethyl)amino]
propan-2-olato di-manganese (II) complex - Mn?*-Phos-tag) acting as a selective phosphate-binding tag mol-
ecule®. Afterwards, the Dps1 protein bands were detected by Western-Blot. Two biological replicates (+/—sd)
were used.

Interaction between Dps1-Dps2. Both Dps (30 g of recombinant Dpsl in the trimeric form and 30 ug of
recombinant Dps2) were incubated for 1 hour at room temperature in 20 mM Tris-HCl pH 7.5 and 150 mM NaCl.
Recombinant pure proteins were used as control. The different samples were loaded on a 12% PAGE.

Dpsl and Dps2 cellular localization. D. radiodurans cells GFP-Dps1 and GFP-Dps2 strains in con-
trol, manganese and methyl viologen conditions were collected by centrifugation (11,000 x g, 1 min)
at time points 0 (OD = 0.3) and 2 hours. Cells were resuspended in phosphate buffer saline (PBS), fixed
with 3.7% paraformaldehyde for 15 min at room temperature followed by 30 min on ice, and stained
with 2 ug/ml of 4,6-diamidino-2-phenylindole dihydrochloride (DAPI - Invitrogen) and 10 pg/ml of
N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl) Hexatrienyl) Pyridinium Dibromide
(FM4-64 - Invitrogen). DAPI is a dye that stains nucleoid DNA with blue color (wavelengths of excitation/
emission - 350/470 nm), and FM 4-64 is a dye that stains membranes with red color (excitation/emission —
515/640nm). FITC filter (fluorescein-isothiocyanate-excitation/emission 495/517 nm) was used to visualize
GFP-tag constructs. Cells were visualized on a Leica DM RA2 microscope, and the images were captured with a
charge-coupled device (CCD) camera. The images were further processed using Image]J software. Two biological
replicates (4/—sd) were used.

Synchrotron X-ray phase contrast and fluorescence nano-imaging. An aliquot of 1 ml from a
growth of D. radiodurans cells wild type, Adpsl, Adps2 and Adps1 Adps2 strains in control and methyl viologen
conditions were collected at time point 2 hours. Cells were fixed using 3.7% paraformaldehyde, then washed 2
times in PBS and stored frozen at —20°C. Cells were afterwards resuspended in 25 pl of water, and then 1 ul was
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added onto the surface of a Si;N, membrane (Silson Ltd) with the size of 1.5mm x 1.5 mm and the thickness
of 500 nm. Cells were air dried and then mounted on the cell support. Correlative imaging of both X-ray phase
contrast and X-ray fluorescence (nano-XRF) was performed on the same sample to investigate its morphology
and elemental content. Experiments were performed under vacuum (~1e 7 mbar) at room temperature on the
Nano-Imaging beamline ID16A-NT of the European Synchrotron Radiation Facility (ESRF, Grenoble). The X-ray
excitation energy was 17 keV, and all relevant elements were detected using their K-level emission lines. A mul-
tilayer coated fixed curvature Kirkpatrick-Baez (KB) focusing mirror system*® provides the nanofocus (~30 nm)
and a very high flux of 4.1 x 10" ph/s from the broad bandpass (1%) at 17 keV. X-ray phase contrast imaging
was firstly performed by recording magnified Fresnel projection images with an equivalent pixel size of 15nm.
Quantitative phase maps were retrieved*” and converted to mass density (ug/mm?) in all figures. Nano-XRF
measurements were performed subsequently with a step size of 40 nm or 50 nm and a dwell time of 50 ms*%. The
summed spectrum recorded with a 6-element silicon drift detector (Sensortech, UK) was fitted with the open
source software PYMCA®. The absolute calibration to the elemental areal density (ng/mm?) was determined by a
thin film standard (AXO Dresden GmbH). The average areal density’ corresponds to the mean inside the cells of
the amount per unit surface of a given element. The total intracellular amount of an element corresponds to the
integral of the areal density over the cell area (surface). The total amount is equal to the average areal density mul-
tiplied by the area covered by the cell. As the size of the cells does not vary significantly, both quantities are more
or less equivalent. Three biological replicates (4-/—sd) were used. Each condition was measured by nano-XRF at
least in 12 cell tetrads.

Significance statement. Re-distribution of intracellular Mn and Fe by Dps as key players for oxidative
protection in Deinococcus radiodurans.
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