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Abstract This paper focuses on a role for ATP neurotrans-
mission and gliotransmission in the pathophysiology of
epileptic seizures. ATP along with gap junctions propagates
the glial calcium wave, which is an extraneuronal signalling
pathway in the central nervous system. Recently astrocyte
intercellular calcium waves have been shown to underlie
seizures, and conventional antiepileptic drugs have been
shown to attenuate these calcium waves. Blocking ATP-
mediated gliotransmission, therefore, represents a potential
target for antiepileptic drugs. Furthermore, while knowl-
edge of an antiepileptic role for adenosine is not new, a
recent study showed that adenosine accumulates from the
hydrolysis of accumulated ATP released by astrocytes and
is believed to inhibit distant synapses by acting on
adenosine receptors. Such a mechanism is consistent with
a surround-inhibitory mechanism whose failure would
predispose to seizures. Other potential roles for ATP
signalling in the initiation and spread of epileptiform
discharges may involve synaptic plasticity and coordination
of synaptic networks. We conclude by making speculations
about future developments.
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Introduction

Purinergic signalling, defined as adenosine 5'-triphosphate
(ATP) released as a transmitter or cotransmitter acting
extracellularly on pre- and pos-tjunctional membranes at
neuroeffector junctions and synapses, was first described
over 35 years ago [1]. Although the idea was initially
received with scepticism, purinergic signalling is now
widely accepted as many physiological processes incorpo-
rate this mechanism [2]. Consequently, purinergic patho-
physiology would expectedly play a role in the
pathogenesis of disease, thereby giving clues to potential
therapeutics. The earliest disease processes believed to
incorporate a purinergic basis included pain [3] and
migraine [4]. At the present time, a large and growing
body of evidence suggests purinergic drug targets may
improve a growing list of diseases. For example, clopidog-
rel, the P2Y, inhibitor, the first of such drugs, is already in
use for stroke and thrombosis [5] and, it is hoped, will be a
forerunner among many.

Many neurons release ATP as a co-transmitter, and this
serves as an activity-dependent signal which evokes a
response in astrocytes, Schwann cells and oligodendrocytes
that express P2 receptors. Astrocytes can respond by
strengthening the synapse, for example by releasing both
glutamate and ATP into the synaptic cleft. Schwann cells at
the neuromuscular junction respond to axonal ATP release
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following an action potential with a rise in intracellular
Ca®". Recognition of a passing action potential is key in the
development of oligodendrocyte progenitors into oligoden-
drocytes [6].

Earlier studies suggestive of a role for purinergic
signalling in epilepsy included the finding that seizure-
prone mice have increased extracellular ATP levels,
possibly owing to decreased brain ATPase activity [7].
Moreover, microinjection of ATP analogues into the rodent
prepiriform cortex was shown to cause generalised motor
seizures [8]. Thirdly, it was found that P2X7 receptors are
upregulated by 80% in hippocampi of pilocarpine-induced
chronic epileptic rats, as shown by fluorimetric, immuno-
histochemical and Western-blotting techniques [9].

Meanwhile, a role for adenosine in epilepsy, particularly
status epilepticus, has long been suggested [10]. Recent
studies have confirmed such a role and attributed Al
receptor activation to the observed antiepileptic effects [11,
12]. On the other hand, Zeraati et al. [13] elegantly showed
that A2A receptors in the CA1 hippocampal region have
the opposite effect to Al receptors in a piriform cortex
kindling model.

Adenosine receptors are believed to play a role in
presynaptic modulation of neuronal excitability and epi-
leptogenesis [14], although the expression and function of
adenosine receptors in various models of epilepsy is
controversial. While Angelatou et al. [15] report upregula-
tion of purinergic P1 receptors in the neocortex of patients
with temporal lobe epilepsy, other groups report receptor
downregulation [16—18]. Purinergic mechanisms in epilep-
sy have previously been described in the context of
adenosine as an antiepileptic agent [19]. Therein, adeno-
sine-releasing grafts have been shown to suppress both
seizures [20] and epileptogenesis [21] in kindling models of
epilepsy. Furthermore, adenosine kinase inhibition may also
promote increased levels of extracellular adenosine thereby
providing antiepileptic effects [22].

Indeed, other adenosine-mediated pharmacological strat-
egies are being actively explored, and exciting studies are
underway. Additionally, pH variation under respiratory
control has been shown to affect cortical excitability in an
ATP- and adenosine-dependent manner [23] and this may
be relevant to the pathophysiology of epileptic seizures, for
example, those in childhood absence epilepsy. In this paper
we focus on recent developments in the role of ATP
signalling in epilepsy.

ATP as a neurotransmitter and gliotransmitter
ATP released by neurons and glia has several functions

including regulation of synaptic transmission both directly
and through glia, responses to injury and inflammation,
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pain, myelination and neurogenesis (for review please see
[24]). Additionally, ATP satisfies all of Dale’s criteria as a
neurotransmitter. Firstly, it is released from synaptosomes
in the cerebral cortex, hypothalamus, medulla and other
parts of the central nervous system (CNS) with presynaptic
localisation in vesicles with high intravesicular concentra-
tion [25]. Secondly, upon a physiologically relevant
stimulus, ATP is released by a SNARE-dependent mecha-
nism [26]. However, this mechanism is controversial since
astrocytic ATP has recently been shown to be released
by lysosome exocytosis [27, 28]. Thirdly, it acts with
specificity on P2X ligand-gated ion channel receptors and
P2Y G-protein-coupled receptors. For a recent review of
purinergic receptor expression patterns and functions please
see [29]. Finally, ATP incorporates an inactivation system
as it is rapidly broken into adenosine by the ectoenzymes
ectoATP diphosphohydrolase and ecto-phosphodiesterases/
ecto-nucleotide pyrophosphatases [25].

The glial calcium wave

Elevations in intracellular calcium propagate between
astroglial cells as the calcium wave [30-32]. This extra-
neural signal transduction mechanism is crucial to glial
homeostasis, and increased intracellular Ca?" leads to a
variety of responses including growth, differentiation and
release of neuroactive mediators [33, 34]. Calcium waves
are believed to be the mechanism of long-distance glial
signalling in the CNS as they have been observed to travel
more than 500 pm at a velocity of 14 um/s in culture [35].

Key to the propagation of these calcium waves is ATP
released by astrocytes as the calcium wave propagates, and
this is facilitated by gap junctions permeable to Ca>" ions
[36, 37]. Calcium waves can be evoked by applying ATP,
which acts on P2 receptors, the blockade of which
attenuates calcium waves [38]. P2Y1 and P2Y2 receptors
are both necessary and sufficient for the calcium-wave
propagation, and P2Y?2 receptors propagate calcium waves
faster and further than P2Y'1 receptors [39]. In addition, a
key role for P2X7 receptors is established as well as
possibly contributory roles for P2X2, P2X4, P2X5, P2Y2,
P2Y4 and P2Y14 based on agonist preferences [40].
Interesting quantitative models of purinergic junctional
transmission of calcium waves have been conducted on
astrocyte networks [41, 42].

Astrocytes modulate neurotransmission
Astrocytes have been shown to directly influence neuro-

transmission at synapses through the release of gluta-
mate [43] and D-serine [44]. The controlled release of
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neurotransmitters (or equally, gliotransmitters that modu-
late neurotransmission) at the synaptic cleft implies and
bestows a protagonist role on astrocytes in the tripartite
synapse [45].

Early studies indicated that, independent of whether the
synapse is excitatory or inhibitory, astrocyte stimulation
decreased postsynaptic current responses during synaptic
activity [46]. Additionally, miniature postsynaptic current
responses were enhanced in frequency but not amplitude
[47]. Taken together, these two findings suggest glutamate
released by astrocytes modulates presynaptic metabotropic
glutamate receptors according to the former finding and
NMDA receptors according to the latter. Further studies
showed that NMDA receptor-mediated synchrony of
neuronal activity may be through modulation of either
synaptic [48] or extrasynaptic receptors [49]. Conversely,
activity-dependent astrocyte-mediated potentiation of
GABAergic synapses has also been demonstrated, suggest-
ing a crucial role in their modulation [50]. Somewhat
unintuitively, astrocytic glutamate release is believed to
underlie these effects, which are concordant with the
findings of Newman and Zahs [51] who first demonstrated
neuromodulatory glial control in the retina. Indeed, an
interesting recent study has characterised glial neuromodu-
latory activity down to the level of a single synapse [52].

Furthermore, bidirectional exchange of glutamatergic
neurotransmission between astrocytes and hippocampal
CA1 pyramidal neurons was elegantly demonstrated in situ

Fig. 1 Calcium wave-mediated synchronisation of neuronal spik-
ing. At a simplified glutamatergic synapse when neurotransmission
occurs (), glutamate acts on metabotropic glutamate receptors on
astrocytes (2), promoting astrocytic glutamate release (3) which
strengthens the synapse. A parallel activity-dependent calcium wave

[53]. Similarly, Ca®" oscillations in astrocytes have been
shown to be induced by neuronal firing [54], suggestive of
perisynaptic activation of glial cells. In addition, larger-
scale intercellular astrocytic calcium signalling is also
believed to be regulated by synaptic activity [55]. Indeed,
by virtue of the glial calcium wave, astrocytes have been
put forth as important cellular elements involved in the
bidirectional processing of synaptic information [56].

All in all, glial calcium waves may either be propagated
by “carrying forward” gliotransmission or synaptic activity
and may manifest this activation by further influencing
neurotransmission or propagating a calcium wave, with a
vast array of effects. Gliotransmission combined with glial
modulation of neurotransmission is thus suggestive of
active bidirectional communication [57]. Calcium waves
have therefore been put forth as a mechanism that encodes
and transmits information to harmonise neuronal electrical
activity, possibly even involving large volumes of activa-
tion in the human brain [45]. Therefore, we hypothesize
that calcium waves might propagate and therefore synchro-
nise epileptiform activity, as shown in Fig. 1.

The astrocytic basis of epilepsy

Epilepsy is characterised by hypersynchronous neuronal
firing although the mechanisms that initiate seizures are
largely unknown. As a result, antiepileptic drugs (AEDs)
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is propagated by astrocytes releasing ATP, which acts on P2
receptors of adjacent astrocytes (4). After the calcium wave has
propagated some distance, astrocytes release glutamate at distant
neurons and synchronise their spiking (5)
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simply provide symptomatic relief as they fall into three
broad categories—drugs that promote GABAergic neuro-
transmission (e.g. barbituates, benzodiazepines, vigabatrin
and tiagabine); drugs that decrease glutamatergic neuro-
transmission (e.g. topiramate and felbamate); or drugs that
block voltage-gated Na' channels (e.g. phenytoin, carba-
mazepine and lamotrigine) to attenuate high-frequency action
potentials in both amplitude and rate of rise [58]. However, in
doing so AEDs compromise normal neural function, often
with severe side effects [58]. Furthermore, despite a wide
variety of AEDs, drug-resistant epilepsy, which is often
focal, remains a debilitating problem which often responds
only to neurosurgery such as temporal lobe resection in
temporal lobe epilepsy, corticectomy or vagus nerve stimu-
lation, which are not without considerable risks and costs.

The cellular correlate of interictal epileptiform activity is
the paroxysmal depolarisation shift (PDS)—abnormal pro-
longed depolarisations with repetitive spiking induced by
ionotropic glutamate receptor activation which is thought to
drive groups of neurons into hypersynchronous bursting
[59]. Astrocytes effect glutamate release upon a Ca®" and
SNARE-dependent mechanism [60, 61]. Physiologically,
this typically follows increased intracellular Ca®" levels
resulting from glial communication via the calcium wave
(see below). This phenomenon has been pharmacologically
demonstrated by activation of type I metabotropic gluta-
mate receptors (mGIluRs) by their agonist dihydroxyphe-
nylglicine (DHPG), by intracellular injection of IP3 or by
increasing intracytoplasmic Ca”" levels by photolysis of
caged Ca”" [62]. Importantly, glutamate release from astro-
cytes has been demonstrated to play a key role in the con-
trol of synaptic strength and is based upon stimulation of
astrocytic P2Y1 receptors based on neuronal activity [63].

The role of this astrocytic glutamate release in triggering
PDSs was characterised by Tian et al [64]. Patched CA1
pyramidal neurons from rat hippocampal slices were found
to undergo PDSs when exposed to the epileptogenic
K" channel blocker 4-aminopyridine (4-AP), and the
majority (70-90%) of these PDSs were insensitive to
TTX, suggesting PDSs can be triggered sans action poten-
tials. Furthermore, photolysis of caged Ca®" in astrocytes
but not neurons evoked PDSs in a mechanism consistent
with Ca*'-dependent glutamate release. In vivo studies
using two-photon imaging of exposed cortex of adult mice
during seizures induced by the proeplileptic drug 4-AP showed
that three AEDs—valproate, gabapentin and phenytoin—
decreased 4-AP-induced Ca®" signalling (by 69.7, 55.6
and 45.5% respectively) and ATP-induced Ca”" signalling
(by 64.9, 53.8 and 23.8% respectively). A problem with
all studies of experimental epilepsy is how closely they
match the human disease [65]. This study in particular was
controversial as Fellin et al. [66] showed that astrocytic
glutamate is not necessary to generate epileptiform activity.
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Moreover, a recent study has challenged the capability of
astrocytes to release glutamate [67, 68].

Notwithstanding, astrocytic glutamate release may
explain how glial scarring underlies post-traumatic epilepsy
and hippocampal sclerosis leads to mesiotemporal epilepsy.
Furthermore, it remains possible that blocking astrocytic
glutamate release, for example by inhibiting components of
the astrocytic calcium wave, may decrease seizures or pre-
vent their spreading.

Novel antiepileptic drug targets

The mechanism of astrocytic calcium waves is reviewed
above, and we propose that this is the initiating event of
epileptic seizures because they could theoretically carry-
over neuronal excitability from one set of recently activated
neurons to another dormant set of neurons. Such a model
would spatiotemporally synchronise the second group to
fire unexpectedly and in harmonic synergy to the first set
which is the neurophysiological hallmark of epileptiform
spiking. Secondly, astrocytic calcium-wave signalling
mediates interastrocytic excitation, which is the decisive
final step prior to astrocytic glutamate release [69], which
then acts on neurons to evoke EPSPs [64]. Therefore, we
propose that blocking the astrocytic calcium wave repre-
sents a proximal, albeit relatively unexplored, drug target
for the treatment of focal epilepsy.

From analysis of the models of astrocytic calcium-wave
signalling, two obvious drug targets are apparent—gap
junctions and P2Y receptors. The role of gap-junction
signalling in epilepsy is still unclear [70]. While inhibiting
gap-junction signalling has already been shown to have
antiepileptic properties [71, 72], there is evidence that ionic
conductance through gap junctions only partly accounts for
ionic buffering [73]. However, the gap-junction protein
Cx43 has been shown to modulate both astrocytic P2Y1
receptor expression levels [74] and pharmacological func-
tion [75]. Moreover, ATP efflux from Cx43 hemichannels
has recently been demonstrated [76], further expanding the
scope of purinergic signalling in gliotransmission. There-
fore, the role of gap junctions in propagating the calcium
wave, their interplay with P2 receptors, and whether this is
the substrate of their antiepileptic effect when inhibited,
remains to be fully determined. In the interim, purinergic
receptor modulation may hold promise in novel antiepilep-
tic drugs indicated for focal or drug resistant epilepsy.

Moreover, we believe astrocytic purinergic signalling
has a more significant role in influencing the synaptic plas-
ticity which perpetuates epilepsy, since ATP is co-released
with glutamate in a neuronal activity-dependent manner
[77]. We hypothesize that increased extracellular ATP
levels promote organisation of neurons into functional
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assemblies, especially since ATP has been shown to do the
same in development prior to synaptogenesis [78]. This
takes prominence since altered synaptic plasticity is
believed to lead to neuronal circuits which are strengthened
by long-term potentiation-like mechanisms [79], and
although preventing synaptic remodelling in epilepsy is a
relatively unexplored area, we believe our proposed therapy
will decrease long-term remodelling in the epileptic brain.
Moreover, since P2 receptor activation is associated with
astrogliosis [80], P2 receptor inhibition would be expected
to prevent the formation of an epileptogenic focus after
brain injury.

Glial calcium waves do, however, represent a complex
target owing to a variety of direct and indirect functions.
Firstly, calcium-wave signalling underlies glial regulation
of cerebral microvasculature and metabolism which may
be either proepileptic or antiepileptic [81, 82]. Secondly,
calcium-wave signalling may occur either as a cause or an
effect of neurotransmission, and a successful antiepileptic
strategy would entail targeting only those with a putatively
causal role in excitatory neurotransmission. Another source
of complexity is the variation in models of calcium-wave
signalling (reviewed in [83]), whose underlying mecha-
nisms differ between brain regions. Haas et al. [84] elegantly
showed that activity-dependent ATP release propagates
within mouse neocortex independent from astrocytic calci-
um waves, thereby raising the possibility that calcium-wave
signalling may have further anatomical variations. However,
this is not necessarily a setback as such variation may offer
greater specificity in treating different types of seizures as
specific anatomical or pharmacological targets are identified.

Taken together, it can be argued that the effects of
attenuating glial calcium waves on neuronal networks in the
human brain may be hard to predict. However, we argue
that the same can be said of inhibiting neuronal firing en
masse as a therapeutic strategy in epilepsy. The multitude of
functional roles and anatomical variation of gliotransmis-
sion is analogous to the nonspecific anatomical and func-
tional variations of neurotransmission (e.g. excitatory versus
inhibitory neurotransmission, reductio ad absurdum). In
other words, as more is learned about the molecular
pathophysiology of the PDS, we simply offer modulation
of gliotransmission as an adjunct to inhibiting neurotrans-
mission as a novel antiepileptic approach.

Coordinating synaptic networks

Although ATP acting on P2 receptors is excitatory as it
opens cation channels and as it acts on neuronal P2X7
receptors whose clustering in presynaptic densities is sug-
gestive of positively modulating glutamate release [85],

astrocyte-released ATP is actually inhibitory to neurons [86].
The mechanism for this is that ATP is rapidly broken down
into adenosine by ectonucleotidases (E-NTPDase, E-NPP,
alkaline phosphatises, and ecto-5' nucleotidase; reviewed by
Zimmermann [87]), which is inhibitory to neurons [88].

Using an innovative transgenic mouse model expressing
a dominant negative SNARE domain to selectively block
astrocytic ATP release, Pascual et al. [89] elegantly showed
that astrocytic purinergic signalling coordinates synaptic
networks. As alluded to above, ATP is released in an
activity-dependent mechanism in response to neuronal
firing and is hydrolysed extracellularly to adenosine. This
accumulated adenosine diffuses and tonically suppresses
synaptic transmission at distant sites. The authors suggest
that such a mechanism enhances the dynamic range for
long-term potentiation and mediated activity-dependent
heterosynaptic depression, which then provides a pathway
for synaptic crosstalk.

Several issues pertaining to epilepsy arise from this
excellent paper. Prima facie, as pathological synaptic
transmission underlies epilepsy, awry purinergic signalling
is a legitimate possibility. In addition to the authors’
description of a role in crosstalk between distant synapses,
we propose another role: surround inhibition (Fig. 2).

LEGEND
ﬁ Glutamatergic excitation

— Adenosinergic inhibition

Fig. 2 Activity-dependent ATP release from astrocytes mediates
surround inhibition. The synapse in the centre of the figure is
strengthened by astrocytic glutamate release. Adjacent neurons are
inhibited when ATP released upon neuronal activity is broken down
into adenosine
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Accumulated adenosine is mediating collateral inhibition of
adjacent neurons after neuronal activity, thereby seeking to
enhance the signal by reducing background noise.

Reducing this background noise would imply that lower
concentrations of glutamate would be necessary for signal
transduction, which in turn may prevent neuronal cell death
by preventing NMDA receptor overstimulation. A surround
inhibitory mechanism, although traditionally ascribed to
GABAergic neurons, prevents seizure propagation [90],
and its failure would provoke epileptic seizures.

The function of ATP can vary, and it cannot be easily
predicted if excitation or inhibition will prevail. While it is
possible that there may be a balance, the two functions may
also display spatial and temporal separation, as a corollary
to Pascual et al. [89]. A temporal separation is more
obvious as ectonucleotidases rapidly convert ATP to
adenosine. Therefore, any excitatory role of ATP would
be immediate and short-acting. Conversely, as the authors
conjecture, a spatial separation pattern would emerge
secondary to this owing to preferential diffusion of
adenosine beyond the synaptic bouton in question leading
to a widespread inhibitory function. Based on this model,
more ATP may be better in producing more inhibitory
adenosine although there is a risk of triggering pathological
glial calcium waves [37] during their brief excitatory role.

Other pathological depolarisation phenomena

Two different mechanisms exist that perpetuate secondary
injury in the CNS—peri-infarct depolarisations/hypoxic
spreading depression [91-93] and glial calcium-wave
signalling [37]. Several superficial similarities exist be-
tween these two complex phenomena such as the rate of
propagation of calcium waves (14 um/s according to [35])
which is similar to spreading depression (15-35 um/s) and
the fact that both are blocked by purinergic receptor
blockers. Therefore, while one paper suggests that astrocyte
calcium waves are causal to spreading depression [94],
another paper demonstrates that spreading depression can
occur in the absence of calcium waves, for example when
the bathing fluid is void of calcium [95]. Moreover, the
metabolic toxins fluorocitrate [96] and fluoroacetate [97]
that poison glia several hours before affecting neurons do
not prevent spreading depression, but rather facilitate it
(and glia at best play a passive role by attempting to
stabilise extracellular K+ levels), bringing us closer to the
original theory of spreading depression being a neuronal
rather than a glial phenomenon [98]. All the same, there
could be as-yet-undiscovered mechanisms that link these
two, and until then, separate pharmacological interventions
must be devised to address these two phenomena. However,

@ Springer

since they both seek to perpetuate secondary injury,
purinergic receptor blockade may be neuroprotective in
the setting of acute neurotrauma [99, 100].

Conclusion

In summary, first we postulate that blockade of gliotrans-
mission by purinergic modulation may improve epilepsy by
decreasing synaptic strength across the tripartite synapse
and by preventing synchronous ictal spread to distant sites.
Secondly, we hypothesize that ATP released by astrocytes
in response to neuronal activity is a source of surround
inhibition to adjacent neurons. Such a model would both
prevent propagation of seizures and also enhance neuro-
transmission by decreasing background noise. We hope our
opinions are beneficial in the development of treatment
strategies for epilepsy and other pathological depolarisation
phenomena following neurotrauma.
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